PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (852806)

Clipboard (0)
None

Related Articles

1.  Okundoperoxide, A Bicyclic Cyclofarnesylsesquiterpene Endoperoxide from Scleria striatinux with Antiplasmodial Activity 
Journal of natural products  2009;72(2):280-283.
Okundoperoxide (1) was isolated by bioassay-guided fractionation of extracts from Scleria striatinux (syn. S. striatonux) (Cyperaceae). The compound contains a cyclic endoperoxide structural moiety and possesses moderate antimalarial activity.
doi:10.1021/np800338p
PMCID: PMC2765531  PMID: 19199815
2.  Antibacterial activities of Beilschmiedia obscura and six other Cameroonian medicinal plants against multi-drug resistant Gram-negative phenotypes 
Background
The rapid spread of bacteria expressing multi-drug resistance propels the search for new antibacterial agents. The present study was designed to evaluate the antibacterial activities of the methanol extracts from Beilschmiedia obscura and six other Cameroonian plants against a panel of twenty nine Gram-negative bacteria including Multi-drug resistant (MDR) phenotypes.
Methods
The phytochemical investigations of the extracts were carried out according to the standard methods and the liquid micro-dilution assay was used for all antibacterial assays.
Results
Phytochemical analysis showed the presence of alkaloids in all studied extracts. Other chemical classes of secondary metabolites such as anthocyanines, anthraquinones flavonoids, saponins, tannins, sterols and triterpenes were selectively detected in the extracts. The extract from the fruits of Beilschmiedia obscura, Pachypodanthium staudtii leaves and Peperomia fernandopoiana (whole plant) displayed the best spectrum of activity with MIC values ranging from 16 to 1024 μg/mL against at least 65% and above of the tested bacteria. The extract from Beilschmiedia obscura was the most active with MIC values below 100 μg/mL against ten of the tested bacteria. This extract also showed MBC values below 1024 μg/mL against 55.17% of the studied microorganisms. Phenylalanine arginine β-naphthylamide (PAβN) significantly modulated the activities of extracts from the leaves and fruits of Pachypodanthium staudtii and Beilschmiedia obscura respectively, by increasing their inhibitory activity against Klebsiella pneumoniae KP55 strain at least four fold.
Conclusion
The overall results of the present investigation provide information for the possible use of the methanol extracts of the studied plant species, especially B. obscura to fight infectious diseases caused by Gram-negative bacteria including MDR phenotypes.
doi:10.1186/1472-6882-14-241
PMCID: PMC4223721  PMID: 25023038
Antibacterial activity; Beilschmiedia obscura; Gram-negative bacteria; Multi-drug resistance; Efflux pumps; Medicinal plants
3.  Synergy of antibacterial and antioxidant activities from crude extracts and peptides of selected plant mixture 
Background
A plant mixture containing indigenous Australian plants was examined for synergistic antimicrobial activity using selected test microorganisms. This study aims to investigate antibacterial activities, antioxidant potential and the content of phenolic compounds in aqueous, ethanolic and peptide extracts of plant mixture.
Methods
Well diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were used to test antibacterial activity against four pathogenic bacteria namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa. DPPH (2, 2-diphenyl-1- picrylhydrazyl) and superoxide dismutase (SOD) assays were used to evaluate antioxidant activity. HPLC and gel filtration were used for purification of the peptides. Scanning electron microscope was applied to investigate the mode of attachment of the peptides on target microbial membranes.
Results
Aqueous extraction of the mixture showed no inhibition zones against all the test bacteria. Mean diameter of inhibition zones for ethanol extraction of this mixture attained 8.33 mm, 7.33 mm, and 6.33 mm against S. aureus at corresponding concentrations of 500, 250 and 125 mg/ml while E .coli showed inhibition zones of 9.33 mm, 8.00 mm and 6.66 mm at the same concentrations. B. cereus exhibited inhibition zones of 11.33 mm, 10.33 mm and 10.00 mm at concentrations of 500, 250 and 125 mg/ml respectively. The peptide extract demonstrated antibacterial activity against S. aureus, E. coli and B. cereus. The MIC and MBC values for ethanol extracts were determined at 125 mg/ml concentration against S. aureus and E. coli and B. cereus value was 31.5 mg/ml. MIC and MBC values showed that the peptide extract was significantly effective at low concentration of the Australian plant mixture (APM). Phenolic compounds were detected in hot aqueous and ethanolic extracts of the plant mixture. Hot aqueous, ethanol and peptides extracts also exhibited antioxidant activities.
Conclusions
It was concluded that APM possessed good antibacterial and antioxidant activities following extraction with different solvents. The results suggest that APM provide a new source with antibacterial agents and antioxidant activity for nutraceutical or medical applications.
doi:10.1186/1472-6882-13-360
PMCID: PMC3866934  PMID: 24330547
Indigenous plants; Antibacterial properties; DPPH free radical activity; SOD assay; Pathogenic bacteria
4.  In vitro antibacterial potency of Butea monosperma Lam. against 12 clinically isolated multidrug resistant bacteria 
Objective
To investigate the antibacterial activity, using cold and hot extraction procedures with five solvents, petroleum ether, acetone, ethanol, methanol and water to validate medicinal uses of Butea monosperma Lam (B. monosperma) in controlling infections; and to qualitatively estimate phytochemical constituents of leaf-extracts of the plant.
Methods
The antibacterial activity of leaf-extracts was evaluated by the agar-well diffusion method against clinically isolated 12 Gram-positive and -negative multidrug resistant (MDR) pathogenic bacteria in vitro. Values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of leaf-extracts against each bacterium were obtained in a 96-well micro-titre plate, by broth dilution micro-titre plate technique.
Results
The presence of tannins, flavonoids, starch, glycosides and carbohydrates in different leaf extracts was established. Pathogenic bacteria used were, Acinetobacter sp., Chromobacterium violaceum, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella sp., Enterococcus sp., Staphylococcus aureus (S. aureus), methicillin resistant S. aureus and vancomycin resistant S. aureus, along with standard bacterial strains. These MDR bacteria had been recorded to have significant inhibitions by leaf extracts, obtained by cold and hot extraction procedures with five solvents. In addition, the hot aqueous extract against Enterococcus sp. had the highest inhibition zone-size (21 mm). Ciprofloxacin 30 µg/disc was the positive/reference control and the diluting solvent, 10% dimethyl sulphoxide was the negative control. Recorded MIC values of different extracts ranged between 0.23 and 13.30 mg/mL, and MBC values were 0.52 to 30.00 mg/mL, for these bacteria.
Conclusions
Leaf-extracts with hot water and ethanol had shown significant antibacterial activity against all bacteria. B. monosperma leaf-extract could be used in treating infectious diseases, caused by the range of tested bacteria, as complementary and alternate medicine.
doi:10.1016/S2222-1808(13)60044-4
PMCID: PMC4027298
Butea monosperma; Gram-positive bacteria; Gram-negative bacteria; Multidrug resistant bacteria; Minimum inhibitory concentration; Antibacterial activity; Phytochemical constituents
5.  The Antibacterial Activity of Cassia fistula Organic Extracts 
Background:
Cassia fistula, is a flowering plant and a member of Fabaceae family. Its leaves are compound of 4 - 8 pairs of opposite leaflets. There are many Cassia species around the world which are used in herbal medicine.
Objectives:
This study was designed to examine in vitro anti-bacterial activity of methanolic and ethanolic extracts of C. fistula native to Khuzestan, Iran.
Materials and Methods:
The microbial inhibitory effect of methanolic and ethanolic extracts of C. fistula was tested on 3 Gram positive: Bacillus cereus, Staphylococcus aureus and S. epidermidis and 5 Gram negative: Salmonella Typhi, Kelebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis bacterial species using disc diffusion method at various concentrations. The minimum inhibitory and bactericidal concentrations (MIC and MBC) were measured by the tube dilution assay.
Results:
The extract of C. fistula was effective against B. cereus, S. aureus, S. epidermidis, E. coli and K. pneumoniae. The most susceptible microorganisms to ethanolic and methanolic extracts were E. coli and K. pneumoniae, respectively. Also B. cereus and S. aureus showed the least sensitivity to ethanolic and methanolic extracts, respectively. The MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) of ethanolic extracts against S. aureus, E. coli, S. epidermidis and K. pneumoniae were also determined.
Conclusions:
With respect to the obtained results and regarding to the daily increase of the resistant microbial strains to the commercial antibiotics, it can be concluded that these extracts can be proper candidates of antibacterial substance against pathogenic bacterial species especially S. aureus, E. coli, K. pneumoniae and S. epidermidis.
doi:10.5812/jjm.8921
PMCID: PMC4138669  PMID: 25147664
Cassia fistula; Anti-bacterial Activity; Disc Diffusion Antibacterial Test; Minimum Inhibitory Concentration; Minimum Bactericidal Concentration
6.  Investigation of the possible biological activities of a poisonous South African plant; Hyaenanche globosa (Euphorbiaceae) 
Pharmacognosy Magazine  2010;6(21):34-41.
The present study was undertaken to explore the possible biochemical activities of Hyaenanche globosa Lamb. and its compounds. Two different extracts (ethanol and dichloromethane) of four different parts (leaves, root, stem, and fruits) of H. globosa were evaluated for their possible antibacterial, antityrosinase, and anticancer (cytotoxicity) properties. Two pure compounds were isolated using column chromatographic techniques. Active extracts and pure compounds were investigated for their antioxidant effect on cultured ‘Hela cells’. Antioxidant/oxidative properties of the ethanolic extract of the fruits of H. globosa and purified compounds were investigated using reactive oxygen species (ROS), ferric-reducing antioxidant power (FRAP), and lipid peroxidation thiobarbituric acid reactive substance (TBARS) assays. The ethanolic extract of the leaves and fruits of H. globosa showed the best activity, exhibiting a minimum inhibitory concentration (MIC) of 3.1 mg/ ml and a minimum bactericidal concentration (MBC) of 1.56 and 6.2 mg/ml, respectively, against M. smegmatis. The ethanolic extract of the fruits of H. globosa (F.E) showed the highest percentage of inhibitory activity of monophenolase (90.4% at 200 μg/ml). In addition, F.E exhibited 50% inhibitory concentration (IC50) of 37.7 μg/ml on the viability of ‘HeLa cells’ using cytotoxicity MTT assay. Subsequently, F.E was fractionated using phase-partitioning with n-hexane, ethyl acetate, and n-butanol. The cytotoxicity of these fractions were determined in vitro using different cancer cell lines. The n-hexane fraction exhibited the highest activity of toxicity. Therefore, this fraction was subjected to further separation by chromatographic methods. Two pure compounds known as: ‘Tutin’ and ‘hyenanchin’ were isolated and their structures were determined by NMR spectroscopic methods. Unpredictably, none of them showed significant (P < 0.01) inhibition on cell viability/proliferation at the concentrations that were used. F.E showed significant anti-tyrosinase, antibacterial, and cytotoxicity effects, therefore it can be considered as an effective inhibitor alone or in combination with other plant extracts.
doi:10.4103/0973-1296.59964
PMCID: PMC2881645  PMID: 20548934
Hyenanche globosa; hyenanchin; tutin; cytotoxicity; antibacterial assay; antioxidant assay; reactive oxygen species
7.  Antimicrobial Activity and Phytochemical Study of Vernonia Glabra (Steetz) Oliv. & Hiern. in Kenya 
Infectious diseases are prevalent and life threatening in Kenya. Majority of the sick are seeking herbal remedies in search of effective, safe, and affordable cure. This project aims to investigate the antimicrobial activity and presence of active phytochemical compounds in different parts of Vernonia glabra; a plant used by herbalists in various regions of Kenya, for the treatment of gastrointestinal problems. The plant sample was collected in January 2010 in Machakos, and different parts dried at room temperature under shade, ground into powder and extracted in Dichloromethane: Methanol in the ratio 1:1, and water. These crude extracts were tested against Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger for antimicrobial activity using disc diffusion technique. Minimum inhibitory concentrations (MICs) for active crude extracts were done using disc diffusion technique after the failure of agar and broth dilution methods. It was observed that the organic crude extracts of flower, leaf, stem, root, and/or entire plant, showed activity against at least one of the four micro-organisms screened, and at concentrations lower than the aqueous crude extracts. Organic crude extract of the leaf showed the highest activity against Staphylococcus aureus (mean inhibition zone of 1.85), recording higher activity than the commercially used standard antibiotic (Streptomycin mean inhibition zone of 1.30). The organic crude extract of flower showed significant activity only against S. aureus, with the lowest MIC of 1.5625 mg/100µl, compared to streptomycin with M.I.C of 6.25 mg/100µl. Thin Layer Chromatography-Bioautography Agar-Overlay showed that, flower alkaloids (50% active), root sapogenins (43.8% active), and root terpenoids (38.5% active) were identified as the potential antibacterial compounds against S. aureus. These results suggest that, V. glabra contains phytochemicals of medicinal properties and justify the use of V. glabra in traditional herbal medicine for the treatment of microbial based diseases. However, research on toxicity which is missing in this study is recommended for V. glabra in order to verify, validate and document the safety of this medicinal plant to the society.
PMCID: PMC3746369  PMID: 24082337
Vernonia glabra; Antimicrobial activity; Phytochemicals
8.  Phytochemistry and Preliminary Assessment of the Antibacterial Activity of Chloroform Extract of Amburana cearensis (Allemão) A.C. Sm. against Klebsiella pneumoniae Carbapenemase-Producing Strains 
The chloroform extract of the stem bark of Amburana cearensis was chemically characterized and tested for antibacterial activity.The extract was analyzed by gas chromatography and mass spectrometry. The main compounds identified were 4-methoxy-3-methylphenol (76.7%), triciclene (3.9%), α-pinene (1.0%), β-pinene (2.2%), and 4-hydroxybenzoic acid (3.1%). Preliminary antibacterial tests were carried out against species of distinct morphophysiological characteristics: Escherichia coli, Salmonella enterica Serotype Typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus. The minimum inhibitory concentration (MIC) was determinate in 96-well microplates for the chloroform extract and an analogue of themain compound identified, which was purchased commercially.We have shown that plant's extract was only inhibitory (but not bactericidal) at the maximum concentration of 6900 μg/mL against Pseudomonas aeruginosa and Bacillus cereus. Conversely, the analogue 2-methoxy-4-methylphenol produced MICs ranging from215 to 431 μg/mL against all bacterial species.New antibacterial assays conducted with such chemical compound against Klebsiella pneumoniae carbapenemase-producing strains have shown similarMICresults and minimumbactericidal concentration (MBC) of 431 μg/mL.We conclude that A. cearensis is a good source of methoxy-methylphenol compounds,which could be screened for antibacterial activity againstmultiresistant bacteria fromdifferent species
doi:10.1155/2014/786586
PMCID: PMC3977124  PMID: 24772183
9.  Evaluation of Antimicrobial Activity of the Methanol Extracts from 8 Traditional Medicinal Plants 
Toxicological Research  2011;27(1):31-36.
The methanol extract of 12 medicinal plants were evaluated for its antibacterial activity against Gram-positive (5 strains) and Gram-negative bacteria (10 strains) by assay for minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) . The antibacterial activity was determined by an agar dilution method (according to the guidelines of Clinical and Laboratory Standard Institute) . All the compounds (12 extracts) of the 8 medicinal plants (leaf or root) were active against both Gram-negative and Gram-positive bacteria. Gram-negative showed a more potent action than Gram positive bacteria. The MIC concentrations were various ranged from 0.6 μg/ml to 5000 μg/ml. The lowest MIC (0.6 μg/ml) and MBC (1.22 μg/ml) values were obtained with extract on 4 and 3 of the 15 microorganisms tested, respectively.
doi:10.5487/TR.2011.27.1.031
PMCID: PMC3834511  PMID: 24278548
Antimicrobial activity; traditional medicinal plants; minimum inhibitory concentration (MIC) ; minimum bacterial concentration (MBC) ; methanol extract; agar dilution method .
10.  Antibacterial constituents of three Cameroonian medicinal plants: Garcinia nobilis, Oricia suaveolens and Balsamocitrus camerunensis 
Background
Multidrug resistance is a worrying cause of treatment failure in bacterial infections. The search of bioactive constituents from medicinal plants against multidrug resistant (MDR) bacteria has significantly evolved in the two last decades. In the present study, twenty-two compounds (three terpenoids, eleven phenolics and eight alkaloids) isolated from three Cameroonian medicinal plants, namely Garcinia nobilis, Oricia suaveolens and Balsamocitrus camerunensis, as well as the crude extracts were tested for their antibacterial activities against Mycobacterium tuberculosis and Gram-negative bacteria amongst which were MDR active efflux pumps expressing phenotypes.
Methods
The microplate alamar blue assay (MABA) and the broth microdilution methods were used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the studied samples.
Results
The results of the MIC determinations indicate that, the best crude extract was that from G. nobilis (GNB), its inhibitory effects being noted against 12 of the 14 tested bacteria. The extract of GNB also exhibited better anti-tuberculosis (MIC of 128 μg/ml M. tuberculosis against ATCC 27294 strain) and antibacterial (MIC of 64 μg/ml against Escherichia coli ATCC10536) activities compared to the extracts of O. suaveolens and B. camerunensis. Interestingly, 4-prenyl-2-(3,7-dimethyl-2,6-octadienyl)-1,3,5,8-tetrahydroxyxanthone (2), isolated from the most active extract GNB, also showed the best activity amongst compounds, inhibiting the growth of all the fourteen tested microorganisms. The lowest MIC value obtained with compound 2 was 8 μg/ml against M. tuberculosis ATCC 27294 and M. tuberculosis clinical MTCS2 strains. Other compounds showed selective activities with 11 of the 14 tested bacteria being sensitive to the xanthone, morusignin I (5) and the alkaloid, kokusaginine (13).
Conclusions
The results of the present investigation provide evidence that the crude extract from G. nobilis, O. suaveolens and B. camerunensis as well as some of their compounds, and mostly compound 2 (isolated from G. nobilis,) could be considered as interesting natural antibacterial products.
doi:10.1186/1472-6882-13-81
PMCID: PMC3637112  PMID: 23574627
Antimycobacterial; Antibacterial; Cameroon; Compounds; Garcinia nobilis; Oricia suaveolens; Balsamocitrus camerunensis
11.  Divergent Chemical Cues Elicit Seed Collecting by Ants in an Obligate Multi-Species Mutualism in Lowland Amazonia 
PLoS ONE  2010;5(12):e15822.
In lowland Amazonian rainforests, specific ants collect seeds of several plant species and cultivate them in arboreal carton nests, forming species-specific symbioses called ant-gardens (AGs). In this obligate mutualism, ants depend on the plants for nest stability and the plants depend on ant nests for substrate and nutrients. AG ants and plants are abundant, dominant members of lowland Amazonian ecosystems, but the cues ants use to recognize the seeds are poorly understood. To address the chemical basis of the ant-seed interaction, we surveyed seed chemistry in nine AG species and eight non-AG congeners. We detected seven phenolic and terpenoid volatiles common to seeds of all or most of the AG species, but a blend of the shared compounds was not attractive to the AG ant Camponotus femoratus. We also analyzed seeds of three AG species (Anthurium gracile, Codonanthe uleana, and Peperomia macrostachya) using behavior-guided fractionation. At least one chromatographic fraction of each seed extract elicited retrieval behavior in C. femoratus, but the active fractions of the three plant species differed in polarity and chemical composition, indicating that shared compounds alone did not explain seed-carrying behavior. We suggest that the various AG seed species must elicit seed-carrying with different chemical cues.
doi:10.1371/journal.pone.0015822
PMCID: PMC3012710  PMID: 21209898
12.  Introducing Urtica dioica, A Native Plant of Khuzestan, As an Antibacterial Medicinal Plant 
Background:
Urtica dioica is a flowering plant with long history of use in folk medicine and as a food source.
Objectives:
This study examined in vitro antibacterial potential of alcoholic extracts of U. dioica.
Materials and Methods:
Hydroalcoholic extracts from aerial parts were prepared using aqueous solution of ethanol and methanol and their inhibitory effects against clinical isolates was examined by disc diffusion method at different doses. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) indexes were also investigated. The scanning electron microscopy (SEM) analysis was also performed to find structural changes of affected bacteria consequent to exposing with extracts.
Results:
Both extracts were active against Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli with respectively 16, 10, 18, and 14 mm (methanolic) and 11, 9, 17, and 16 mm (ethanolic) inhibition zone. The MIC of ethanolic extract against S. epidermidis and E. coli was respectively 10 and 40 mg/mL. The MIC of methanolic extract against S. aureus and S. epidermidis was 40 and 10 mg/mL, respectively. The MBC was found only for S. epidermidis (20 mg/mL). In SEM analysis the round shape of S. epidermidis was changed and irregular shapes were appeared, which suggest that the main target of these extracts was cell wall.
Conclusions:
Extracts of U. dioica showed significant antibacterial effect against some clinically important pathogenic bacteria. Based on the obtained results it can be concluded that U. dioica is useful as antibacterial and bactericidal agent in treating infectious diseases.
PMCID: PMC4302403  PMID: 25625045
Urtica dioica; Medicinal Plant; Antibacterial Agent; Natural Product; Phytotherapy
13.  Antibacterial Activity of a Cardanol from Thai Apis mellifera Propolis 
Background: Propolis is a sticky, dark brown resinous residue made by bees that is derived from plant resins. It is used to construct and repair the nest, and in addition possesses several diverse bioactivities. Here, propolis from Apis mellifera from Nan province, Thailand, was tested for antibacterial activity against Gram+ve (Staphylococcus aureus and Paenibacillus larvae) and Gram-ve (Escherichia coli) bacteria.
Materials and methods: The three bacterial isolates were confirmed for species designation by Gram staining and analysis of the partial sequence of 16S rDNA. Propolis was sequentially extracted by methanol, dichloromethane and hexane. The antibacterial activity was determined by agar well diffusion and microbroth dilution assays using streptomycin as a positive control. The most active crude extract was further purified by quick column and adsorption chromatography. The apparent purity of each bioactive fraction was tested by thin layer chromatography. The chemical structure of the isolated bioactive compound was analyzed by nuclear magnetic resonance (NMR).
Results: Crude methanol extract of propolis showed the best antibacterial activity with a minimum inhibition concentration (MIC) value of 5 mg/mL for S. aureus and E. coli and 6.25 mg/mL for P. larvae. After quick column chromatography, only three active fractions were inhibitory to the growth of S. aureus and E. coli with MIC values of 6.25 and 31.3 µg/mL, respectively. Further adsorption chromatography yielded one pure bioactive fraction (A1A) with an IC50 value of 0.175 µg/mL for E. coli and 0.683 µg/mL for P. larvae, and was determined to be cardanol by NMR analysis. Scanning and transmission electron microscopy analysis revealed unusual shaped (especially in dividing cells), damaged and dead cells in cardanol-treated E. coli.
Conclusion: Thai propolis contains a promising antibacterial agent.
doi:10.7150/ijms.7373
PMCID: PMC3936026  PMID: 24578609
Antibacterial activity; Apis mellifera; Cardanol; Propolis; Nan province; Pathogen.
14.  Anti-nociceptive properties in rodents and the possibility of using polyphenol-rich fractions from sida urens L. (Malvaceae) against of dental caries bacteria 
Background
Sida urens L. (Malvaceae) is in flora of Asian medicinal herbs and used traditionally in West of Burkina Faso for the treatment of infectious diseases and particularly used against, dental caries bacteria, fever, pain and possesses analgesic properties. This study was conducted to reveal the antibacterial effect against dental caries bacteria on the one hand, and evaluate their analgesic capacity in experimental model with Swiss mice and on the other hand, with an aim to provide a scientific basis for the traditional use of this plant for the management of dental caries bacteria.
Method
The antibacterial assays in this study were performed by using inhibition zone diameters, MIC (Minimum inhibitory concentration) and MBC (Minimal bactericidal concentration) methods. On the whole the dental caries bacteria (Gram-positive and Gram-negative bacterial strains) were used. Negative control was prepared using discs impregnated with 10% DMSO in water and commercially available Gentamicin from Alkom Laboratories LTD was used as positive reference standards for all bacterial strains. In acute toxicity test, mice received doses of extract (acetone/water extract) from Sida urens L. by intraperitoneal route and LD50 was determined in Swiss mice. As for analgesic effects, acetic acid writhing method was used in mice. The acetic acid-induced writhing method was used in mice with aim to study analgesic effects.
Results
The results showed that the highest antibacterial activities were founded with the polyphenol-rich fractions against all bacterial strains compared to the standard antibiotic. About preliminary study in acute toxicity test, LD50 value obtained was more than 5000 mg/kg b.w. Polyphenol-rich fractions produced significant analgesic effects in acetic acid-induced writhing method and in a dose-dependent inhibition was observed.
Conclusion
These results validate the ethno-botanical use of Sida urens L. (Malvaceae) and demonstrate the potential of this herbaceous as a potential antibacterial agent of dental caries that could be effectively used for future health care purposes.
doi:10.1186/1476-0711-12-14
PMCID: PMC3699430  PMID: 23787152
15.  Antimicrobial Constituents of the Leaves of Mikania micrantha H. B. K 
PLoS ONE  2013;8(10):e76725.
Background
To isolate plant-derived compounds with antimicrobial activity from the leaves of Mikania micrantha, to determine the compounds configuration, and to evaluate their antimicrobial activity against eight plant pathogenic fungi (Exserohilum turcicum, Colletotrichum lagenarium, Pseudoperonispora cubensis, Botrytis cirerea, Rhizoctonia solani, Phytophthora parasitica, Fusarium solani, and Pythium aphanidermatum,) and four plant pathogenic bacteria (gram negative bacteria: Ralstonia dolaanacearum, Xanthomonas oryzae pv. Oryzae, Xanthomonas Campestris pv. Vesicatoria, and Xanthomonas campestris pv. Citri), and four bacteria (gram positive bacteria: Staphyloccocus aureus, Bacillus subtilis, Micrococcus luteus, and Bacillus cereus).
Methods and Results
Antimicrobial constituents of the leaves of M. micrantha were isolated using bioactivity- guided fractionation. The antifungal activity of the isolated compounds was evaluated by the inhibit hypha growth method and inhibit spore germination method. Characterization of antibacterial activity was carried out using the minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs). MIC and MBC were determined by the broth microdilution method. Six compounds – deoxymikanolide, scandenolide, dihydroscandenolide, mikanolide, dihydromikanolide, and m - methoxy benzoic acid – have been isolated from leaves of Mikania micrantha H. B. K. Deoxymikanolide, scandenolide, and dihydroscandenolide were new compounds. The result of bioassay showed that all of isolated compounds were effective against tested strains and deoxymikanolide showed the strongest activity.
Conclusions and Significance
The leaves of M. micrantha may be a promising source in the search for new antimicrobial drugs due to its efficacy and the broadest range. Meanwhile, adverse impact of M. micrantha will be eliminated.
doi:10.1371/journal.pone.0076725
PMCID: PMC3788719  PMID: 24098556
16.  Anti-staphylococcal, anti-HIV and cytotoxicity studies of four South African medicinal plants and isolation of bioactive compounds from Cassine transvaalensis (Burtt. Davy) codd 
Background
Medicinal plants represent an important opportunity to rural communities in Africa, as a source of affordable medicine and as a source of income. Increased patient awareness about safe usage is important as well as more training with regards to traditional medicine. The aim of this study was to evaluate the ethnomedicinal prowess of some indigenous South African plants commonly used in Eastern Cape Province of South Africa for the treatment of skin and respiratory tract infections, HIV and their toxicity potential.
Methods
Cassine transvaalensis, Vangueria infausta, Croton gratissimus and Vitex ferruginea were tested for antibacterial activities against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer disk diffusion and minimum inhibition concentration (MIC). Cytotoxic and anti-HIV-1 activities of plants were tested using MTT Assay (3- (Dimethylthiozole-2-yl-2,5-diphenyltetrazolium bromide)) and anti- HIV-1iib assay. In search of bioactive lead compounds, Cassine transvaalensis which was found to be the most active plant extract against the two Staphylocoous bacteria was subjected to various chromatographic. Thin layer chromatography, Column chromatography and Nuclear Magnetic Resonance (NMR), (1H-1H, 13C-13C, in DMSO_d6, Bruker 600 MHz) were used to isolate and characterize 3-Oxo-28-hydroxylbetuli-20(29)-ene and 3,28-dihydroxylbetuli-20(29)-ene bioactive compounds from C. transvaalensis.
Results
The four plants studied exhibited bioactive properties against the test isolates. The zones of inhibition ranged between 16 mm to 31 mm for multi-drug resistant staphylococci species. MIC values varied between 0.6 and 0.02 μg/ml. C. gratissimus and C. transvaalensis exhibited the abilities to inhibit HIV-1iib. Two bioactive compounds were isolated from C. transvaalensis.
Conclusion
Data from this study reveals the use of these plant by traditional healers in the Eastern Cape. Furthermore, C. transvaalensis and C. gratissimus were found to be more active as against HIV-1iib. While C. transvaalensis was most active against the two Staphylococcus bacteria.
doi:10.1186/1472-6882-14-512
PMCID: PMC4320432  PMID: 25522685
Staphylococci; Medicinal plant; Cytotoxic; Disk diffusion; Bioactive
17.  In vitro control of Staphylococcus aureus (NCTC 6571) and Escherichia coli (ATCC 25922) by Ricinus communis L. 
Objective
To evaluate antibacterial activity of hot and cold ethanol and methanol leaf extracts of Ricinus communis L (R. communis) against Staphylococcus aureus (S. aureus) (NCTC 6571) and Escherichia coli (E. coli) (ATCC 25922).
Methods
Leaf powder of R. communis L. was extracted with hot (in Soxhlet) and cold ethanol and methanol, separately. The antibacterial activity of the extracts was determined by agar well diffusion and macro broth dilution methods. The extracts were also subjected to phytochemical analysis.
Results
All the four test extracts showed inhibition on both S. aureus and E. coli. Hot and cold ethanol extracts revealed significantly (P<0.05) higher inhibition on S. aureus than methanol extracts, and the hot ethanol extract had the lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values (5 mg/mL and 10 mg/mL, respectively). E. coli was highly inhibited by hot extracts of both ethanol and methanol with the MIC and MBC of 40 mg/mL and 80 mg/mL, respectively. Phytochemical analysis revealed the presence of saponins, cardiac glycosides, tannins, flavonoids and terpenoids in all test extracts.
Conclusions
This study demonstrates that the hot and cold methanol and ethanol extracts are potential sources for control of S. aureus and E. coli. Especially, the hot and cold extracts of ethanol are more inhibitive against S. aureus even at lower concentration. Further study is needed to identify the specific bioactive compounds, their mode of action and their nontoxic nature in vivo condition.
doi:10.1016/S2221-1691(12)60216-0
PMCID: PMC3609375  PMID: 23570001
Ricinus communis; Antibacterial activity; Staphylococcus aureus; Escherichia coli; Extract; Minimum inhibitory concentration; Minimum bactericidal concentration
18.  Tabebuia avellanedae naphthoquinones: activity against methicillin-resistant staphylococcal strains, cytotoxic activity and in vivo dermal irritability analysis 
Background
Methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococcus infections are a worldwide concern. Currently, these isolates have also shown resistance to vancomycin, the last therapy used in these cases. It has been observed that quinones and other related compounds exhibit antibacterial activity. This study evaluated the antibacterial activity, toxicity and in vivo dermal irritability of lapachol extracted from Tabebuia avellanedae and derivatives against methicillin-resistant staphylococcal isolates. In addition, its mechanism of action was also analyzed.
Methods
The compounds β-lapachone, 3-hydroxy β N lapachone and α-lapachone were tested to determine the MIC values against methicillin-resistant S. aureus, S. epidermidis and S. haemolyticus strains, being the two last ones hetero-resistant to vancomycin. Experiments of protein synthesis analysis to investigate the naphthoquinones action were assessed. In vitro toxicity to eukaryotic BSC-40 African Green Monkey Kidney cell cultures and in vivo primary dermal irritability in healthy rabbits were also performed.
Results
The compounds tested showed antibacterial activity (MICs of 8, 4/8 and 64/128 μg/mL to β-lapachone, 3-hydroxy β N lapachone and α-lapachone, respectively), but no bactericidal activity was observed (MBC > 512 μg/mL for all compounds). Although it has been observed toxic effect in eukaryotic cells, the compounds were shown to be atoxic when applied as topic preparations in healthy rabbits. No inhibition of proteins synthesis was observed.
Conclusion
Our results suggest that quinones could be used in topic preparations against wound infections caused by staphylococci, after major investigation of the pharmacological properties of the compounds. Studies about the use of these compounds on tumoral cells could be carried on, due to their effect in eukaryotic cells metabolism.
doi:10.1186/1476-0711-5-5
PMCID: PMC1435768  PMID: 16553949
19.  Antifungal, antibacterial and antimycobacterial activity of Entada abysinnica Steudel ex A. Rich (Fabaceae) methanol extract 
Pharmacognosy Research  2010;2(3):163-168.
The purpose of the study was to investigate the antifungal, antibacterial and antimycobacterial properties of methanol extract of Entada abysinnica steudel ex. A. Rich (Fabaceae) leaves used by herbalists from the Lake Victoria region, Kenya. The extract was tested against four strains of mycobacteria (Mycobacterium tuberculosis, Mycobacterium kansasii, Mycobacterium fortuitum, and Mycobacterium smegmatis) using BACTEC Mycobacteria Growth Indicator Tube (MGIT) 960 system and the proportional method. Standard procedures were used to determine the zones of inhibition, minimum inhibitory concentrations (MICs) and minimum bactericidal/fungicidal concentrations (MBCs/MFCs) for Candida albicans, Salmonella typhi, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. The extract showed activity against some mycobacteria strains, especially M. tuberculosis. It also showed strong antimicrobial activity (zones of inhibition were between 9.00 and 14.10 mm) against C. albicans, Sa. typhi, and St. aureus. The extract gave a better zone of inhibition against C. albicans than fluconazole whose zone of inhibition was 13.00 mm. The MICs and MBCs for C. albicans and Sa. typhi were good. The crude extracts were also analyzed for the presence of phytochemicals. Phytochemical screening indicated that the extract most abundantly contained tannins, saponins, and flavonoids. The data suggest that the methanolic leaves extract of E. abysinnica could be a rich source of antimicrobial agents, especially antifungals. The results further show that there is some merit in the use of the plant in alternative medical practices. However, bioassays of isolated compounds are underway and will be reported during subsequent communications.
doi:10.4103/0974-8490.65511
PMCID: PMC3141308  PMID: 21808560
Antifungal; antibacterial; antimycobacterial; Entada abysinnica; methanol extract
20.  Antibacterial and anti-inflammatory effects of Syzygium jambos L. (Alston) and isolated compounds on acne vulgaris 
Background
Acne vulgaris is a chronic skin disorder leading to inflammation as a result of the production of reactive oxygen species due to the active involvement of Propionibacterium acnes (P. acnes) in the infection site of the skin. The current study was designed to assess the potential of the leaf extract of Syzygium jambos L. (Alston) and its compounds for antibacterial and anti-inflammatory activity against the pathogenic P. acnes.
Methods
The broth dilution method was used to assess the antibacterial activity. The cytotoxicity investigation on mouse melanocyte (B16-F10) and human leukemic monocyte lymphoma (U937) cells was done using sodium 3’-[1-(phenyl amino-carbonyl)-3,4-tetrazolium]-bis-[4-methoxy-6-nitrobenzene sulfonic acid hydrate (XTT) reagent. The non-toxic concentrations of the samples was investigated for the suppression of cytokines interleukin 8 (IL 8) and tumour necrosis factor (TNF α) by testing the supernatants in the co-culture of the human U937 cells and heat killed P. acnes using enzyme immunoassay kits (ELISA). The statistical analysis was done using the Graph Pad Prism 4 program.
Results
Bioassay guided isolation of ethanol extract of the leaves of S. jambos led to the isolation of three known compounds namely; squalene, an anacardic acid analogue and ursolic acid which are reported for the first time from this plant. The ethanol extract of S. jambos and one of the isolated compound namely, anacardic acid analogue were able to inhibit the growth of P. acnes with a noteworthy minimum inhibitory concentration (MIC) value of 31.3 and 7.9 μg/ml, respectively. The ethanol extract and three commercially acquired compounds namely; myricetin, myricitrin, gallic acid exhibited significant antioxidant activity with fifty percent inhibitory concentration (IC50) ranging between 0.8-1.9 μg/ml which was comparable to that of vitamin C, the reference antioxidant agent. The plant extract, compounds ursolic acid and myricitrin (commercially acquired) significantly inhibited the release of inflammatory cytokines IL 8 and TNF α by suppressing them by 74 - 99%. TEM micrographs showed the lethal effects of selected samples against P. acnes.
Conclusions
The interesting antibacterial, antioxidant and anti-inflammatory effects of S. jambos shown in the present study warrant its further investigation in clinical studies for a possible alternative anti-acne agent.
doi:10.1186/1472-6882-13-292
PMCID: PMC4228444  PMID: 24168697
Syzygium jambos; Propionibacterium acnes; Antibacterial; Interleukin 8; Tumour necrosis factor; Cytotoxicity; Transmission electron microscopy
21.  Antibacterial Chemical Constituent and Antiseptic Herbal Soap from Salvinia auriculata Aubl. 
The bioassay-guided isolation of the active extract of Salvinia auriculata Aubl. led to the separation of three main compounds, characterized as stigmasterone, stigmasterol, and friedelinol. The pure form of diketosteroid presented a potential antibacterial activity with a minimum inhibitory concentration (MIC) value of 0.01 mg mL−1 against Staphylococcus aureus isolated from animals with mastitis infections. The active extract also showed a similar result to that previously obtained with pure diketosteroid when tested with the same isolates. The present study's results demonstrate the potential of this plant as an excipient for the production of antibacterial soaps aimed at controlling bovine mastitis infections, especially on small farms.
doi:10.1155/2013/480509
PMCID: PMC3891214  PMID: 24459530
22.  Isojacareubin from the Chinese Herb Hypericum japonicum: Potent Antibacterial and Synergistic Effects on Clinical Methicillin-Resistant Staphylococcus aureus (MRSA) 
Through bioassay-guided fractionation of the extracts from the aerial parts of the Chinese herb Hypericum japonicum Thunb. Murray, Isojacareubin (ISJ) was characterized as a potent antibacterial compound against the clinical methicillin-resistant Staphylococcus aureus (MRSA). The broth microdilution assay was used to determine the minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of ISJ alone. The results showed that its MICs/MBCs ranged from 4/16 to 16/64 μg/mL, with the concentrations required to inhibit or kill 50% of the strains (MIC50/MBC50) at 8/16 μg/mL. Synergistic evaluations of this compound with four conventional antibacterial agents representing different types were performed by the chequerboard and time-kill tests. The chequerboard method showed significant synergy effects when ISJ was combined with Ceftazidime (CAZ), Levofloxacin (LEV) and Ampicillin (AMP), with the values of 50% of the fractional inhibitory concentration indices (FICI50) at 0.25, 0.37 and 0.37, respectively. Combined bactericidal activities were also observed in the time-kill dynamic assay. The results showed the ability of ISJ to reduce MRSA viable counts by log10CFU/mL at 24 h of incubation at a concentration of 1 × MIC were 1.5 (LEV, additivity), 0.92 (CAZ, indifference) and 0.82 (AMP, indifference), respectively. These in vitro anti-MRSA activities of ISJ alone and its synergy with conventional antibacterial agents demonstrated that ISJ enhanced their efficacy, which is of potential use for single and combinatory therapy of patients infected with MRSA.
doi:10.3390/ijms13078210
PMCID: PMC3430230  PMID: 22942699
anti-MRSA activity; Hypericum japonicum; Isojacareubin; MIC; synergy
23.  Bioassay guided purification of the antimicrobial fraction of a Brazilian propolis from Bahia state 
Background
Brazilian propolis type 6 (Atlantic forest, Bahia) is distinct from the other types of propolis especially due to absence of flavonoids and presence of other non-polar, long chain compounds, but presenting good in vitro and in vivo antimicrobial activity. Several authors have suggested that fatty acids found in this propolis might be responsible for its antimicrobial activity; however, so far no evidence concerning this finding has been reported in the literature. The goals of this study were to evaluate the antibacterial activity of the main pure fatty acids in the ethanolic extract and fractions and elucidate the chemical nature of the bioactive compounds isolated from Brazilian propolis type 6.
Methods
Brazilian propolis type 6 ethanolic extract (EEP), hexane fraction (H-Fr), major fatty acids, and isolated sub-fractions were analyzed using high performance liquid chromatography (HPLC), high resolution gas chromatography with flame ionization detection (HRGC-FID), and gas chromatography-mass spectrometry (GC-MS). Three sub-fractions of H-Fr were obtained through preparative HPLC. Antimicrobial activity of EEP, H-Fr, sub-fractions, and fatty acids were tested against Staphyloccus aureus ATCC 25923 and Streptococcus mutans Ingbritt 1600 using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).
Results
EEP and H-Fr inhibited the growth of the microorganisms tested; nevertheless, no antimicrobial activity was found for the major fatty acids. The three sub-fractions (1, 2, and 3) were isolated from H-Fr by preparative HPLC and only sub-fraction 1 showed antimicrobial activity.
Conclusion
a) The major fatty acids tested were not responsible for the antimicrobial activity of propolis type 6; b) Sub-fraction 1, belonging to the benzophenone class, was responsible for the antimicrobial activity observed in the present study. The identification of the bioactive compound will improve the development of more efficient uses of this natural product.
doi:10.1186/1472-6882-9-25
PMCID: PMC2731721  PMID: 19643008
24.  Chasing the hare - Evaluating the phylogenetic utility of a nuclear single copy gene region at and below species level within the species rich group Peperomia (Piperaceae) 
Background
The rapidly increasing number of available plant genomes opens up almost unlimited prospects for biology in general and molecular phylogenetics in particular. A recent study took advantage of this data and identified a set of nuclear genes that occur in single copy in multiple sequenced angiosperms. The present study is the first to apply genomic sequence of one of these low copy genes, agt1, as a phylogenetic marker for species-level phylogenetics. Its utility is compared to the performance of several coding and non-coding chloroplast loci that have been suggested as most applicable for this taxonomic level. As a model group, we chose Tildenia, a subgenus of Peperomia (Piperaceae), one of the largest plant genera. Relationships are particularly difficult to resolve within these species rich groups due to low levels of polymorphisms and fast or recent radiation. Therefore, Tildenia is a perfect test case for applying new phylogenetic tools.
Results
We show that the nuclear marker agt1, and in particular the agt1 introns, provide a significantly increased phylogenetic signal compared to chloroplast markers commonly used for low level phylogenetics. 25% of aligned characters from agt1 intron sequence are parsimony informative. In comparison, the introns and spacer of several common chloroplast markers (trnK intron, trnK-psbA spacer, ndhF-rpl32 spacer, rpl32-trnL spacer, psbA-trnH spacer) provide less than 10% parsimony informative characters. The agt1 dataset provides a deeper resolution than the chloroplast markers in Tildenia.
Conclusions
Single (or very low) copy nuclear genes are of immense value in plant phylogenetics. Compared to other nuclear genes that are members of gene families of all sizes, lab effort, such as cloning, can be kept to a minimum. They also provide regions with different phylogenetic content deriving from coding and non-coding parts of different length. Thus, they can be applied to a wide range of taxonomic levels from family down to population level. As more plant genomes are sequenced, we will obtain increasingly precise information about which genes return to single copy most rapidly following gene duplication and may be most useful across a wide range of plant groups.
doi:10.1186/1471-2148-11-357
PMCID: PMC3252395  PMID: 22151585
25.  In vitro antibacterial activity of Tabernaemontana alternifolia (Roxb) stem bark aqueous extracts against clinical isolates of methicillin resistant Staphylococcus aureus 
Background
The rise of antibiotic resistance among methicillin resistant Staphylococcus aureus (MRSA), have caused concerns for the treatment of MRSA infections. Hence, search for an alternative therapy for these infections is inevitable. Folk Indian medicine refers to the use of leaf and stem bark powder of Tabernaemontana alternifolia (Roxb) in treatment of skin infections, but no scientific report establishes its antibacterial activity.
Methods
Direct aqueous extracts and sequential aqueous extracts of the stem bark of T. alternifolia (using petroleum ether and ethyl acetate as other solvents) were prepared by soxhlet extraction. The antibiotic sensitivity profiles of the clinical isolates were determined against 18 antibiotics using disc diffusion method. The isolates were identified by 16S rRNA gene sequencing. The methicillin resistance among S. aureus (MRSA) was confirmed by PCR amplification of mecA gene. The disc diffusion method was used to determine the antibacterial activity of the extracts. The micro-dilution method was used to determine the minimum inhibitory concentration (MIC) of the extract against the test organism. To further evaluate the therapeutic potential of the extract, cell cytotoxicity was checked on Vero cells by MTT assay. Chemical profiling of the extract was done by HPTLC method.
Results
The aqueous extracts of T. alternifolia stem bark exhibited antibacterial activity against Gram-positive microorganisms, particularly against clinical isolates of MRSA and vancomycin resistant S. aureus (VRSA). The minimum inhibitory concentration (MIC) of extract against the isolates ranged from 600–800 μg/ml. The extract did not exhibit cytotoxic activity against Vero cells even at the concentration of 4 mg/ml. The chemical profiling revealed presence of alkaloids, flavonoids, coumarins, saponins and steroids. Petroleum ether and ethyl acetate extracts did not exhibit antibacterial activity.
Conclusion
Our results offer a scientific basis for the traditional use of T. alternifolia in the treatment of skin infections, showing that the plant extract has an enormous potential as a prospective alternative therapy against MRSA skin infections. The present study lays the basis for future studies, to validate the possible use of T. alternifolia as a candidate in the treatment of MRSA infections.
doi:10.1186/1476-0711-12-26
PMCID: PMC3851168  PMID: 24066905
Tabernaemontana alternifolia (Roxb); Anti-MRSA; Cytotoxicity; Plant extract; Antimicrobial

Results 1-25 (852806)