PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1066541)

Clipboard (0)
None

Related Articles

1.  The effect of roots and media constituents on trichomes and artemisinin production in Artemisia annua L 
Plant cell reports  2012;32(2):207-218.
Artemisia annua produces the antimalarial drug, artemisinin (AN), which is synthesized and stored in glandular trichomes (GLTs). In vitro-grown A. annua shoots produce more AN when they form roots. This may be a function not of the roots, but rather media components such as the phytohormones, α-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP), or salts and sucrose used to maintain either rooted or unrooted shoot cultures. We investigated how three main media components altered artemisinic metabolite production, pathway gene transcripts, and GLT formation in both mature and developing leaves in rooted and unrooted cultures. Although transcript levels of AN biosynthetic genes were not altered, AN levels were significantly different, and there were major differences in both artemisinic metabolite levels and trichomes in mature versus developing leaves. For example, NAA induced higher AN production in rooted shoots, but only in mature leaves. In developing leaves, BAP increased GLT density on the leaf surface. When both phytohormones were present, GLTs were larger on young developing leaves, but smaller on mature leaves. Furthermore, although other media components increased GLT density, their size decreased on young leaves, but there was no effect on mature leaves. Roots also appeared to drive conversion of artemisinic precursors towards end products. These results suggest that, while the presence of roots affects AN and trichome production, phytohormones and other media constituents used for in vitro culture of A. annua also exert an influence.
doi:10.1007/s00299-012-1355-4
PMCID: PMC3551342  PMID: 23085820
Auxin; Cytokinin; Trichomes; Artemisinin; Terpene; Roots
2.  Studies on the Expression of Sesquiterpene Synthases Using Promoter-β-Glucuronidase Fusions in Transgenic Artemisia annua L 
PLoS ONE  2013;8(11):e80643.
In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production.
doi:10.1371/journal.pone.0080643
PMCID: PMC3838408  PMID: 24278301
3.  Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing 
BMC Genomics  2009;10:465.
Background
Glandular trichomes produce a wide variety of commercially important secondary metabolites in many plant species. The most prominent anti-malarial drug artemisinin, a sesquiterpene lactone, is produced in glandular trichomes of Artemisia annua. However, only limited genomic information is currently available in this non-model plant species.
Results
We present a global characterization of A. annua glandular trichome transcriptome using 454 pyrosequencing. Sequencing runs using two normalized cDNA collections from glandular trichomes yielded 406,044 expressed sequence tags (average length = 210 nucleotides), which assembled into 42,678 contigs and 147,699 singletons. Performing a second sequencing run only increased the number of genes identified by ~30%, indicating that massively parallel pyrosequencing provides deep coverage of the A. annua trichome transcriptome. By BLAST search against the NCBI non-redundant protein database, putative functions were assigned to over 28,573 unigenes, including previously undescribed enzymes likely involved in sesquiterpene biosynthesis. Comparison with ESTs derived from trichome collections of other plant species revealed expressed genes in common functional categories across different plant species. RT-PCR analysis confirmed the expression of selected unigenes and novel transcripts in A. annua glandular trichomes.
Conclusion
The presence of contigs corresponding to enzymes for terpenoids and flavonoids biosynthesis suggests important metabolic activity in A. annua glandular trichomes. Our comprehensive survey of genes expressed in glandular trichome will facilitate new gene discovery and shed light on the regulatory mechanism of artemisinin metabolism and trichome function in A. annua.
doi:10.1186/1471-2164-10-465
PMCID: PMC2763888  PMID: 19818120
4.  Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L 
BMC Plant Biology  2011;11:45.
Background
Recently, Artemisia annua L. (annual or sweet wormwood) has received increasing attention due to the fact that the plant produces the sesquiterpenoid endoperoxide artemisinin, which today is widely used for treatment of malaria. The plant produces relatively small amounts of artemisinin and a worldwide shortage of the drug has led to intense research in order to increase the yield of artemisinin. In order to improve our understanding of terpene metabolism in the plant and to evaluate the competition for precursors, which may influence the yield of artemisinin, we have used qPCR to estimate the expression of 14 genes of terpene metabolism in different tissues.
Results
The four genes of the artemisinin biosynthetic pathway (amorpha-4,11-diene synthase, amorphadiene-12-hydroxylase, artemisinic aldehyde ∆11(13) reductase and aldehyde dehydrogenase 1) showed remarkably higher expression (between ~40- to ~500-fold) in flower buds and young leaves compared to other tissues (old leaves, stems, roots, hairy root cultures). Further, dihydroartemisinic aldehyde reductase showed a very high expression only in hairy root cultures. Germacrene A and caryophyllene synthase were mostly expressed in young leaves and flower buds while epi-cedrol synthase was highly expressed in old leaves. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase exhibited lower expression in old leaves compared to other tissues. Farnesyldiphosphate synthase, squalene synthase, and 1-deoxy-D-xylulose-5-phosphate reductoisomerase showed only modest variation in expression in the different tissues, while expression of 1-deoxy-D-xylulose-5-phosphate synthase was 7-8-fold higher in flower buds and young leaves compared to old leaves.
Conclusions
Four genes of artemisinin biosynthesis were highly expressed in flower buds and young leaves (tissues showing a high density of glandular trichomes). The expression of dihydroartemisinic aldehyde reductase has been suggested to have a negative effect on artemisinin production through reduction of dihydroartemisinic aldehyde to dihydroartemisinic alcohol. However, our results show that this enzyme is expressed only at low levels in tissues producing artemisinin and consequently its effect on artemisinin production may be limited. Finally, squalene synthase but not other sesquiterpene synthases appears to be a significant competitor for farnesyl diphosphate in artemisinin-producing tissues.
doi:10.1186/1471-2229-11-45
PMCID: PMC3063820  PMID: 21388533
5.  Response of Sunflower (Helianthus annuus L.) Leaf Surface Defenses to Exogenous Methyl Jasmonate 
PLoS ONE  2012;7(5):e37191.
Helianthus annuus, the common sunflower, produces a complex array of secondary compounds that are secreted into glandular trichomes, specialized structures found on leaf surfaces and anther appendages of flowers. The primary components of these trichome secretions are sesquiterpene lactones (STL), a diverse class of compounds produced abundantly by the plant family Compositae and believed to contribute to plant defense against herbivory. We treated wild and cultivated H. annuus accessions with exogenous methyl jasmonate, a plant hormone that mediates plant defense against insect herbivores and certain classes of fungal pathogens. The wild sunflower produced a higher density of glandular trichomes on its leaves than the cultivar. Comparison of the profiles of glandular trichome extracts obtained by liquid chromatography–mass spectroscopy (LC-MS) showed that wild and cultivated H. annuus were qualitatively similar in surface chemistry, although differing in the relative size and proportion of various compounds detected. Despite observing consistent transcriptional responses to methyl jasmonate treatment, we detected no significant effect on glandular trichome density or LC-MS profile in cultivated or wild sunflower, with wild sunflower exhibiting a declining trend in overall STL production and foliar glandular trichome density of jasmonate-treated plants. These results suggest that glandular trichomes and associated compounds may act as constitutive defenses or require greater levels of stimulus for induction than the observed transcriptional responses to exogenous jasmonate. Reduced defense investment in domesticated lines is consistent with predicted tradeoffs caused by selection for increased yield; future research will focus on the development of genetic resources to explicitly test the ecological roles of glandular trichomes and associated effects on plant growth and fitness.
doi:10.1371/journal.pone.0037191
PMCID: PMC3356381  PMID: 22623991
6.  Differentially Expressed Genes during Contrasting Growth Stages of Artemisia annua for Artemisinin Content 
PLoS ONE  2013;8(4):e60375.
Artemisia annua is the source of antimalarial phytomolecule, artemisinin. It is mainly produced and stored in the glandular secretory trichomes present in the leaves of the plant. Since, the artemisinin biosynthesis steps are yet to be worked out, in this investigation a microarray chip was strategized for the first time to shortlist the differentially expressing genes at a stage of plant producing highest artemisinin compared to the stage with no artemisinin. As the target of this study was to analyze differential gene expression associated with contrasting artemisinin content in planta and a genotype having zero/negligible artemisinin content was unavailable, it was decided to compare different stages of the same genotype with contrasting artemisinin content (seedling - negligible artemisinin, mature leaf - high artemisinin). The SCAR-marked artemisinin-rich (∼1.2%) Indian variety ‘CIM-Arogya’ was used in the present study to determine optimal plant stage and leaf ontogenic level for artemisinin content. A representative EST dataset from leaf trichome at the stage of maximal artemisinin biosynthesis was established. The high utility small scale custom microarray chip of A. annua containing all the significant artemisinin biosynthesis-related genes, the established EST dataset, gene sequences isolated in-house and strategically selected candidates from the A. annua Unigene database (NCBI) was employed to compare the gene expression profiles of two stages. The expression data was validated through semiquantitative and quantitative RT-PCR followed by putative annotations through bioinformatics-based approaches. Many candidates having probable role in artemisinin metabolism were identified and described with scope for further functional characterization.
doi:10.1371/journal.pone.0060375
PMCID: PMC3616052  PMID: 23573249
7.  Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua 
BMC Plant Biology  2013;13:220.
Background
The medicinal plant Artemisia annua is covered with filamentous trichomes and glandular, artemisinin producing trichomes. A high artemisinin supply is needed at a reduced cost for treating malaria. Artemisinin production in bioreactors can be facilitated if a better insight is obtained in the biosynthesis of artemisinin and other metabolites. Therefore, metabolic activities of glandular and filamentous trichomes were investigated at the transcriptome level.
Results
By laser pressure catapulting, glandular and filamentous trichomes as well as apical and sub-apical cells from glandular trichomes were collected and their transcriptome was sequenced using Illumina RNA-Seq. A de novo transcriptome was assembled (Trinity) and studied with a differential expression analysis (edgeR).
A comparison of the transcriptome from glandular and filamentous trichomes shows that MEP, MVA, most terpene and lipid biosynthesis pathways are significantly upregulated in glandular trichomes. Conversely, some transcripts coding for specific sesquiterpenoid and triterpenoid enzymes such as 8-epi-cedrol synthase and an uncharacterized oxidosqualene cyclase were significantly upregulated in filamentous trichomes. All known artemisinin biosynthesis genes are upregulated in glandular trichomes and were detected in both the apical and sub-apical cells of the glandular trichomes. No significant differential expression could be observed between the apical and sub-apical cells.
Conclusions
Our results underscore the vast metabolic capacities of A. annua glandular trichomes but nonetheless point to the existence of specific terpene metabolic pathways in the filamentous trichomes. Candidate genes that might be involved in artemisinin biosynthesis are proposed based on their putative function and their differential expression level.
doi:10.1186/1471-2229-13-220
PMCID: PMC3878173  PMID: 24359620
Artemisia annua; Artemisinin; RNASeq; Glandular trichomes; Filamentous trichomes; Laser microdissection pressure catapulting; MEP pathway; Mevalonate pathway; Lipid biosynthesis; Terpene biosynthesis
8.  Investigation of Glandular Trichome Proteins in Artemisia annua L. Using Comparative Proteomics 
PLoS ONE  2012;7(8):e41822.
Glandular secreting trichomes (GSTs) are called biofactories because they are active in synthesizing, storing and secreting various types of plant secondary metabolites. As the most effective drug against malaria, artemisinin, a sesquiterpene lactone is derived from GSTs of Artemisia annua. However, low artemisinin content (0.001%∼1.54% of dry weight) has hindered its wide application. We investigate the GST-expressed proteins in Artemisia annua using a comparative proteomics approach, aiming for a better understanding of the trichome proteome and arteminisin metabolism. 2D-electrophoresis was employed to compare the protein profiles of GSTs and leaves. More than 700 spots were resolved for GSTs, of which ∼93 non-redundant proteins were confidently identified by searching NCBI and Artemisia EST databases. Over 70% of these proteins were highly expressed in GTSs. Functional classification of these GSTs enriched proteins revealed that many of them participate in major plant metabolic processes such as electron transport, transcription and translation.
doi:10.1371/journal.pone.0041822
PMCID: PMC3414485  PMID: 22905110
9.  Dried Whole Plant Artemisia annua as an Antimalarial Therapy 
PLoS ONE  2012;7(12):e52746.
Drugs are primary weapons for reducing malaria in human populations. However emergence of resistant parasites has repeatedly curtailed the lifespan of each drug that is developed and deployed. Currently the most effective anti-malarial is artemisinin, which is extracted from the leaves of Artemisia annua. Due to poor pharmacokinetic properties and prudent efforts to curtail resistance to monotherapies, artemisinin is prescribed only in combination with other anti-malarials composing an Artemisinin Combination Therapy (ACT). Low yield in the plant, and the added cost of secondary anti-malarials in the ACT, make artemisinin costly for the developing world. As an alternative, we compared the efficacy of oral delivery of the dried leaves of whole plant (WP) A. annua to a comparable dose of pure artemisinin in a rodent malaria model (Plasmodium chabaudi). We found that a single dose of WP (containing 24 mg/kg artemisinin) reduces parasitemia more effectively than a comparable dose of purified drug. This increased efficacy may result from a documented 40-fold increase in the bioavailability of artemisinin in the blood of mice fed the whole plant, in comparison to those administered synthetic drug. Synergistic benefits may derive from the presence of other anti-malarial compounds in A. annua. If shown to be clinically efficacious, well-tolerated, and compatible with the public health imperative of forestalling evolution of drug resistance, inexpensive, locally grown and processed A. annua might prove to be an effective addition to the global effort to reduce malaria morbidity and mortality.
doi:10.1371/journal.pone.0052746
PMCID: PMC3527585  PMID: 23289055
10.  Anti-herbivore Structures of Paulownia tomentosa: Morphology, Distribution, Chemical Constituents and Changes During Shoot and Leaf Development 
Annals of Botany  2008;101(7):1035-1047.
Background and Aims
Recent studies have shown that small structures on plant surfaces serve ecological functions such as resistance against herbivores. The morphology, distribution, chemical composition and changes during shoot and leaf development of such small structures were examined on Paulownia tomentosa.
Methods
The morphology and distribution of the structures were studied under light microscopy, and their chemical composition was analysed using thin-layer chromatography and high-performance liquid chromatography. To further investigate the function of these structures, several simple field experiments and observations were also conducted.
Key Results
Three types of small structures on P. tomentosa were investigated: bowl-shaped organs, glandular hairs and dendritic trichomes. The bowl-shaped organs were densely aggregated on the leaves near flower buds and were determined to be extrafloral nectarines (EFNs) that secrete sugar and attract ants. Nectar production of these organs was increased by artificial damage to the leaves, suggesting an anti-herbivore function through symbiosis with ants. Glandular hairs were found on the surfaces of young and/or reproductive organs. Glandular hairs on leaves, stems and flowers secreted mucilage containing glycerides and trapped small insects. Secretions from glandular hairs on flowers and immature fruits contained flavonoids, which may provide protection against some herbivores. Yellow dendritic trichomes on the adaxial side of leaves also contained flavonoids identical to those secreted by the glandular hairs on fruits and flowers. Three special types of leaves, which differed from the standard leaves in shape, size and identity of small structures, developed near young shoot tips or young flower buds. The density of small structures on these leaf types was higher than on standard leaves, suggesting that these leaf types may be specialized to protect young leaves or reproductive organs. Changes in the small structures during leaf development suggested that leaves of P. tomentosa are primarily protected by glandular hairs and dendritic trichomes at young stages and by the EFNs at mature stages.
Conclusions
The results indicate that P. tomentosa protects young and/or reproductive organs from herbivores through the distribution and allocation of small structures, the nature of which depends on the developmental stage of leaves and shoots.
doi:10.1093/aob/mcn033
PMCID: PMC2710234  PMID: 18344545
Anti-herbivore defence; dendritic trichome; extrafloral nectary; flavonoids; glandular hair; glycerides; indirect defence; leaf development; morphology; optimal defence hypothesis; Paulownia tomentosa; shoot development
11.  Optimization of genetic transformation of Artemisia annua L. Using Agrobacterium for Artemisinin production 
Pharmacognosy Magazine  2014;10(Suppl 1):S176-S180.
Background:
Artemisinin, a sesquiterpene lactone endoperoxide isolated from the medicinal plant Artemisia annua L., is a choice and effective drug for malaria treatment. Due to the low yield of artemisinin in plants, there is a need to enhance the production of artemisinin from A. annua and biotechnological technique may be one of the methods that can be used for the purpose.
Aim:
To study the transformation efficiency of Agrobacterium tumefaciens in A. annua that could be applied to enhance the production of artemisinin by means of transgenic plants.
Setting and Designs:
The factors influencing Agrobacterium-mediated transformation of A. annua were explored to optimize the transformation system, which included A. tumefaciens strain and effect of organosilicone surfactants. Three strains of A. tumefaciens, that is, LBA4404, GV1301, and AGL1 harboring the binary vector pCAMBIA 1303 have been used for transformation. The evaluation was based on transient β-glucuronidase (GUS).
Materials and Methods:
Plant cell cultures were inniatiated from the seeds of A. annua using the germination Murashige and Skoog medium. A. tumefaciens harboring pCAMBIA were tranformed into the leaves of A.annua cultures from 2-week-old-seedling and 2-month-old-seedling for 15 min by vacuum infiltration. Transformation efficiency was determinated by measuring of blue area (GUS expression) on the whole leaves explant using ImageJ 1.43 software. Two organosilicon surfactants, that is, Silwet L-77 and Silwet S-408 were used to improve the transformation efficiency.
Results:
The transformation frequency with AGL1 strain was higher than GV3101 and LBA4404 which were 70.91, 49.25, and 45.45%, respectively. Effect of organosilicone surfactants, that is, Silwet L-77 and Silwet S-408 were tested on A. tumefaciens AGL1 and GV3101 for their level of transient expression, and on A. rhizogenes R1000 for its hairy root induction frequency. For AGL1, Silwet S-408 produced higher level of expression than Silwet L-77, were 2.3- and 1.3-fold, respectively. For GV3101, Silwet L-77 was still higher than Silwet S-408, were 1.5- and 1.4-fold, respectively. However, GV3101 produced higher levels of expression than AGL1. The area of GUS expression spots of AGL1, LBA4404, and GV3101 strains was 53.43%, 41.06%, and 30.51%, respectively.
Conclusion:
A. tumefaciens AGl1 strain was the most effective to be transformed in to A. annua than GV3101 and LBA4404 strain. Surfactant Silwet S-408 produced the highest efficiency of transformation.
doi:10.4103/0973-1296.127372
PMCID: PMC4047588  PMID: 24914301
Artemisinin; Artemisia annua L.; Agrobacterium transformation; malaria; pCAMBIA
12.  An Endophytic Pseudonocardia Species Induces the Production of Artemisinin in Artemisia annua 
PLoS ONE  2012;7(12):e51410.
Endophytic actinobacteria colonize internal tissues of their host plants and are considered as a rich and reliable source of diverse species and functional microorganisms. In this study, endophytic actinobacterial strain YIM 63111 was isolated from surface-sterilized tissue of the medicinal plant Artemisia annua. We identified strain YIM 63111 as a member of the genus Pseudonocardia. A. annua seedlings grown under both sterile and greenhouse conditions were inoculated with strain YIM 63111. The growth of A. annua seedlings was strongly reduced when YIM 63111 was inoculated at higher concentrations under sterile conditions. However, no growth inhibition was observed when A. annua was grown under greenhouse conditions. Using an enhanced green fluorescent protein (EGFP) expressing YIM 63111 strain, we also observed the endophytic colonization of A. annua seedling using confocal laser-scanning microscopy. The transcription levels of the key genes involved in artemisinin biosynthesis were investigated using real time RT-PCR, revealing that cytochrome P450 monooxygenase (CYP71AV1) and cytochrome P450 oxidoreductase (CPR) expression were up-regulated in A. annua upon inoculation with strain YIM 63111 under certain conditions. The up-regulation of these genes was associated with the increased accumulation of artemisinin. These results suggest that endophytic actinobacteria effectively stimulate certain plant defense responses. Our data also demonstrate the use of Pseudonocardia sp. strain YIM 63111 as a promising means to enhance artemisinin production in plants.
doi:10.1371/journal.pone.0051410
PMCID: PMC3520919  PMID: 23251523
13.  Dried-leaf Artemisia annua: A practical malaria therapeutic for developing countries? 
World journal of pharmacology  2014;3(4):39-55.
Artemisinin from the plant Artemisia annua (A. annua) L, and used as artemisinin combination therapy (ACT), is the current best therapeutic for treating malaria, a disease that hits children and adults especially in developing countries. Traditionally, A. annua was used by the Chinese as a tea to treat “fever”. More recently, investigators have shown that tea infusions and oral consumption of the dried leaves of the plant have prophylactic and therapeutic efficacy. The presence of a complex matrix of chemicals within the leaves seems to enhance both the bioavailability and efficacy of artemisinin. Although about 1000-fold less potent than artemisinin in their antiplasmodial activity, these plant chemicals are mainly small molecules that include other artemisinic compounds, terpenes (mainly mono and sesqui), flavonoids, and polyphenolic acids. In addition, polysaccharide constituents of A. annua may enhance bioavailability of artemisinin. Rodent pharmacokinetics showed longer T1/2 and Tmax and greater Cmax and AUC in Plasmodium chabaudi-infected mice treated with A. annua dried leaves than in healthy mice. Pharmacokinetics of deoxyartemisinin, a liver metabolite of artemisinin, was more inhibited in infected than in healthy mice. In healthy mice, artemisinin serum levels were > 40-fold greater in dried leaf fed mice than those fed with pure artemisinin. Human trial data showed that when delivered as dried leaves, 40-fold less artemisinin was required to obtain a therapeutic response compared to pure artemisinin. ACTs are still unaffordable for many malaria patients, and cost estimates for A. annua dried leaf tablet production are orders of magnitude less than for ACT, despite improvements in the production capacity. Considering that for > 2000 years this plant was used in traditional Chinese medicine for treatment of fever with no apparent appearance of artemisinin drug resistance, the evidence argues for inclusion of affordable A. annua dried leaf tablets into the arsenal of drugs to combat malaria and other artemisinin-susceptible diseases.
PMCID: PMC4323188
Malaria; Infectious disease; Artemisia annua; Artemisinin; Combination therapy; Artemisinin combination therapy
14.  Trichome structure and evolution in Neotropical lianas 
Annals of Botany  2013;112(7):1331-1350.
Background and Aims
Trichomes are epidermal outgrowths generally associated with protection against herbivores and/or desiccation that are widely distributed from ferns to angiosperms. Patterns of topological variation and morphological evolution of trichomes are still scarce in the literature, preventing valid comparisons across taxa. This study integrates detailed morphoanatomical data and the evolutionary history of the tribe Bignonieae (Bignoniaceae) in order to gain a better understanding of current diversity and evolution of trichome types.
Methods
Two sampling schemes were used to characterize trichome types: (1) macromorphological characterization of all 105 species currently included in Bignonieae; and (2) micromorphological characterization of 16 selected species. Individual trichome morphotypes were coded as binary in each vegetative plant part, and trichome density and size were coded as multistate. Ancestral character state reconstructions were conducted using maximum likelihood (ML) assumptions.
Key Results
Two main functional trichome categories were found: non-glandular and glandular. In glandular trichomes, three morphotypes were recognized: peltate (Pg), stipitate (Sg) and patelliform/cupular (P/Cg) trichomes. Non-glandular trichomes were uniseriate, uni- or multicellular and simple or branched. Pg and P/Cg trichomes were multicellular and non-vascularized with three clearly distinct cell layers. Sg trichomes were multicellular, uniseriate and long-stalked. ML ancestral character state reconstructions suggested that the most recent common ancestor (MRCA) of Bignonieae probably had non-glandular, Pg and P/Cg trichomes, with each trichome type presenting alternative histories of appearance on the different plant parts. For example, the MRCA of Bignonieae probably had non-glandular trichomes on the stems, prophylls, petiole, petiolule and leaflet veins while P/Cg trichomes were restricted to leaflet blades. Sg trichomes were not present in the MRCA of Bignonieae independently of the position of these trichomes. These trichomes had at least eight independent origins in tribe.
Conclusions
The patterns of trichome evolution indicate that most morphotypes are probably homologous in Bignonieae and could be treated under the same name based on its morphological similarity and common evolutionary history, in spite of the plethora of names that have been previously designated in the literature. The trichome descriptions presented here will facilitate comparisons across taxa, allowing inferences on the relationsthips between trichome variants and future studies about their functional properties.
doi:10.1093/aob/mct201
PMCID: PMC3806532  PMID: 24081281
Bignoniaceae; Brazil; EFNs; extrafloral nectaries; glands; insect–plant interactions; morphological evolution; trichomes; vines
15.  Effects of Environmental Factors on Growth and Artemisinin Content of Artemisia annua L. 
Seeds of two selected clones of Artemisia annua L., TC1 and TC2, were germinated in a greenhouse. Four-week-old seedlings from both clones were grown in the Thù Đúc province of Ho Chi Minh City on 2nd January 2009 and Đà Lat on 20th January 2009. During this study period in Thù Đúc province, which is situated 4–5 m above sea level, was experiencing a tropical, dry season with temperatures ranging from 26.2°C–32.8°C. Đà Lat, situated at 1500–2000 m above sea level, was having temperate, dry season with lower temperatures, ranging from 10.5°C–18.0°C. The high temperatures and low elevation in Thù Đúc Province led to slow vegetative growth for all of the plants from the two different clones and the artemisinin contents were significantly reduced. The temperate environment of Đà Lat supported robustly growing plants, with plant heights and branch lengths 4–5 times taller and longer that those planted at Thù Đúc Province. The artemisinin contents of A. annua planted at Đà Lat were 3–4 times greater than those cultivated at Thù Đúc Province. Hence, this study indicated that the variations observed in plant growth and artemisinin contents were due to temperature effects because the two selected clones were genetically homogenous. The cold weather of Đà Lat was suitable for planting of A. annua as opposed to the tropical weather of Thù Đúc Province.
PMCID: PMC3819086  PMID: 24575216
Artemisinin; Environmental Factor; Selected Clone; Vegetative Growth
16.  Survey of artemisinin production by diverse Artemisia species in northern Pakistan 
Malaria Journal  2010;9:310.
Background
Artemisinin is the current drug of choice for treatment of malaria and a number of other diseases. It is obtained from the annual herb, Artemisia annua and some microbial sources by genetic engineering. There is a great concern that the artemisinin production at current rate will not meet the increasing demand by the pharmaceutical industry, so looking for additional sources is imperative.
Methods
In current study, artemisinin concentration was analysed and compared in the flowers, leaves, roots and stems of Artemisia annua and 14 other Artemisia species including two varieties each for Artemisia roxburghiana and Artemisia dracunculus using high performance liquid chromatography (HPLC).
Results
The highest artemisinin concentration was detected in the leaves (0.44 ± 0.03%) and flowers (0.42 ± 0.03%) of A. annua, followed by the flowers (0.34 ± .02%) of A. bushriences and leaves (0.27 ± 0%) of A. dracunculus var dracunculus. The average concentration of artemisinin varied in the order of flowers > leaves > stems > roots.
Conclusion
This study identifies twelve novel plant sources of artemisinin, which may be helpful for pharmaceutical production of artemisinin. This is the first report of quantitative comparison of artemisinin among a large number of Artemisia species.
doi:10.1186/1475-2875-9-310
PMCID: PMC2989329  PMID: 21047440
17.  Cadmium induced changes in subcellular glutathione contents within glandular trichomes of Cucurbita pepo L. 
Protoplasma  2009;243(1-4):87-94.
Plants cope with cadmium (Cd) stress by complexation with phytochelatins (Pc), metallothioneins and glutathione and sequestration within vacuoles. Especially glutathione was found to play a major role in Cd detoxification as Cd shows a high binding affinity towards thiols and as glutathione is a precursor for Pc synthesis. In the present study, we have used an immunohistochemical approach combined with computer-supported transmission electron microscopy in order to measure changes in the subcellular distribution of glutathione during Cd-stress in mesophyll cells and cells of different glandular trichomes (long and short stalked) of Cucurbita pepo L. subsp. pepo var. styriacaGreb. Even though no ultrastructural alterations were observed in leaf and glandular trichome cells after the treatment of plants with 50 µM cadmium chloride (CdCl2) for 48 h, all cells showed a large decrease in glutathione contents. The strongest decrease was found in nuclei and the cytosol (up to 76%) in glandular trichomes which are considered as a major side of Cd accumulation in leaves. The ratio of glutathione between the cytosol and nuclei and the other cell compartments was strongly decreased only in glandular trichomes (more than 50%) indicating that glutathione in these two cell compartments is especially important for the detoxification of Cd in glandular trichomes. Additionally, these data indicate that large amounts of Cd are withdrawn from nuclei during Cd exposure. The present study gives a detailed insight into the compartment-specific importance of glutathione during Cd exposure in mesophyll cells and glandular trichomes of C. pepo L. plants.
doi:10.1007/s00709-009-0043-x
PMCID: PMC2892058  PMID: 19424775
Cadmium; Cucurbita pepo; Electron microscopy; Glutathione; Immunohistochemistry
18.  Gene expression profile analysis of tobacco leaf trichomes 
BMC Plant Biology  2011;11:76.
Background
Leaf trichomes of Nicotiana tabacum are distinguished by their large size, high density, and superior secretion ability. They contribute to plant defense response against biotic and abiotic stress, and also influence leaf aroma and smoke flavor. However, there is limited genomic information about trichomes of this non-model plant species.
Results
We have characterized Nicotiana tabacum leaf trichome gene expression using two approaches. In the first, a trichome cDNA library was randomly sequenced, and 2831 unique genes were obtained. The most highly abundant transcript was ribulose bisphosphate carboxylase (RuBisCO). Among the related sequences, most encoded enzymes involved in primary metabolism. Secondary metabolism related genes, such as isoprenoid and flavonoid biosynthesis-related, were also identified. In the second approach, a cDNA microarray prepared from these 2831 clones was used to compare gene expression levels in trichome and leaf. There were 438 differentially expressed genes between trichome and leaves-minus-trichomes. Of these, 207 highly expressed genes in tobacco trichomes were enriched in second metabolic processes, defense responses, and the metabolism regulation categories. The expression of selected unigenes was confirmed by semi-quantitative RT-PCR analysis, some of which were specifically expressed in trichomes.
Conclusion
The expression feature of leaf trichomes in Nicotiana tabacum indicates their metabolic activity and potential importance in stress resistance. Sequences predominantly expressed in trichomes will facilitate gene-mining and metabolism control of plant trichome.
doi:10.1186/1471-2229-11-76
PMCID: PMC3112075  PMID: 21548994
19.  Changes in Leaf Trichomes and Epicuticular Flavonoids during Leaf Development in Three Birch Taxa 
Annals of Botany  2004;94(2):233-242.
• Background and Aims Changes in number of trichomes and in composition and concentrations of their exudates throughout leaf development may have important consequences for plant adaptation to abiotic and biotic factors. In the present study, seasonal changes in leaf trichomes and epicuticular flavonoid aglycones in three Finnish birch taxa (Betula pendula, B. pubescens ssp. pubescens, and B. pubescens ssp. czerepanovii) were followed.
• Methods Trichome number and ultrastructure were studied by means of light, scanning and transmission electron microscopy, while flavonoid aglycones in ethanolic leaf surface extracts were analysed by high-pressure liquid chromatography.
• Key Results Density of both glandular and non-glandular trichomes decreased drastically with leaf expansion while the total number of trichomes per leaf remained constant, indicating that the final number of trichomes is established early in leaf development. Cells of glandular trichomes differentiate before those of the epidermis and produce secreted material only during the relatively short period (around 1–2 weeks) of leaf unfolding and expansion. In fully expanded leaves, glandular trichomes appeared to be at the post-secretory phase and function mainly as storage organs; they contained lipid droplets and osmiophilic material (probably phenolics). Concentrations (mg g−1 d. wt) of surface flavonoids decreased with leaf age in all taxa. However, the changes in total amount (µg per leaf) of flavonoids during leaf development were taxon-specific: no changes in B. pubescens ssp. czerepanovii, increase in B. pendula and in B. pubescens ssp. pubescens followed by the decline in the latter taxon. Concentrations of most of the individual leaf surface flavonoids correlated positively with the density of glandular trichomes within species, suggesting the participation of glandular trichomes in production of surface flavonoids.
• Conclusions Rapid decline in the density of leaf trichomes and in the concentrations of flavonoid aglycones with leaf age suggests that the functional role of trichomes is likely to be most important at the early stages of birch leaf development.
doi:10.1093/aob/mch131
PMCID: PMC4242156  PMID: 15238348
Birch; Betula pendula; Betula pubescens ssp.; pubescens; Betula pubescens ssp.; czerepanovii; glandular trichomes; non-glandular trichomes; flavonoid aglycones; leaf development
20.  UV‐B is Required for Normal Development of Oil Glands in Ocimum basilicum L. (Sweet Basil) 
Annals of Botany  2002;90(4):453-460.
Plants of Ocimum basilicum L. grown under glass were exposed to short treatments with supplementary UV‐B. The effect of UV‐B on volatile essential oil content was analysed and compared with morphological effects on the peltate and capitate glandular trichomes. In the absence of UV‐B, both peltate and capitate glands were incompletely developed in both mature and developing leaves, the oil sacs being wrinkled and only partially filled. UV‐B was found to have two main effects on the glandular trichomes. During the first 4 d of treatment, both peltate and capitate glands filled and their morphology reflected their ‘normal’ mature development as reported in the literature. During the following days there was a large increase in the number of broken oil sacs among the peltate glands as the mature glands broke open, releasing volatiles. Neither the number of glands nor the qualitative or quantitative composition of the volatiles was affected by UV‐B. There seems to be a requirement for UV‐B for the filling of the glandular trichomes of basil.
doi:10.1093/aob/mcf212
PMCID: PMC4240378  PMID: 12324268
Ocimum basilicum L.; sweet basil; glandular trichomes; UV‐B; morphology; terpenes; essential oil
21.  Induced resistance in groundnut by jasmonic acid and salicylic acid through alteration of trichome density and oviposition by Helicoverpa armigera (Lepidoptera: Noctuidae) 
AoB Plants  2013;5:plt053.
Jasmonic acid (JA) and salicylic acid (SA) play an important role in activating plant defensive responses against insect pests. In these experiments, trichome density increased in groundnut plants by the pretreatment of JA and SA; however, JA induced significantly greater number of trichomes than SA. Moreover, JA activated antixenosis for oviposition by H. armigera. Insect resistant genotypes (ICGV 86699, ICGV 86031, ICG 2271 and ICG 1697) showed stronger response than the JL 24 (susceptible check). These results show that pre-treatment with JA not only resulted in greater trichome density in groundnut plants, but also conferred antixenosis for oviposition by H. armigera.
Jasmonic acid (JA) and salicylic acid (SA) are important phytohormones involved in plant resistance against insect herbivory and pathogen infection. Application of JA and SA induces several defensive traits in plants. Here we investigated the effect of JA and SA on trichome density in five groundnut genotypes [ICGV 86699, ICGV 86031, ICG 2271, ICG 1697 (resistant) and JL 24 (susceptible)]. The effect of JA- and SA-induced resistance on the oviposition behaviour of Helicoverpa armigera on different groundnut genotypes was also studied. Pre-treatment with JA increased numbers of trichomes in the insect-resistant genotypes, ICGV 86699, ICGV 86031, ICG 2271, and ICG 1697. The induction was greater at 10 days after treatment. Jasmonic acid- and SA-treated plants showed a substantial effect on the oviposition behaviour of H. armigera. Jasmonic acid application and herbivory reduced the number of eggs laid by H. armigera in all the groundnut genotypes tested. However, a greater reduction was recorded on plants pre-treated with JA. More egg laying was recorded in JL 24 in all the treatments as compared to the insect-resistant genotypes. These results suggested that pre-treatment with JA increased trichome density in groundnut plants, which conferred antixenosis for oviposition by H. armigera.
doi:10.1093/aobpla/plt053
PMCID: PMC4104620
Groundnut; induced resistance; oviposition; phytohormones; trichomes.
22.  Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions 
Malaria Journal  2011;10(Suppl 1):S4.
Background
In traditional medicine whole plants or mixtures of plants are used rather than isolated compounds. There is evidence that crude plant extracts often have greater in vitro or/and in vivo antiplasmodial activity than isolated constituents at an equivalent dose. The aim of this paper is to review positive interactions between components of whole plant extracts, which may explain this.
Methods
Narrative review.
Results
There is evidence for several different types of positive interactions between different components of medicinal plants used in the treatment of malaria. Pharmacodynamic synergy has been demonstrated between the Cinchona alkaloids and between various plant extracts traditionally combined. Pharmacokinetic interactions occur, for example between constituents of Artemisia annua tea so that its artemisinin is more rapidly absorbed than the pure drug. Some plant extracts may have an immunomodulatory effect as well as a direct antiplasmodial effect. Several extracts contain multidrug resistance inhibitors, although none of these has been tested clinically in malaria. Some plant constituents are added mainly to attenuate the side-effects of others, for example ginger to prevent nausea.
Conclusions
More clinical research is needed on all types of interaction between plant constituents. This could include clinical trials of combinations of pure compounds (such as artemisinin + curcumin + piperine) and of combinations of herbal remedies (such as Artemisia annua leaves + Curcuma longa root + Piper nigum seeds). The former may enhance the activity of existing pharmaceutical preparations, and the latter may improve the effectiveness of existing herbal remedies for use in remote areas where modern drugs are unavailable.
doi:10.1186/1475-2875-10-S1-S4
PMCID: PMC3059462  PMID: 21411015
23.  Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid 
BMC Biotechnology  2008;8:83.
Background
Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required.
Results
Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 μg mL-1 in shake-flask cultures and 1 g L-1 in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by yeast microarray further demonstrated that the induction of drug-resistant genes such as ABC transporters and major facilitator superfamily (MSF) genes is the primary cellular stress-response; in addition, oxidative and osmotic stress responses were observed in the engineered yeast.
Conclusion
The data presented here suggest that the engineered yeast producing artemisinic acid suffers oxidative and drug-associated stresses. The use of plant-derived transporters and optimizing AMO activity may improve the yield of artemisinic acid production in the engineered yeast.
doi:10.1186/1472-6750-8-83
PMCID: PMC2588579  PMID: 18983675
24.  Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes 
BMC Plant Biology  2009;9:86.
Background
Sesquiterpene lactones are characteristic metabolites of Asteraceae (or Compositae) which often display potent bioactivities and are sequestered in specialized organs such as laticifers, resin ducts, and trichomes. For characterization of sunflower sesquiterpene synthases we employed a simple method to isolate pure trichomes from anther appendages which facilitated the identification of these genes and investigation of their enzymatic functions and expression patterns during trichome development.
Results
Glandular trichomes of sunflower (Helianthus annuus L.) were isolated, and their RNA was extracted to investigate the initial steps of sesquiterpene lactone biosynthesis. Reverse transcription-PCR experiments led to the identification of three sesquiterpene synthases. By combination of in vitro and in vivo characterization of sesquiterpene synthase gene products in Escherichia coli and Saccharomyces cerevisiae, respectively, two enzymes were identified as germacrene A synthases, the key enzymes of sesquiterpene lactone biosynthesis. Due to the very low in vitro activity, the third enzyme was expressed in vivo in yeast as a thioredoxin-fusion protein for functional characterization. In in vivo assays, it was identified as a multiproduct enzyme with the volatile sesquiterpene hydrocarbon δ-cadinene as one of the two main products with α-muuorlene, β-caryophyllene, α-humulene and α-copaene as minor products. The second main compound remained unidentified. For expression studies, glandular trichomes from the anther appendages of sunflower florets were isolated in particular developmental stages from the pre- to the post-secretory phase. All three sesquiterpene synthases were solely upregulated during the biosynthetically active stages of the trichomes. Expression in different aerial plant parts coincided with occurrence and maturity of trichomes. Young roots with root hairs showed expression of the sesquiterpene synthase genes as well.
Conclusion
This study functionally identified sesquiterpene synthase genes predominantly expressed in sunflower trichomes. Evidence for the transcriptional regulation of sesquiterpene synthase genes in trichome cells suggest a potential use for these specialized cells for the identification of further genes involved in the biosynthesis, transport, and regulation of sesquiterpene lactones.
doi:10.1186/1471-2229-9-86
PMCID: PMC2715020  PMID: 19580670
25.  Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery method for treating malaria and other neglected diseases 
Artemisia annua L. produces the sesquiterpene lactone, artemisinin, a potent antimalarial drug that is also effective in treating other parasitic diseases, some viral infections and various neoplasms. Artemisinin is also an allelopathic herbicide that can inhibit the growth of other plants. Unfortunately, the compound is in short supply and thus, studies on its production in the plant are of interest as are low cost methods for drug delivery. Here we review our recent studies on artemisinin production in A. annua during development of the plant as it moves from the vegetative to reproductive stage (flower budding and full flower formation), in response to sugars, and in concert with the production of the ROS, hydrogen peroxide. We also provide new data from animal experiments that measured the potential of using the dried plant directly as a therapeutic. Together these results provide a synopsis of a more global view of regulation of artemisinin biosynthesis in A. annua than previously available. We further suggest an alternative low cost method of drug delivery to treat malaria and other neglected tropical diseases.
doi:10.1007/s11101-010-9166-0
PMCID: PMC3106422  PMID: 21643453
Artemisinin pharmacokinetics; ROS; DMSO; Artemisia annua development; Trichomes

Results 1-25 (1066541)