Search tips
Search criteria

Results 1-25 (502524)

Clipboard (0)

Related Articles

1.  Acute and chronically increased immunoreactivity to phosphorylation-independent but not pathological TDP-43 after a single traumatic brain injury in humans 
Acta neuropathologica  2011;122(6):715-726.
The pathologic phosphorylation and sub-cellular translocation of neuronal transactive response-DNA binding protein (TDP-43) was identified as the major disease protein in frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions, now termed FTLD-TDP, and amyotrophic lateral sclerosis (ALS). More recently, TDP-43 proteinopathy has been reported in dementia pugilistica or chronic traumatic encephalopathy caused by repetitive traumatic brain injury (TBI). While a single TBI has been linked to the development of Alzheimer’s disease and an increased frequency of neurofibrillary tangles, TDP-43 proteinopathy has not been examined with survival following a single TBI. Using immunohistochemistry specific for both pathological phosphorylated TDP-43 (p-TDP-43) and phosphorylation-independent TDP-43 (pi-TDP-43), we examined acute (n = 23: Survival < 2 weeks) and long-term (n = 39; 1–47 years survival) survivors of a single TBI versus age-matched controls (n = 47). Multiple regions were examined including the hippocampus, medial temporal lobe, cingulate gyrus, superior frontal gyrus and brainstem. No association was found between a history of single TBI and abnormally phosphorylated TDP-43 (p-TDP-43) inclusions. Specifically, just 3 of 62 TBI cases displayed p-TDP-43 pathology versus 2 of 47 control cases. However, while aggregates of p-TDP-43 were not increased acutely or long-term following TBI, immunoreactivity to phosphorylation-independent TDP-43 was commonly increased in the cytoplasm following TBI with both acute and long-term survival. Moreover, while single TBI can induce multiple long-term neurodegenerative changes, the absence of TDP-43 proteinopathy may indicate a fundamental difference in the processes induced following single TBI from those of repetitive TBI.
PMCID: PMC3979333  PMID: 22101322
TDP-43; 43 kDa transactive response (TAR) DNA binding protein; Traumatic brain injury; Head injury; Diffuse axonal injury; DAI; Neurodegeneration; Dementia; Alzheimer’s disease; Long-term survival; Single versus repetitive TBI
Previous data suggest heterogeneity in laminar distribution of the pathology in the molecular disorder frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP). To study this heterogeneity, we quantified the changes in density across the cortical laminae of neuronal cytoplasmic inclusions (NCI), glial inclusions (GI), neuronal intranuclear inclusions (NII), dystrophic neurites (DN), surviving neurons, abnormally enlarged neurons (EN), and vacuoles in regions of the frontal and temporal lobe.
Changes in density of histological features across cortical gyri were studied in ten sporadic cases of FTLD-TDP using quantitative methods and polynomial curve-fitting.
Our data suggest that laminar neuropathology in sporadic FTLD-TDP is highly variable. Most commonly, NCI, DN, and vacuolation were abundant in the upper laminae and GI, NII, EN, and glial cell nuclei in the lower laminae. TDP-43-immunoreactive inclusions affected more of the cortical profile in longer duration cases, their distribution varied with disease subtype, but was unrelated to Braak tangle score. Different TDP-43-immunoreactive inclusions were not spatially correlated.
Laminar distribution of pathological features in ten sporadic cases of FTLD-TDL is heterogeneous and may be accounted for, in part, by disease subtype and disease duration. In addition, the feed-forward and feed-back cortico-cortical connections may be compromised in FTLD-TDP.
PMCID: PMC3504185  PMID: 22804696
Frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP); FTLD with ubiquitin-positive inclusions (FTLD-U); Transactive response TAR DNA-binding protein of 43 kDa (TDP-43); Neuronal cytoplasmic inclusions (NCI); Laminar distribution
3.  Staging TDP-43 pathology in Alzheimer’s disease 
Acta neuropathologica  2013;127(3):441-450.
TDP-43 immunoreactivity occurs in 19–57% of Alzheimer’s disease (AD) cases. Two patterns of TDP-43 deposition in AD have been described involving hippocampus (Limbic) or hippocampus and neocortex (Diffuse), although focal amygdala involvement has been observed. In 195 AD cases with TDP-43, we investigated regional TDP-43 immunoreactivity with the aim of developing a TDP-43 in AD staging scheme. TDP-43 immunoreactivity was assessed in amygdala, entorhinal cortex, subiculum, hippocampal dentate gyrus, occipitotemporal, inferior temporal and frontal cortices, and basal ganglia. Clinical, neuroimaging, genetic and pathological characteristics were assessed across stages. Five stages were identified: stage I showed scant-sparse TDP-43 in the amygdala only (17%); stage II showed moderate-frequent amygdala TDP-43 with spread into entorhinal and subiculum (25%); stage III showed further spread into dentate gyrus and occipitotemporal cortex (31%); stage IV showed further spread into inferior temporal cortex (20%); and stage V showed involvement of frontal cortex and basal ganglia (7%). Cognition and medial temporal volumes differed across all stages and progression across stages correlated with worsening cognition and medial temporal volume loss. Compared to 147 AD patients without TDP-43, only the Boston Naming Test showed abnormalities in stage I. The findings demonstrate that TDP-43 deposition in AD progresses in a stereotypic manner that can be divided into five distinct topographic stages which are supported by correlations with clinical and neuroimaging features. Given these findings, we recommend sequential regional TDP-43 screening in AD beginning with the amygdala.
PMCID: PMC3944799  PMID: 24240737
Alzheimer disease; TDP-43; amygdala; TDP-43 type; staging; MRI
4.  Evaluation of subcortical pathology and clinical correlations in FTLD-U subtypes 
Acta neuropathologica  2009;118(3):349-358.
Frontotemporal lobar degeneration (FTLD) can be classified as tau-positive (FTLD-tau) and tau-negative FTLD. The most common form of tau-negative FTLD is associated with neuronal inclusions that are composed of TAR DNA binding protein 43 (TDP-43) (FTLD-TDP). Recent evidence suggests that FTLD-TDP can be further subdivided into at least three major histologic variants based on patterns of TDP-43 immunoreactive neuronal cytoplasmic inclusions (NCI) and dystrophic neurites (DN) in neocortex and hippocampus. The aim of this study was to extend the histologic analysis to other brain regions and to determine if there were distinct clinical and pathologic characteristics of the FTLD-TDP subtypes. Thirty-nine FTLD-TDP cases were analyzed (Mackenzie type 1, n = 24; Mackenzie type 2, n = 9; Mackenzie type 3, n = 6). There was a highly significant association between clinical syndrome and FTLD-TDP subtype, with progressive non-fluent aphasia associated with type 1, semantic dementia with type 2, and behavioral variant frontotemporal dementia with types 1, 2 and 3. Semi-quantitative analysis of NCI and DN demonstrated different patterns of involvement in cortical, subcortical and brainstem areas that were characteristic for each of the three types of FTLD-TDP. Type 1 had a mixture of NCI and DN, as well as intranuclear inclusions in most cases and TDP-43 pathology at all levels of the neuraxis, but less in brainstem than supratentorial structures. Type 2 cases were characterized by predominance of long, thick DN in the cortex, as well as numerous NCI in hippocampus, amygdala and basal ganglia, but virtually no NCI and only sparse DN in diencephalon and brainstem. Type 3 had a paucity of DN at all levels of the neuraxis and significantly more NCI in the hypoglossal nucleus than the other types. These findings extend previously described clinicopathological associations of FTLD-TDP subtypes and support the notion that FTLD-TDP subtypes may be distinct clinicopathologic disorders.
PMCID: PMC3044602  PMID: 19455346
frontotemporal dementia; frontotemporal lobar degeneration; immunohistochemistry; progressive non-fluent aphasia; semantic dementia; TDP-43
5.  Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD) 
Acta neuropathologica  2014;127(3):423-439.
We examined regional distribution patterns of phosphorylated 43-kDa TAr DNA-binding protein (pTDP-43) intraneuronal inclusions in frontotemporal lobar degeneration (FTLD). Immunohistochemistry was performed on 70 μm sections from FTLD-TDP autopsy cases (n = 39) presenting with behavioral variant frontotemporal dementia. Two main types of cortical pTDP-43 pathology emerged, characterized by either predominantly perikaryal pTDP-43 inclusions (cytoplasmic type, cFTLD) or long aggregates in dendrites (neuritic type, nFTLD). Cortical involvement in nFTLD was extensive and frequently reached occipital areas, whereas cases with cFTLD often involved bulbar somatomotor neurons and the spinal cord. We observed four patterns indicative of potentially sequential dissemination of pTDP-43: cases with the lowest burden of pathology (pattern I) were characterized by widespread pTDP-43 lesions in the orbital gyri, gyrus rectus, and amygdala. With increasing burden of pathology (pattern II) pTDP-43 lesions emerged in the middle frontal and anterior cingulate gyrus as well as in anteromedial temporal lobe areas, the superior and medial temporal gyri, striatum, red nucleus, thalamus, and precerebellar nuclei. More advanced cases showed a third pattern (III) with involvement of the motor cortex, bulbar somatomotor neurons, and the spinal cord anterior horn, whereas cases with the highest burden of pathology (pattern IV) were characterized by pTDP-43 lesions in the visual cortex. We interpret the four neuropathological patterns in bvFTD to be consistent with the hypothesis that pTDP-43 pathology can spread sequentially and may propagate along axonal pathways.
PMCID: PMC3971993  PMID: 24407427
ALS, amyotrophic lateral sclerosis; Frontotemporal lobar degeneration; FTLD, frontotemporal dementia; FTD; Neurodegeneration; Proteinopathies; TDP-43
6.  Abnormal TDP-43 immunoreactivity in AD modifies clinicopathological and radiological phenotype 
Neurology  2008;70(19 Pt 2):1850-1857.
TAR DNA-binding protein 43 (TDP-43) is one of the major disease proteins in frontotemporal lobar degeneration with ubiquitin immunoreactivity. Approximately 1/4 of subjects with pathologically confirmed Alzheimer's disease (AD) have abnormal TDP-43 (abTDP-43) immunoreactivity. The aim of this study was to determine if subjects with pathologically confirmed AD and abTDP-43 immunoreactivity have distinct clinical, neuropsychological, imaging or pathological features compared to subjects with AD without abTDP-43 immunoreactivity.
Eighty-four subjects were identified that had a pathological diagnosis of AD, neuropsychometric testing, and volumetric MRI. Immunohistochemistry for TDP-43 was performed on sections of hippocampus and medial temporal lobe, and positive cases were classified into one of three types. Neuropsychometric data was collated and compared in subjects with and without abTDP-43 immunoreactivity. Voxel-based morphometry was used to assess patterns of gray matter atrophy in subjects with and without abTDP-43 immunoreactivity compared to age and gender matched controls.
Twenty-nine (34%) of the 84 AD subjects had abTDP-43 immunoreactivity. Those with abTDP-43 immunoreactivity were older at onset and death, and performed worse on the Clinical Dementia Rating scale, Mini-Mental State Examination and Boston Naming Test than subjects without abTDP-43 immunoreactivity. Subjects with and without abTDP-43 immunoreactivity had medial temporal and temporoparietal gray matter loss compared to controls; however, those with abTDP-43 immunoreactivity showed greater hippocampal atrophy. Multivariate logistic regression adjusting for age at death demonstrated that hippocampal sclerosis was the only pathological predictor of abTDP-43 immunoreactivity.
The presence of abTDP-43 immunoreactivity is associated with a modified AD clinicopathological and radiological phenotype.
PMCID: PMC2779031  PMID: 18401022
7.  TDP-43 Deposition in Prospectively Followed, Cognitively Normal Elderly Individuals: Correlation with Argyrophilic Grains but not Other Concomitant Pathologies 
Acta neuropathologica  2013;126(1):51-57.
TAR DNA-binding protein 43 (TDP-43) has been heavily researched in recent years due to its involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Several studies have also sought to investigate the frequency of TDP-43 deposition in other neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases, but there has been relatively little work focused on the prevalence, distribution and histopathological associations of abnormal TDP-43 deposits in the brains of cognitively normal elderly subjects. We screened thick, free-floating coronal sections of mesial temporal lobe from 110 prospectively-followed and autopsied cognitively normal subjects (age range 71–100 years) using an immunohistochemical method for phosphorylated TDP-43. We found a 36.4% prevalence of pathologic TDP-43, mostly in the form of neurites while perikaryal cytoplasmic neuronal inclusions were uncommon and intranuclear inclusions were rare. With respect to other concomitant pathologies commonly found in elderly individuals, cases with TDP-43 had a greater prevalence of argyrophilic grains (ARG) (40% vs. 18.6%) and overall ARG density (moderate vs. sparse). There were no additional associations with other concomitant pathologies, including cerebral white matter rarefaction, incidental Lewy bodies, neurofibrillary tangles or amyloid plaques. These results indicate deposition of TDP-43 occurs in a substantial subset of cognitively normal elderly subjects and is more common in those with ARG, supporting some previous studies linking pathological TDP-43 deposition with ARG and other pathological tau protein deposits.
PMCID: PMC3691299  PMID: 23604587
amygdala; hippocampus; TAR DNA binding protein; aging; neuropathology; argyrophilic grains
8.  A morphometric study of the spatial patterns of TDP-43 immunoreactive neuronal inclusions in frontotemporal lobar degeneration (FTLD) with progranulin (GRN) mutation 
Histology and Histopathology  2011;26(2):185-190.
Mutations of the progranulin (GRN) gene are major cause of familial frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP). We studied the spatial patterns of TDP-43 immunoreactive neuronal cytoplasmic inclusions (NCI) neuronal intranuclear inclusions (NII) in histological sections of the frontal and temporal lobe in eight cases of FTLD-TDP with GRN mutation using morphometric methods and spatial pattern analysis. In neocortical regions, the NCI were clustered and the clusters were regularly distributed parallel to the pia mater; 58% of regions analysed exhibiting this pattern. The NII were present in regularly distributed clusters in 35% of regions but also randomly distributed in many areas. In neocortical regions, the sizes of the regular clusters of NCI and NII were 400–800 µm, approximating to the size of the modular columns of the cortico-cortical projections, in 31% and 36% of regions respectively. The NCI and NII also exhibited regularly spaced clustering in sectors CA1/2 of the hippocampus and in dentate gyrus. The clusters of NCI and NII were not spatially correlated. The data suggest degeneration of the cortico-cortical and cortico-hippocampal pathways in FTLD-TDP with GRN mutation, the NCI and NII affecting different clusters of neurons.
PMCID: PMC3017380  PMID: 21154232
Frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP); TAR DNA-binding protein (TDP-43); Progranulin (GRN) mutation; Spatial topography
9.  Stages of pTDP-43 pathology in amyotrophic lateral sclerosis 
Annals of neurology  2013;74(1):20-38.
To see if the distribution patterns of phosphorylated 43-kDa TAR DNA-binding protein (pTDP-43) intraneuronal inclusions in amyotrophic lateral sclerosis (ALS) permit recognition of neuropathological stages.
pTDP-43 immunohistochemistry was performed on 70 μm sections from ALS autopsy cases (N=76) classified by clinical phenotype and genetic background.
ALS cases with the lowest burden of pTDP-43 pathology were characterized by lesions in the agranular motor cortex, brainstem motor nuclei of cranial nerves XII-X, VII, V, and spinal cord α-motoneurons (stage 1). Increasing burdens of pathology showed involvement of the prefrontal neocortex (middle frontal gyrus), brainstem reticular formation, precerebellar nuclei, and the red nucleus (stage 2). In stage 3, pTDP-43 pathology involved the prefrontal (gyrus rectus and orbital gyri) and then postcentral neocortex and striatum. Cases with the greatest burden of pTDP-43 lesions showed pTDP-43 inclusions in anteromedial portions of the temporal lobe, including the hippocampus (stage 4). At all stages, these lesions were accompanied by pTDP-43 oligodendroglial aggregates. Ten cases with C9orf72 repeat expansion displayed the same sequential spreading pattern as non-expansion cases but a greater regional burden of lesions, indicating a more fulminant dissemination of pTDP-43 pathology.
pTDP-43 pathology in ALS possibly disseminates in a sequential pattern that permits recognition of four neuropathological stages consistent with the hypothesis that pTDP-43 pathology is propagated along axonal pathways. Moreover, the fact that pTDP-43 pathology develops in the prefrontal cortex as part of an ongoing disease process could account for the development of executive cognitive deficits in ALS.
PMCID: PMC3785076  PMID: 23686809
10.  Tau Pathology in Frontotemporal Lobar Degeneration with C9ORF72 Hexanucleotide Repeat Expansion 
Acta neuropathologica  2012;125(2):289-302.
An expanded GGGGCC hexanucleotide repeat in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration associated with TDP-43 pathology (FTLD-TDP). In addition to TDP-43-positive neuronal and glial inclusions, C9ORF72-linked FTLD-TDP has characteristic TDP-43-negative neuronal cytoplasmic and intranuclear inclusions as well as dystrophic neurites in the hippocampus and cerebellum. These lesions are immunopositive for ubiquitin and ubiquitin-binding proteins, such as sequestosome-1/p62 and ubiquilin-2. Studies examining the frequency of the C9ORF72 mutation in clinically probable Alzheimer’s disease (AD) have found a small proportion of AD cases with the mutation. This prompted us to systematically explore the frequency of Alzheimer type pathology in a series of 17 FTLD-TDP cases with mutations in C9ORF72 (FTLD-C9ORF72). We identified 4 cases with sufficient Alzheimer type pathology to meet criteria for intermediate-to-high likelihood AD. We compared AD pathology in the 17 FTLD-C9ORF72 to 13 cases of FTLD-TDP linked to mutations in the gene for progranulin (FTLD-GRN) and 36 cases of sporadic FTLD (sFTLD). FTLD-C9ORF72 cases had higher Braak neurofibrillary tangle stage than FTLD-GRN. Increased tau pathology in FTLD-C9ORF72 was assessed with thioflavin-S fluorescent microscopy-based neurofibrillary tangle counts and with image analysis of tau burden in temporal cortex and hippocampus. FTLD-C9ORF72 had significantly more neurofibrillary tangles and higher tau burden compared with FTLD-GRN. The differences were most marked in limbic regions. On the other hand, sFTLD and FTLD-C9ORF72 had a similar burden of tau pathology. These results suggest FTLD-C9ORF72 has increased propensity for tau pathology compared to FTLD-GRN, but not sFTLD. The accumulation of tau as well as lesions immunoreactive for ubiquitin and ubiquitin binding proteins (p62 and ubiquilin-2) suggests that mutations in C9ORF72 may involve disrupted protein degradation that favors accumulation of multiple different proteins.
PMCID: PMC3551994  PMID: 23053135
frontotemporal lobar degeneration; C9ORF72; ubiquitin; p62; ubiquilin-2; tau
To further characterize the neuropathology of the heterogeneous molecular disorder frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP).
We quantified the neuronal cytoplasmic inclusions (NCI), glial inclusions (GI), neuronal intranuclear inclusions (NII), dystrophic neurites (DN), surviving neurons, abnormally enlarged neurons (EN), and vacuoles in regions of the frontal and temporal lobe using a phosphorylation independent TDP-43 antibody in thirty-two cases of FTLD-TDP comprising sporadic and familial cases, with associated pathology such as hippocampal sclerosis (HS) or Alzheimer’s disease (AD), and four neuropathological subtypes using TDP-43 immunohistochemistry. Analysis of variance (ANOVA) was used to compare differences between the various groups of cases.
These data from FTLD-TDP cases demonstrate quantitative differences in pathological features between: (1) regions of the frontal and temporal lobe, (2) upper and lower cortex, (3) sporadic and progranulin (GRN) mutation cases, (4) cases with and without AD or HS, and (5) between assigned subtypes.
The data confirm that the dentate gyrus is a major site of neuropathology in FTLD-TDP and that most laminae of the cerebral cortex are affected. GRN mutation cases are quantitatively different from sporadic cases while cases with associated HS and AD have increased densities of dystrophic neurites (DN) and abnormally enlarged neurons (EN) respectively. There is little correlation between the subjective assessment of subtypes and the more objective quantitative data.
PMCID: PMC3206199  PMID: 21696412
Frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP); Density; Neuronal cytoplasmic inclusions (NCI); Neuronal intranuclear inclusion (NII)
12.  Does TDP-43 type confer a distinct pattern of atrophy in frontotemporal lobar degeneration? 
Neurology  2010;75(24):2212-2220.
To determine whether TDP-43 type is associated with distinct patterns of brain atrophy on MRI in subjects with pathologically confirmed frontotemporal lobar degeneration (FTLD).
In this case-control study, we identified all subjects with a pathologic diagnosis of FTLD with TDP-43 immunoreactive inclusions (FTLD-TDP) and at least one volumetric head MRI scan (n = 42). In each case we applied published criteria for subclassification of FTLD-TDP into FTLD-TDP types 1-3. Voxel-based morphometry was used to compare subjects with each of the different FTLD-TDP types to age- and gender-matched normal controls (n = 30). We also assessed different pathologic and genetic variants within, and across, the different types.
Twenty-two subjects were classified as FTLD-TDP type 1, 9 as type 2, and 11 as type 3. We identified different patterns of atrophy across the types with type 1 showing frontotemporal and parietal atrophy, type 2 predominantly anterior temporal lobe atrophy, and type 3 predominantly posterior frontal atrophy. Within the FTLD-TDP type 1 group, those with a progranulin mutation had significantly more lateral temporal lobe atrophy than those without. All type 2 subjects were diagnosed with semantic dementia. Subjects with a pathologic diagnosis of FTLD with motor neuron degeneration had a similar pattern of atrophy, regardless of whether they were type 1 or type 3.
Although there are different patterns of atrophy across the different FTLD-TDP types, it appears that genetic and pathologic factors may also affect the patterns of atrophy.
= Alzheimer disease;
= Alzheimer's Disease Research Center;
= behavioral variant frontotemporal dementia;
= corticobasal syndrome;
= Clinical Dementia Rating scale sum of boxes;
= frontotemporal lobar degeneration;
= frontotemporal lobar degeneration with motor neuron degeneration;
= frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions;
= Mini-Mental State Examination;
= neuronal cytoplasmic inclusion;
= progressive nonfluent aphasia;
= semantic dementia;
= Short Test of Mental Status;
= voxel-based morphometry.
PMCID: PMC3013590  PMID: 21172844
13.  TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia 
Neurology  2010;75(24):2204-2211.
We sought to describe the antemortem clinical and neuroimaging features among patients with frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions (FTLD-TDP).
Subjects were recruited from a consecutive series of patients with a primary neuropathologic diagnosis of FTLD-TDP and antemortem MRI. Twenty-eight patients met entry criteria: 9 with type 1, 5 with type 2, and 10 with type 3 FTLD-TDP. Four patients had too sparse FTLD-TDP pathology to be subtyped. Clinical, neuropsychological, and neuroimaging features of these cases were reviewed. Voxel-based morphometry was used to assess regional gray matter atrophy in relation to a group of 50 cognitively normal control subjects.
Clinical diagnosis varied between the groups: semantic dementia was only associated with type 1 pathology, whereas progressive nonfluent aphasia and corticobasal syndrome were only associated with type 3. Behavioral variant frontotemporal dementia and frontotemporal dementia with motor neuron disease were seen in type 2 or type 3 pathology. The neuroimaging analysis revealed distinct patterns of atrophy between the pathologic subtypes: type 1 was associated with asymmetric anterior temporal lobe atrophy (either left- or right-predominant) with involvement also of the orbitofrontal lobes and insulae; type 2 with relatively symmetric atrophy of the medial temporal, medial prefrontal, and orbitofrontal-insular cortices; and type 3 with asymmetric atrophy (either left- or right-predominant) involving more dorsal areas including frontal, temporal, and inferior parietal cortices as well as striatum and thalamus. No significant atrophy was seen among patients with too sparse pathology to be subtyped.
FTLD-TDP subtypes have distinct clinical and neuroimaging features, highlighting the relevance of FTLD-TDP subtyping to clinicopathologic correlation.
= behavioral variant frontotemporal dementia;
= corticobasal syndrome;
= Clinical Dementia Rating;
= false discovery rate;
= frontotemporal dementia;
= frontotemporal lobar degeneration;
= frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions;
= fused in sarcoma;
= Mini-Mental State Examination;
= motor neuron disease;
= progressive nonfluent aphasia;
= TAR DNA-binding protein of 43 kDa;
= University of California, San Francisco;
= voxel-based morphometry.
PMCID: PMC3013589  PMID: 21172843
14.  Frontotemporal Lobar Degeneration with TDP-43 Proteinopathy and Chromosome 9p Repeat Expansion in C9ORF72: Clinicopathologic Correlation 
Mutations in C9ORF72 resulting in expanded hexanucleotide repeats were recently reported to be the underlying genetic abnormality in chromosome 9p-linked frontotemporal lobar degeneration with TAR DNA-binding protein of 43 kD (TDP-43) proteinopathy (FTLD-TDP), amyotrophic lateral sclerosis (ALS), and frontotemporal lobar degeneration with motor neuron disease (FTLD-MND). Several subsequent publications described the neuropathology as being similar to that seen in cases of FTLD-TDP and ALS without C9ORF72 mutations, except that cases with mutations have p62 and ubiquitin positive, TDP-43 negative inclusions in cerebellum, hippocampus, neocortex, and basal ganglia. The identity of this protein is as yet unknown, and its significance is unclear. With the goal of potentially uncovering the significance of these TDP-43 negative inclusions, we compared the clinical, pathologic, and genetic characteristics in 5 cases of FTLD-TDP and FTLD-MND with C9ORF72 mutations to 20 cases without mutations. We confirmed the apparent specificity of p62 positive, TDP-43 negative inclusions in cerebellum, hippocampus, cortex, and basal ganglia to FTLD with C9ORF72 mutations. p62 positive, TDP-43 negative inclusions in hippocampus correlated with hippocampal atrophy, but no additional correlations were uncovered. However, although ambiguity of TDP sub-typing has previously been reported in cases with C9ORF72 mutations, this is the first report to show that although most FTLD cases with C9ORF72 mutations were TDP type B, some of the pathologic characteristics in these cases were more similar to TDP types A and C than to TDP type B FTLD cases without mutations. These features include greater cortical and hippocampal atrophy, greater ventricular dilatation, more neuronal loss and gliosis in temporal lobe and striatum, and TDP-43 positive fine neuritic profiles in the hippocampus in FTLD cases with C9ORF72 mutations compared to FTLD-TDP type B cases without mutations, implying that the C9ORF72 mutation modifies the pathologic phenotype of FTLD-TDP type B.
PMCID: PMC3449045  PMID: 22702520
C9ORF72; repeat expansion; p62; ubiquitin; TDP-43; FTLD; ALS
15.  Incidence and extent of TDP-43 accumulation in aging human brain 
The transactivation response element DNA-binding protein 43 kDa (TDP-43) is a major component of the ubiquitin-positive and tau-negative inclusions in frontotemporal lobar degeneration and sporadic amyotrophic lateral sclerosis (ALS). TDP-43 may accumulate in cases of Alzheimer’s disease (AD), Lewy body disease (LBD), and argyrophilic grain disease (AGD). However, few studies have focused on the incidence and extent of TDP-43 deposition in aging.
We analyzed 286 consecutive autopsy brains neuropathologically. Of these, 136 brains with pathologically minimal senile changes were designated as control elderly brains (78.5 ± 9.7 y). For comparison, we selected 29 AD, 11 LBD, and 11 AGD patients from this series of autopsy brains. Sections of the hippocampus, amygdala, medulla oblongata, and lumbar spinal cord were immunostained with anti-phosphorylated TDP-43 antibody (PSer409/410). TDP-43 immunoreactive structures were classified into four types: dystrophic neurites (DNs), neuronal or glial cytoplasmic inclusions, and intranuclear inclusions. TDP-43 immunoreactive structures were observed in 55/136 control elderly (40.0 %), 21/29 AD (72.4 %), 8/11 LBD (72.7 %), and 6/11 AGD (54.5 %) brains. TDP-43 immunoreactive structures in control elderly brains were mostly DNs. These DNs were predominantly present in the uncus of the anterior hippocampus over age 65. The frequency of cases with DNs in the amygdala of control elderly brains was less than that of AD, LBD, and AGD brains. The mean age at death was significantly higher in cases with TDP-43 immunoreactive structures than cases without them.
In conclusion, TDP-43 immunoreactive DNs may develop as a consequence of aging processes in the human brain. In particular, the uncus of the anterior hippocampus is an area highly susceptible to TDP-43 accumulation over age 65.
PMCID: PMC4473839  PMID: 26091809
TDP-43; Aging; Hippocampus; Uncus; Amygdala
16.  Dipeptide repeat protein inclusions are rare in the spinal cord and almost absent from motor neurons in C9ORF72 mutant amyotrophic lateral sclerosis and are unlikely to cause their degeneration 
Cytoplasmic TDP-43 inclusions are the pathological hallmark of amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal lobar dementia (FTLD). The G4C2 repeat mutation in C9ORF72 is the most common cause of ALS and FTLD in which, in addition to TDP-43 inclusions, five different di-peptide repeat (DPR) proteins have been identified. Di-peptide repeat proteins are translated in a non-canonical fashion from sense and antisense transcripts of the G4C2 repeat (GP, GA, GR, PA, PR). DPR inclusions are abundant in the cerebellum, as well as in the frontal and temporal lobes of ALS and FTLD patients and some are neurotoxic in a range of cellular and animal models, implying that DPR aggregation directly contributes to disease pathogenesis. Here we sought to quantify inclusions for each DPR and TDP-43 in ALS cases with and without the C9ORF72 mutation. We characterised the abundance of DPRs and their cellular location and compared this to cytoplasmic TDP-43 inclusions in order to explore the role of each inclusion in lower motor neuron degeneration.
Spinal cord sections from ten cases positive for the C9ORF72 repeat expansion (ALS-C9+ve) and five cases that were not were probed by double immunofluorescence staining for individual DPRs and TDP-43. Inclusions immunoreactive for each of the DPRs were present in the spinal cord but they were rare or very rare in abundance (in descending order of frequency: GA, GP, GR, PA and PR). TDP-43 cytoplasmic inclusions were 45- to 750-fold more frequent than any DPR, and fewer than 4 % of DPR inclusions colocalized with TDP-43 inclusions. In motor neurons, a single cytoplasmic DPR inclusion was detected (0.1 %) in contrast to the 34 % of motor neurons that contained cytoplasmic TDP-43 inclusions. Furthermore, the number of TDP-43 inclusions in ALS cases with and without the C9ORF72 mutation was nearly identical.
For all other neurodegenerative diseases, the neurotoxic protein aggregates are detected in the affected population of neurons. TDP-43 cytoplasmic aggregation is the dominant feature of ALS spinal cord pathology irrespective of C9ORF72 mutation status. The near absence of DPR inclusions in spinal cord motor neurons challenges their contribution to lower motor neuron degeneration in ALS-C9+ve cases.
Electronic supplementary material
The online version of this article (doi:10.1186/s40478-015-0218-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4479315  PMID: 26108573
C9ORF72; Dipeptide repeat; TDP-43; Motor neuron; Amyotrophic lateral sclerosis
17.  Progressive Amnestic Dementia, Hippocampal Sclerosis, and Mutation in C9ORF72 
Acta neuropathologica  2013;126(4):545-554.
The most common cause of familial frontotemporal lobar degeneration with TAR DNA-binding protein-43 pathology (FTLD-TDP) has been found to be an expansion of a hexanucleotide repeat (GGGGCC) in a noncoding region of the gene C9ORF72. Hippocampal sclerosis (HpScl) is a common finding in FTLD-TDP. Our objective was to screen for the presence of C9ORF72 hexanucleotide repeat expansions in a pathologically-confirmed cohort of “pure” hippocampal sclerosis cases (n=33), outside the setting of FTLD-TDP and Alzheimer’s disease (AD). Using a recently described repeat-associated non-ATG (RAN) translation (C9RANT) antibody that was found to be highly specific for c9FTD/ALS, we identified a single “pure” HpScl autopsy case with a repeat expansion in C9ORF72 (c9HpScl). Mutation screening was also performed with repeat-primed polymerase chain reaction and further confirmed with southern blotting. The c9HpScl patient had a 14-year history of a slowly progressive amnestic syndrome and a clinical diagnosis of probable AD. Neuropsychological testing revealed memory impairment, but no deficits in other cognitive domains. Autopsy showed hippocampal sclerosis with TDP-43 immunoreactive neuronal inclusions relatively limited to limbic lobe structures. Neuritic pathology immunoreactive for p62 was more frequent than TDP-43 in amygdala and hippocampus. Frequent p62 positive neuronal inclusions were present in cerebellar granule neurons as is typical of C9ORF72 mutation carriers. There was no significant FTLD or motor neuron disease. C9RANT was found to be sensitive and specific in this autopsy-confirmed series of HpScl cases. The findings in this patient suggest that the clinical and pathologic spectrum of C9ORF72 repeat expansion is wider than frontotemporal dementia and motor neuron disease, including cases of progressive amnestic dementia with restricted TDP-43 pathology associated with HpScl.
PMCID: PMC3926101  PMID: 23922030
Hippocampus; C9ORF72; memory; neuropathology; frontotemporal lobar degeneration; C9RANT
18.  Spatial patterns of TDP-43 neuronal cytoplasmic inclusions (NCI) in fifteen cases of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP) 
Neurological Sciences  2011;32(4):653-659.
Neuronal cytoplasmic inclusions (NCI) immunoreactive for transactive response DNA-binding protein (TDP-43) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). We studied the spatial patterns of the TDP-43 immunoreactive NCI in the frontal and temporal cortex of 15 cases of FTLD-TDP. The NCI were distributed parallel to the tissue boundary predominantly in regular clusters 50–400 μm in diameter. In five cortical areas, the size of the clusters approximated to the cells of the cortico-cortical pathways. In most regions, cluster size was smaller than 400 μm. There were no significant differences in spatial patterns between familial and sporadic cases. Cluster size of the NCI was not correlated with disease duration, brain weight, Braak stage, or disease subtype. The spatial pattern of the NCI was similar to that of neuronal inclusions in other neurodegenerative diseases and may reflect a common pattern of degeneration involving the cortico-cortical projections.
PMCID: PMC3379546  PMID: 21647631
Frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP); TAR DNA-binding protein of 43 kDa (TDP-43); Neuronal cytoplasmic inclusions (NCI); Spatial pattern
19.  Asymmetric TDP-43 distribution in primary progressive aphasia with progranulin mutation 
Neurology  2010;74(20):1607-1610.
Primary progressive aphasia (PPA) results from an asymmetric degeneration of the language dominant (usually left) hemisphere and can be associated with the pathology of Alzheimer disease (AD) or frontotemporal lobar degeneration (FTLD). This study aimed to investigate whether the anatomic distribution of TDP-43 inclusions displayed a corresponding leftward asymmetry in a patient with PPA with a mutation in the progranulin gene and FTLD pathology.
Brain tissue from a 65-year-old patient with PPA and progranulin mutation was analyzed using immunohistochemical methods for TDP-43. Analysis was performed in the superior temporal gyrus, inferior temporal gyrus, inferior parietal lobule, orbitofrontal cortex, entorhinal cortex, and dentate gyrus. Neuronal intranuclear inclusions, neuronal cytoplasmic inclusions, and dystrophic neurites were quantified using modified stereologic analysis. Analysis of variance was used to determine significant effects.
All 3 types of inclusions predominated on the left side of analyzed cortical regions. They were also more frequent in language areas than in memory-related areas.
These results demonstrate a phenotypically concordant distribution of abnormal TDP-43 inclusions in primary progressive aphasia (PPA). This contrasts with PPA cases with Alzheimer pathology where no consistent leftward asymmetry of neurofibrillary degeneration or amyloid deposition has been demonstrated despite the leftward asymmetry of the atrophy, and where neurofibrillary tangles show a greater density in memory than language areas despite the predominantly aphasic phenotype. This case suggests that the TDP-43 inclusions in PPA–frontotemporal lobar degeneration are more tightly linked to neuronal death and dysfunction than neurofibrillary and amyloid deposits in PPA–Alzheimer disease.
= Alzheimer disease;
= anterior part of inferior parietal lobule;
= dentate gyrus;
= dystrophic neurite;
= entorhinal cortex;
= frontotemporal lobar degeneration;
= inferior temporal gyrus;
= neuronal cytoplasmic inclusion;
= neuronal intranuclear inclusion;
= orbitofrontal cortex;
= posterior part of inferior parietal lobule;
= primary progressive aphasia;
= superior temporal gyrus.
PMCID: PMC2875132  PMID: 20479359
20.  Neuropathological heterogeneity in frontotemporal lobar degeneration with TDP-43 proteinopathy: a quantitative study of 94 cases using principal components analysis 
Journal of Neural Transmission  2009;117(2):227-239.
Studies suggest that frontotemporal lobar degeneration with transactive response DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP) is heterogeneous with division into four or five subtypes. To determine the degree of heterogeneity and the validity of the subtypes, we studied neuropathological variation within the frontal and temporal lobes of 94 cases of FTLD-TDP using quantitative estimates of density and principal components analysis (PCA). A PCA based on the density of TDP-43 immunoreactive neuronal cytoplasmic inclusions, oligodendroglial inclusions, neuronal intranuclear inclusions, and dystrophic neurites, surviving neurons, enlarged neurons, and vacuolation suggested that cases were not segregated into distinct subtypes. Variation in the density of the vacuoles was the greatest source of variation between cases. A PCA based on TDP-43 pathology alone suggested that cases of FTLD-TDP with progranulin (GRN) mutation segregated to some degree. The pathological phenotype of all four subtypes overlapped but subtypes 1 and 4 were the most distinctive. Cases with coexisting motor neuron disease (MND) or hippocampal sclerosis (HS) also appeared to segregate to some extent. We suggest: (1) pathological variation in FTLD-TDP is best described as a ‘continuum’ without clearly distinct subtypes, (2) vacuolation was the single greatest source of variation and reflects the ‘stage’ of the disease, and (3) within the FTLD-TDP ‘continuum’ cases with GRN mutation and with coexisting MND or HS may have a more distinctive pathology.
PMCID: PMC2830004  PMID: 20012109
Frontotemporal lobar degeneration with TDP-43 proteinopathy; FTLD with ubiquitin-positive inclusions; TAR DNA-binding protein of 43 kDa; Neuronal cytoplasmic inclusions; Neuropathologic heterogeneity; Principal components analysis
21.  TDP-43 is a key player in the clinical features associated with Alzheimer’s disease 
Acta neuropathologica  2014;127(6):811-824.
The aim of this study was to determine whether the TAR DNA-binding protein of 43kDa (TDP-43) independently has any effect on the clinical and neuroimaging features typically ascribed to Alzheimer’s disease (AD) pathology, and whether TDP-43 pathology could help shed light on the phenomenon of resilient cognition in AD. Three-hundred forty-two subjects pathologically diagnosed with AD were screened for the presence, burden and distribution of TDP-43. All had been classified as cognitively impaired or normal, prior to death. Atlas-based parcellation and voxel-based morphometry were used to assess regional atrophy on MRI. Regression models controlling for age at death, apolipoprotein ε4 and other AD-related pathologies were utilized to explore associations between TDP-43 and cognition or brain atrophy, stratified by Braak stage. Additionally, we determined whether the effects of TDP-43 were mediated by hippocampal sclerosis. One-hundred ninety-five (57%) cases were TDP-positive. After accounting for age, apolipoprotein ε4, and other pathologies, TDP-43 had a strong effect on cognition, memory loss, and medial temporal atrophy in AD. These effects were not mediated by hippocampal sclerosis. TDP-positive subjects were 10× more likely to be cognitively impaired at death compared to TDP-negative subjects. Greater cognitive impairment and medial temporal atrophy were associated with greater TDP-43 burden and more extensive TDP-43 distribution. TDP-43 is an important factor in the manifestation of the clinico-imaging features of AD. TDP-43 also appears to be able to overpower what has been termed resilient brain aging. TDP-43 therefore should be considered a potential therapeutic target for the treatment of AD.
PMCID: PMC4172544  PMID: 24659241
TDP-43; Alzheimer disease; resilience; APOE ε4; Braak stage; MRI
22.  Phosphorylated TDP-43 pathology and hippocampal sclerosis in progressive supranuclear palsy 
Acta neuropathologica  2010;120(1):55-66.
TDP-43 is characteristically accumulated in TDP-43 proteinopathies such as frontotemporal lobar degeneration and motor neurone disease, but is also present in some tauopathies, including Alzheimer’s disease, argyrophilic grain disease, and corticobasal degeneration (CBD). However, several studies have suggested that cases of progressive supranuclear palsy (PSP) lack TDP-43 pathology. We have therefore examined limbic regions of the brain in 19 PSP cases, as well as in 12 CBD cases, using phosphorylation-dependent anti-TDP-43 antibodies. We observed TDP-43-positive inclusions in five PSP cases (26%), as well as in two CBD cases (17%). The amygdala and hippocampal dentate gyrus were most frequently affected in PSP. Regional tau burden tended to be higher in TDP-43-positive PSP cases, and a significant correlation between tau and TDP-43 burden was noted in the occipitotemporal gyrus. Hippocampal sclerosis (HS) was found in 3/5 TDP-43-positive PSP cases, but HS was significantly more frequent in TDP-43-positive than TDP-43 negative PSP cases. Dementia was present in 13/19 (58%) of the PSP cases, in 4/5 TDP-43-positive cases, in all 3 TDP-43-positive cases with HS, in 1/2 TDP-43-positive cases without HS, and 7/14 cases lacking both. TDP-43 and tau were frequently colocalized in the amygdala, but not in the hippocampal dentate gyrus. Immunoblotting demonstrated the characteristic (for TDP-43 proteinopathies) 45 and 25 kDa bands and high molecular weight smear in the TDP-43-positive PSP case. These findings suggest that (1) although PSP is nominally a tauopathy, pathological TDP-43 can accumulate in the limbic system in some cases, and (2) TDP-43 pathology may be concurrent with HS.
PMCID: PMC2901929  PMID: 20512649
Argyrophilic grains; Hippocampal sclerosis; Progressive supranuclear palsy; Tau; TDP-43
23.  Neuronal sensitivity to TDP-43 overexpression is dependent on timing of induction 
Acta Neuropathologica  2012;123(6):807-823.
Ubiquitin-immunoreactive neuronal inclusions composed of TAR DNA binding protein of 43 kDa (TDP-43) are a major pathological feature of frontotemporal lobar degeneration (FTLD-TDP). In vivo studies with TDP-43 knockout mice have suggested that TDP-43 plays a critical, although undefined role in development. In the current report, we generated transgenic mice that conditionally express wild-type human TDP-43 (hTDP-43) in the forebrain and established a paradigm to examine the sensitivity of neurons to TDP-43 overexpression at different developmental stages. Continuous TDP-43 expression during early neuronal development produced a complex phenotype, including aggregation of phospho-TDP-43, increased ubiquitin immunoreactivity, mitochondrial abnormalities, neurodegeneration and early lethality. In contrast, later induction of hTDP-43 in the forebrain of weaned mice prevented early death and mitochondrial abnormalities while yielding salient features of FTLD-TDP, including progressive neurodegeneration and ubiquitinated, phospho-TDP-43 neuronal cytoplasmic inclusions. These results suggest that neurons in the developing forebrain are extremely sensitive to TDP-43 overexpression and that timing of TDP-43 overexpression in transgenic mice must be considered when distinguishing normal roles of TDP-43, particularly as they relate to development, from its pathogenic role in FTLD-TDP and other TDP-43 proteinopathies. Finally, our adult induction of hTDP-43 strategy provides a mouse model that develops critical pathological features that are directly relevant for human TDP-43 proteinopathies.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-012-0979-3) contains supplementary material, which is available to authorized users.
PMCID: PMC3359456  PMID: 22539017
Amyotrophic lateral sclerosis; Apoptosis; Frontotemporal lobar degeneration; Neurodevelopment; TDP-43; Transgenic mice
24.  TAR DNA-binding protein 43 pathology in Alzheimer's disease with psychosis 
TAR DNA-binding protein 43 (TDP-43) has been identified as a major disease protein in frontotemporal lobar degeneration. More recently, TDP-43 proteinopathy has also been observed in Alzheimer's disease (AD) with a characteristic distribution of TDP-43 predominantly in the mesial temporal lobe, and to a lesser degree in the neocortical areas. AD subjects with psychotic symptoms (AD+P) represent a subgroup characterized by greater impairment of frontal cortex-dependent cognitive functions and more severe frontal cortical neuropathology. The aim of this study is to determine whether there is an association between TDP-43 pathology and AD+P. We hypothesized that TDP-43 pathology would be more frequent in AD+P than in AD without psychosis.
We studied the presence and distribution of TDP-43 pathology by immunohistochemistry in the dentate gyrus (DG) and prefrontal cortex (FC) of postmortem brain specimens from 68 subjects with a primary neuropathologic diagnosis of AD as determined by the Neuropathology Core of the University of Pittsburgh Alzheimer's Disease Research Center.
Forty-five (66%) subjects were classified as AD+P. Fourteen (20.6%) subjects had TDP-43 pathology in DG, eight (11.8%) had TDP-43 pathology in FC, and six (8.8%) had TDP-43 pathology in both regions. TDP-43 in DG was not significantly associated with AD+P. However, TDP-43 in FC demonstrated a trend toward reduced likelihood of psychosis (p = 0.068). TDP-43 pathology in DG, but not FC, was significantly associated with greater age at death and longer duration of illness.
Our findings indicate that there was no association between concomitant TDP-43 pathology in DG or FC and AD+P.
PMCID: PMC4157359  PMID: 24588894
TDP-43; Alzheimer's disease; psychosis
25.  TDP-43 Proteinopathy and Motor Neuron Disease in Chronic Traumatic Encephalopathy 
Epidemiological evidence suggests that the incidence of amyotrophic lateral sclerosis is increased in association with head injury. Repetitive head injury is also associated with the development of chronic traumatic encephalopathy (CTE), a tauopathy characterized by neurofibrillary tangles throughout the brain in the relative absence of β-amyloid deposits. We examined 12 cases of CTE and, in 10, found a widespread TAR DNA-binding protein of approximately 43 kd (TDP-43) proteinopathy affecting the frontal and temporal cortices, medial temporal lobe, basal ganglia, diencephalon, and brainstem. Three athletes with CTE also developed a progressive motor neuron disease with profound weakness, atrophy, spasticity, and fasciculations several years before death. In these 3 cases, there were abundant TDP-43–positive inclusions and neurites in the spinal cord in addition to tau neurofibrillary changes, motor neuron loss, and corticospinal tract degeneration. The TDP-43 proteinopathy associated with CTE is similar to that found in frontotemporal lobar degeneration with TDP-43 inclusions, in that widespread regions of the brain are affected. Akin to frontotemporal lobar degeneration with TDP-43 inclusions, in some individuals with CTE, the TDP-43 proteinopathy extends to involve the spinal cord and is associated with motor neuron disease. This is the first pathological evidence that repetitive head trauma experienced in collision sports might be associated with the development of a motor neuron disease.
PMCID: PMC2951281  PMID: 20720505
Amyotrophic lateral sclerosis; Chronic brain injury; Motor neuron disease; Sports; Tau proteins; TDP-43

Results 1-25 (502524)