Search tips
Search criteria

Results 1-25 (784277)

Clipboard (0)

Related Articles

1.  CHRNA3/5, IREB2, and ADCY2 Are Associated with Severe Chronic Obstructive Pulmonary Disease in Poland 
We examined the association between single-nucleotide polymorphisms (SNPs) previously associated with chronic obstructive pulmonary disease (COPD) and/or lung function with COPD and COPD-related phenotypes in a novel cohort of patients with severe to very severe COPD. We examined 315 cases of COPD and 330 Caucasian control smokers from Poland. We included three SNPs previously associated with COPD: rs7671167 (FAM13A), rs13180 (IREB2), and rs8034191 (CHRNA 3/5), and four SNPs associated with lung function in a genome-wide association study of general population samples: rs2070600 (AGER), rs11134242 (ADCY2), rs4316710 (THSD4), and rs17096090 (INTS12). We tested for associations with severe COPD and COPD-related phenotypes, including lung function, smoking behavior, and body mass index. Subjects with COPD were older (average age 62 versus 58 years, P < 0.01), with more pack-years of smoking (45 versus 33 pack-years, P < 0.01). CHRNA3/5 (odds ratio [OR], 1.89; 95% confidence interval [CI], 1.5–2.4; P = 7.4 × 10−7), IREB2 (OR, 0.69; 95% CI, 0.5–0.9; P = 3.4 × 10−3), and ADCY2 (OR, 1.35; 95% CI, 1.1–1.7; P = 0.01) demonstrated significant associations with COPD. FAM13A (OR, 0.8; 95% CI, 0.7–1.0; P = 0.11) approached statistical significance. FAM13A and ADCY2 also demonstrated a significant association with lung function. Thus, in severe to very severe COPD, we demonstrate a replication of association between two SNPs previously associated with COPD (CHRNA3/5 and IREB2), as well as an association with COPD of one locus initially associated with lung function (ADCY2).
PMCID: PMC3423462  PMID: 22461431
chronic obstructive pulmonary disease; genetic association analysis; lung function; smoking; nicotine addiction
2.  Meta-analyses of genome-wide association studies identify multiple novel loci associated with pulmonary function 
Nature genetics  2009;42(1):45-52.
Measurements of lung function by spirometry are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important measures, forced expiratory volume in the first second (FEV1) and its ratio to forced vital capacity (FEV1/FVC), an indicator of airflow obstruction. This meta-analysis included 20,890 participants of European ancestry from four CHARGE consortium studies: Atherosclerosis Risk in Communities (ARIC), Cardiovascular Health Study (CHS), Framingham Heart Study (FHS), and Rotterdam Study (RS). We identified eight loci associated with FEV1/FVC (HHIP, GPR126, ADAM19, AGER-PPT2, FAM13A, PTCH1, PID1, and HTR4) and one locus associated with FEV1 (INTS12-GSTCD-NPNT) at or near genome-wide significance (P<5×10−8) in CHARGE; all but 3 loci (FAM13A, PTCH1, and PID1) replicated with the SpiroMeta consortium. Our findings of novel loci influencing pulmonary function may offer insights into chronic lung disease pathogenesis.
PMCID: PMC2832852  PMID: 20010835
3.  Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP 
Human Molecular Genetics  2011;21(6):1325-1335.
Multiple intergenic single-nucleotide polymorphisms (SNPs) near hedgehog interacting protein (HHIP) on chromosome 4q31 have been strongly associated with pulmonary function levels and moderate-to-severe chronic obstructive pulmonary disease (COPD). However, whether the effects of variants in this region are related to HHIP or another gene has not been proven. We confirmed genetic association of SNPs in the 4q31 COPD genome-wide association study (GWAS) region in a Polish cohort containing severe COPD cases and healthy smoking controls (P = 0.001 to 0.002). We found that HHIP expression at both mRNA and protein levels is reduced in COPD lung tissues. We identified a genomic region located ∼85 kb upstream of HHIP which contains a subset of associated SNPs, interacts with the HHIP promoter through a chromatin loop and functions as an HHIP enhancer. The COPD risk haplotype of two SNPs within this enhancer region (rs6537296A and rs1542725C) was associated with statistically significant reductions in HHIP promoter activity. Moreover, rs1542725 demonstrates differential binding to the transcription factor Sp3; the COPD-associated allele exhibits increased Sp3 binding, which is consistent with Sp3's usual function as a transcriptional repressor. Thus, increased Sp3 binding at a functional SNP within the chromosome 4q31 COPD GWAS locus leads to reduced HHIP expression and increased susceptibility to COPD through distal transcriptional regulation. Together, our findings reveal one mechanism through which SNPs upstream of the HHIP gene modulate the expression of HHIP and functionally implicate reduced HHIP gene expression in the pathogenesis of COPD.
PMCID: PMC3284120  PMID: 22140090
4.  PLAUR polymorphisms and lung function in UK smokers 
BMC Medical Genetics  2009;10:112.
We have previously identified Urokinase Plasminogen Activator Receptor (PLAUR) as an asthma susceptibility gene. In the current study we tested the hypothesis that PLAUR single nucleotide polymorphisms (SNPs) determine baseline lung function and contribute to the development of Chronic Obstructive Pulmonary Disease (COPD) in smokers.
25 PLAUR SNPs were genotyped in COPD subjects and individuals with smoking history (n = 992). Linear regression was used to determine the effects of polymorphism on baseline lung function (FEV1, FEV1/FVC) in all smokers. Genotype frequencies were compared in spirometry defined smoking controls (n = 176) versus COPD cases (n = 599) and COPD severity (GOLD stratification) using logistic regression.
Five SNPs showed a significant association (p < 0.01) with baseline lung function; rs2302524(Lys220Arg) and rs2283628(intron 3) were associated with lower and higher FEV1 respectively. rs740587(-22346), rs11668247(-20040) and rs344779(-3666) in the 5'region were associated with increased FEV1/FVC ratio. rs740587 was also protective for COPD susceptibility and rs11668247 was protective for COPD severity although no allele dose relationship was apparent. Interestingly, several of these associations were driven by male smokers not females.
This study provides tentative evidence that the asthma associated gene PLAUR also influences baseline lung function in smokers. However the case-control analyses do not support the conclusion that PLAUR is a major COPD susceptibility gene in smokers. PLAUR is a key serine protease receptor involved in the generation of plasmin and has been implicated in airway remodelling.
PMCID: PMC2784766  PMID: 19878584
5.  MMP12, Lung Function, and COPD in High-Risk Populations 
The New England journal of medicine  2009;361(27):2599-2608.
Genetic variants influencing lung function in children and adults may ultimately lead to the development of chronic obstructive pulmonary disease (COPD), particularly in high-risk groups.
We tested for an association between single-nucleotide polymorphisms (SNPs) in the gene encoding matrix metalloproteinase 12 (MMP12) and a measure of lung function (prebronchodilator forced expiratory volume in 1 second [FEV1]) in more than 8300 subjects in seven cohorts that included children and adults. Within the Normative Aging Study (NAS), a cohort of initially healthy adult men, we tested for an association between SNPs that were associated with FEV1 and the time to the onset of COPD. We then examined the relationship between MMP12 SNPs and COPD in two cohorts of adults with COPD or at risk for COPD.
The minor allele (G) of a functional variant in the promoter region of MMP12 (rs2276109 [−82A→G]) was positively associated with FEV1 in a combined analysis of children with asthma and adult former and current smokers in all cohorts (P=2×10−6). This allele was also associated with a reduced risk of the onset of COPD in the NAS cohort (hazard ratio, 0.65; 95% confidence interval [CI], 0.46 to 0.92; P = 0.02) and with a reduced risk of COPD in a cohort of smokers (odds ratio, 0.63; 95% CI, 0.45 to 0.88; P = 0.005) and among participants in a family-based study of early-onset COPD (P = 0.006).
The minor allele of a SNP in MMP12 (rs2276109) is associated with a positive effect on lung function in children with asthma and in adults who smoke. This allele is also associated with a reduced risk of COPD in adult smokers.
PMCID: PMC2904064  PMID: 20018959
6.  Effect of heme oxygenase-1 polymorphisms on lung function and gene expression 
BMC Medical Genetics  2011;12:117.
Oxidative stress induced by smoking is considered to be important in the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD). Heme oxygenase-1 (HMOX1) is an essential enzyme in heme catabolism that is induced by oxidative stress and may play a protective role as an antioxidant in the lung. We determined whether HMOX1 polymorphisms were associated with lung function in COPD patients and whether the variants had functional effects.
We genotyped five single nucleotide polymorphisms (SNPs) in the HMOX1 gene in Caucasians who had the fastest (n = 278) and the slowest (n = 304) decline of FEV1 % predicted, selected from smokers in the NHLBI Lung Health Study. These SNPs were also studied in Caucasians with the lowest (n = 535) or the highest (n = 533) baseline lung function. Reporter genes were constructed containing three HMOX1 promoter polymorphisms and the effect of these polymorphisms on H2O2 and hemin-stimulated gene expression was determined. The effect of the HMOX1 rs2071749 SNP on gene expression in alveolar macrophages was investigated.
We found a nominal association (p = 0.015) between one intronic HMOX1 SNP (rs2071749) and lung function decline but this did not survive correction for multiple comparisons. This SNP was in perfect linkage disequilibrium with rs3761439, located in the promoter of HMOX1. We tested rs3761439 and two other putatively functional polymorphisms (rs2071746 and the (GT)n polymorphism) in reporter gene assays but no significant effects on gene expression were found. There was also no effect of rs2071749 on HMOX1 gene expression in alveolar macrophages.
We found no association of the five HMOX1 tag SNPs with lung function decline and no evidence that the three promoter polymorphisms affected the regulation of the HMOX1 gene.
PMCID: PMC3180266  PMID: 21902835
Heme oxygenase; polymorphism; chronic obstructive pulmonary disease
7.  Lung function and blood markers of nutritional status in non-COPD aging men with smoking history: A cross-sectional study 
Cigarette smoking and advanced age are well known as risk factors for chronic obstructive pulmonary disease (COPD), and nutritional abnormalities are important in patients with COPD. However, little is known about the nutritional status in non-COPD aging men with smoking history. We therefore investigated whether reduced lung function is associated with lower blood markers of nutritional status in those men.
Subjects and methods:
This association was examined in a cross-sectional study of 65 Japanese male current or former smokers aged 50 to 80 years: 48 without COPD (non-COPD group), divided into tertiles according to forced expiratory volume in one second as percent of forced vital capacity (FEV1/FVC), and 17 with COPD (COPD group).
After adjustment for potential confounders, lower FEV1/FVC was significantly associated with lower red blood cell count (RBCc), hemoglobin, and total protein (TP); not with total energy intake. The difference in adjusted RBCc and TP among the non-COPD group tertiles was greater than that between the bottom tertile in the non-COPD group and the COPD group.
In non-COPD aging men with smoking history, trends toward reduced nutritional status and anemia may independently emerge in blood components along with decreased lung function even before COPD onset.
PMCID: PMC2921691  PMID: 20714377
anemia; chronic obstructive pulmonary disease; lung function; nutritional assessment; nutritional status; smoking
8.  Toll-Like Receptor (TLR2 and TLR4) Polymorphisms and Chronic Obstructive Pulmonary Disease 
PLoS ONE  2012;7(8):e43124.
Toll-like receptors (TLRs) participate in the defence against bacterial infections that are common in patients with Chronic Obstructive Pulmonary Disease (COPD). We studied all tagging SNPs in TLR2 and TLR4 and their associations with the level and change over time of both FEV1 and sputum inflammatory cells in moderate-to-severe COPD. Nine TLR2 SNPs and 17 TLR4 SNPs were genotyped in 110 COPD patients. Associations of SNPs with lung function and inflammatory cells in induced sputum were analyzed cross-sectionally with linear regression and longitudinally with linear mixed-effect models. Two SNPs in TLR2 (rs1898830 and rs11938228) were associated with a lower level of FEV1 and accelerated decline of FEV1 and higher numbers of sputum inflammatory cells. None of the TLR4 SNPs was associated with FEV1 level. Eleven out of 17 SNPs were associated with FEV1 decline, including rs12377632 and rs10759931, which were additionally associated with higher numbers of sputum inflammatory cells at baseline and with increase over time. This is the first longitudinal study showing that tagging SNPs in TLR2 and TLR4 are associated with the level and decline of lung function as well as with inflammatory cell numbers in induced sputum in COPD patients, suggesting a role in the severity and progression of COPD.
PMCID: PMC3429472  PMID: 22952638
9.  Aquaporin 5 Polymorphisms and Rate of Lung Function Decline in Chronic Obstructive Pulmonary Disease 
PLoS ONE  2010;5(12):e14226.
Aquaporin-5 (AQP5) can cause mucus overproduction and lower lung function. Genetic variants in the AQP5 gene might be associated with rate of lung function decline in chronic obstructive pulmonary disease (COPD).
Five single nucleotide polymorphisms (SNPs) in AQP5 were genotyped in 429 European American individuals with COPD randomly selected from the NHLBI Lung Health Study. Mean annual decline in FEV1 % predicted, assessed over five years, was calculated as a linear regression slope, adjusting for potential covariates and stratified by smoking status. Constructs containing the wildtype allele and risk allele of the coding SNP N228K were generated using site-directed mutagenesis, and transfected into HBE-16 (human bronchial epithelial cell line). AQP5 abundance and localization were assessed by immunoblots and confocal immunofluoresence under control, shear stress and cigarette smoke extract (CSE 10%) exposed conditions to test for differential expression or localization.
Among continuous smokers, three of the five SNPs tested showed significant associations (0.02>P>0.004) with rate of lung function decline; no associations were observed among the group of intermittent or former smokers. Haplotype tests revealed multiple association signals (0.012>P>0.0008) consistent with the single-SNP results. In HBE16 cells, shear stress and CSE led to a decrease in AQP5 abundance in the wild-type, but not in the N228K AQP5 plasmid.
Polymorphisms in AQP5 were associated with rate of lung function decline in continuous smokers with COPD. A missense mutation modulates AQP-5 expression in response to cigarette smoke extract and shear stress. These results suggest that AQP5 may be an important candidate gene for COPD.
PMCID: PMC2997058  PMID: 21151978
10.  Genome-wide association study identifies five loci associated with lung function 
Repapi, Emmanouela | Sayers, Ian | Wain, Louise V | Burton, Paul R | Johnson, Toby | Obeidat, Ma’en | Zhao, Jing Hua | Ramasamy, Adaikalavan | Zhai, Guangju | Vitart, Veronique | Huffman, Jennifer E | Igl, Wilmar | Albrecht, Eva | Deloukas, Panos | Henderson, John | Granell, Raquel | McArdle, Wendy L | Rudnicka, Alicja R | Barroso, Inês | Loos, Ruth J F | Wareham, Nicholas J | Mustelin, Linda | Rantanen, Taina | Surakka, Ida | Imboden, Medea | Wichmann, H Erich | Grkovic, Ivica | Jankovic, Stipan | Zgaga, Lina | Hartikainen, Anna-Liisa | Peltonen, Leena | Gyllensten, Ulf | Johansson, Åsa | Zaboli, Ghazal | Campbell, Harry | Wild, Sarah H | Wilson, James F | Gläser, Sven | Homuth, Georg | Völzke, Henry | Mangino, Massimo | Soranzo, Nicole | Spector, Tim D | Polašek, Ozren | Rudan, Igor | Wright, Alan F | Heliövaara, Markku | Ripatti, Samuli | Pouta, Anneli | Naluai, Åsa Torinsson | Olin, Anna-Carin | Torén, Kjell | Cooper, Matthew N | James, Alan L | Palmer, Lyle J | Hingorani, Aroon D | Wannamethee, S Goya | Whincup, Peter H | Smith, George Davey | Ebrahim, Shah | McKeever, Tricia M | Pavord, Ian D | MacLeod, Andrew K | Morris, Andrew D | Porteous, David J | Cooper, Cyrus | Dennison, Elaine | Shaheen, Seif | Karrasch, Stefan | Schnabel, Eva | Schulz, Holger | Grallert, Harald | Bouatia-Naji, Nabila | Delplanque, Jérôme | Froguel, Philippe | Blakey, John D | Britton, John R | Morris, Richard W | Holloway, John W | Lawlor, Debbie A | Hui, Jennie | Nyberg, Fredrik | Jarvelin, Marjo-Riitta | Jackson, Cathy | Kähönen, Mika | Kaprio, Jaakko | Probst-Hensch, Nicole M | Koch, Beate | Hayward, Caroline | Evans, David M | Elliott, Paul | Strachan, David P | Hall, Ian P | Tobin, Martin D
Nature genetics  2009;42(1):36-44.
Pulmonary function measures are heritable traits that predict morbidity and mortality and define chronic obstructive pulmonary disease (COPD). We tested genome-wide association with forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) in the SpiroMeta consortium (n = 20,288 individuals of European ancestry). We conducted a meta-analysis of top signals with data from direct genotyping (n ≤ 32,184 additional individuals) and in silico summary association data from the CHARGE Consortium (n = 21,209) and the Health 2000 survey (n ≤ 883). We confirmed the reported locus at 4q31 and identified associations with FEV1 or FEV1/FVC and common variants at five additional loci: 2q35 in TNS1 (P = 1.11 × 10−12), 4q24 in GSTCD (2.18 × 10−23), 5q33 in HTR4 (P = 4.29 × 10−9), 6p21 in AGER (P = 3.07 × 10−15) and 15q23 in THSD4 (P = 7.24 × 10−15). mRNA analyses showed expression of TNS1, GSTCD, AGER, HTR4 and THSD4 in human lung tissue. These associations offer mechanistic insight into pulmonary function regulation and indicate potential targets for interventions to alleviate respiratory disease.
PMCID: PMC2862965  PMID: 20010834
11.  Genome-Wide Association Studies Identify CHRNA5/3 and HTR4 in the Development of Airflow Obstruction 
Wilk, Jemma B. | Shrine, Nick R. G. | Loehr, Laura R. | Zhao, Jing Hua | Manichaikul, Ani | Lopez, Lorna M. | Smith, Albert Vernon | Heckbert, Susan R. | Smolonska, Joanna | Tang, Wenbo | Loth, Daan W. | Curjuric, Ivan | Hui, Jennie | Cho, Michael H. | Latourelle, Jeanne C. | Henry, Amanda P. | Aldrich, Melinda | Bakke, Per | Beaty, Terri H. | Bentley, Amy R. | Borecki, Ingrid B. | Brusselle, Guy G. | Burkart, Kristin M. | Chen, Ting-hsu | Couper, David | Crapo, James D. | Davies, Gail | Dupuis, Josée | Franceschini, Nora | Gulsvik, Amund | Hancock, Dana B. | Harris, Tamara B. | Hofman, Albert | Imboden, Medea | James, Alan L. | Khaw, Kay-Tee | Lahousse, Lies | Launer, Lenore J. | Litonjua, Augusto | Liu, Yongmei | Lohman, Kurt K. | Lomas, David A. | Lumley, Thomas | Marciante, Kristin D. | McArdle, Wendy L. | Meibohm, Bernd | Morrison, Alanna C. | Musk, Arthur W. | Myers, Richard H. | North, Kari E. | Postma, Dirkje S. | Psaty, Bruce M. | Rich, Stephen S. | Rivadeneira, Fernando | Rochat, Thierry | Rotter, Jerome I. | Artigas, María Soler | Starr, John M. | Uitterlinden, André G. | Wareham, Nicholas J. | Wijmenga, Cisca | Zanen, Pieter | Province, Michael A. | Silverman, Edwin K. | Deary, Ian J. | Palmer, Lyle J. | Cassano, Patricia A. | Gudnason, Vilmundur | Barr, R. Graham | Loos, Ruth J. F. | Strachan, David P. | London, Stephanie J. | Boezen, H. Marike | Probst-Hensch, Nicole | Gharib, Sina A. | Hall, Ian P. | O’Connor, George T. | Tobin, Martin D. | Stricker, Bruno H.
Rationale: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known.
Objectives: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases.
Methods: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV1 and its ratio to FVC (FEV1/FVC) both less than their respective lower limits of normal as determined by published reference equations.
Measurements and Main Results: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV1/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis.
Conclusions: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.
PMCID: PMC3480517  PMID: 22837378
chronic obstructive pulmonary disease; single-nucleotide polymorphism; genes
12.  Nitric oxide synthase polymorphisms, gene expression and lung function in chronic obstructive pulmonary disease 
Due to the pleiotropic effects of nitric oxide (NO) within the lungs, it is likely that NO is a significant factor in the pathogenesis of chronic obstructive pulmonary disease (COPD). The aim of this study was to test for association between single nucleotide polymorphisms (SNPs) in three NO synthase (NOS) genes and lung function, as well as to examine gene expression and protein levels in relation to the genetic variation.
One SNP in each NOS gene (neuronal NOS (NOS1), inducible NOS (NOS2), and endothelial NOS (NOS3)) was genotyped in the Lung Health Study (LHS) and correlated with lung function. One SNP (rs1800779) was also analyzed for association with COPD and lung function in four COPD case–control populations. Lung tissue expression of NOS3 mRNA and protein was tested in individuals of known genotype for rs1800779. Immunohistochemistry of lung tissue was used to localize NOS3 expression.
For the NOS3 rs1800779 SNP, the baseline forced expiratory volume in one second in the LHS was significantly higher in the combined AG + GG genotypic groups compared with the AA genotypic group. Gene expression and protein levels in lung tissue were significantly lower in subjects with the AG + GG genotypes than in AA subjects. NOS3 protein was expressed in the airway epithelium and subjects with the AA genotype demonstrated higher NOS3 expression compared with AG and GG individuals. However, we were not able to replicate the associations with COPD or lung function in the other COPD study groups.
Variants in the NOS genes were not associated with lung function or COPD status. However, the G allele of rs1800779 resulted in a decrease of NOS3 gene expression and protein levels and this has implications for the numerous disease states that have been associated with this polymorphism.
PMCID: PMC3827989  PMID: 24192154
Chronic obstructive pulmonary disease; Nitric oxide synthase; Polymorphism; Gene expression
13.  Adam33 polymorphisms are associated with COPD and lung function in long-term tobacco smokers 
Respiratory Research  2009;10(1):21.
Variation in ADAM33 has been shown to be important in the development of asthma and altered lung function. This relationship however, has not been investigated in the population susceptible to COPD; long term tobacco smokers. We evaluated the association between polymorphisms in ADAM33 gene with COPD and lung function in long term tobacco smokers.
Caucasian subjects, at least 50 year old, who smoked ≥ 20 pack-years (n = 880) were genotyped for 25 single nucleotide polymorphisms (SNPs) in ADAM33. COPD was defined as an FEV1/FVC ratio < 70% and percent-predicted (pp)FEV1 < 75% (n = 287). The control group had an FEV1/FVC ratio ≥ 70% and ppFEV1 ≥ 80% (n = 311) despite ≥ 20 pack years of smoking. Logistic and linear regressions were used for the analysis. Age, sex, and smoking status were considered as potential confounders.
Five SNPs in ADAM33 were associated with COPD (Q-1, intronic: p < 0.003; S1, Ile → Val: p < 0.003; S2, Gly → Gly: p < 0.04; V-1 intronic: p < 0.002; V4, in 3' untranslated region: p < 0.007). Q-1, S1 and V-1 were also associated with ppFEV1, FEV1/FVC ratio and ppFEF25–75 (p values 0.001 – 0.02). S2 was associated with FEV1/FVC ratio (p < 0.05). The association between S1 and residual volume revealed a trend toward significance (p value < 0.07). Linkage disequilibrium and haplotype analyses suggested that S1 had the strongest degree of association with COPD and pulmonary function abnormalities.
Five SNPs in ADAM33 were associated with COPD and lung function in long-term smokers. Functional studies will be needed to evaluate the biologic significance of these polymorphisms in the pathogenesis of COPD.
PMCID: PMC2664793  PMID: 19284602
14.  Genetic predisposition to accelerated decline of lung function in COPD 
Environmental exposures and genetic susceptibility can contribute to lung function decline in chronic obstructive pulmonary disease (COPD). The environmental factors are better known than the genetic factors. One of the commonest reasons of accelerated forced expiratory volume in one second (FEV1) decline in COPD is the continuation of the smoking habit. In addition, COPD patients have frequent acute respiratory infections which can also accelerate the decline of FEV1. All of the gene variants that have been reported in association with accelerated decline of lung function in COPD represent advancement because the findings generate plausible hypotheses about the possible mechanisms by which gene products could accelerate or avert FEV1 decline. Unfortunately, the results have not been consistently replicated and, animal models required to functionally assess the genetic findings, have not yet yielded sufficient data. Genome-wide association studies should provide more definitive results in COPD and other multigenic conditions. Until these studies are reported, the data to date suggest that products encoded by the alpha-1 antitrypsin, some matrix metalloproteinases, and a number of antioxidant genes are associated with accelerated FEV1 decline in COPD. Data on gene variants associated with acute exacerbations of COPD are now emerging.
PMCID: PMC2695610  PMID: 18044683
lung function; COPD; Smoking; genes
15.  Refining Susceptibility Loci of Chronic Obstructive Pulmonary Disease with Lung eqtls 
PLoS ONE  2013;8(7):e70220.
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of mortality worldwide. Recent genome-wide association studies (GWAS) have identified robust susceptibility loci associated with COPD. However, the mechanisms mediating the risk conferred by these loci remain to be found. The goal of this study was to identify causal genes/variants within susceptibility loci associated with COPD. In the discovery cohort, genome-wide gene expression profiles of 500 non-tumor lung specimens were obtained from patients undergoing lung surgery. Blood-DNA from the same patients were genotyped for 1,2 million SNPs. Following genotyping and gene expression quality control filters, 409 samples were analyzed. Lung expression quantitative trait loci (eQTLs) were identified and overlaid onto three COPD susceptibility loci derived from GWAS; 4q31 (HHIP), 4q22 (FAM13A), and 19q13 (RAB4B, EGLN2, MIA, CYP2A6). Significant eQTLs were replicated in two independent datasets (n = 363 and 339). SNPs previously associated with COPD and lung function on 4q31 (rs1828591, rs13118928) were associated with the mRNA expression of HHIP. An association between mRNA expression level of FAM13A and SNP rs2045517 was detected at 4q22, but did not reach statistical significance. At 19q13, significant eQTLs were detected with EGLN2. In summary, this study supports HHIP, FAM13A, and EGLN2 as the most likely causal COPD genes on 4q31, 4q22, and 19q13, respectively. Strong lung eQTL SNPs identified in this study will need to be tested for association with COPD in case-control studies. Further functional studies will also be needed to understand the role of genes regulated by disease-related variants in COPD.
PMCID: PMC3728203  PMID: 23936167
16.  Framingham Heart Study genome-wide association: results for pulmonary function measures 
BMC Medical Genetics  2007;8(Suppl 1):S8.
Pulmonary function measures obtained by spirometry are used to diagnose chronic obstructive pulmonary disease (COPD) and are highly heritable. We conducted genome-wide association (GWA) analyses (Affymetrix 100K SNP GeneChip) for measures of lung function in the Framingham Heart Study.
Ten spirometry phenotypes including percent of predicted measures, mean spirometry measures over two examinations, and rates of change based on forced expiratory volume in one second (FEV1), forced vital capacity (FVC), forced expiratory flow from the 25th to 75th percentile (FEF25–75), the FEV1/FVC ratio, and the FEF25–75/FVC ratio were examined. Percent predicted phenotypes were created using each participant's latest exam with spirometry. Predicted lung function was estimated using models defined in the set of healthy never-smokers, and standardized residuals of percent predicted measures were created adjusting for smoking status, pack-years, and body mass index (BMI). All modeling was performed stratified by sex and cohort. Mean spirometry phenotypes were created using data from two examinations and adjusting for age, BMI, height, smoking and pack-years. Change in pulmonary function over time was studied using two to four examinations with spirometry to calculate slopes, which were then adjusted for age, height, smoking and pack-years.
Analyses were restricted to 70,987 autosomal SNPs with minor allele frequency ≥ 10%, genotype call rate ≥ 80%, and Hardy-Weinberg equilibrium p-value ≥ 0.001. A SNP in the interleukin 6 receptor (IL6R) on chromosome 1 was among the best results for percent predicted FEF25–75. A non-synonymous coding SNP in glutathione S-transferase omega 2 (GSTO2) on chromosome 10 had top-ranked results studying the mean FEV1 and FVC measurements from two examinations. SNPs nearby the SOD3 and vitamin D binding protein genes, candidate genes for COPD, exhibited association to percent predicted phenotypes.
GSTO2 and IL6R are credible candidate genes for association to pulmonary function identified by GWA. These and other observed associations warrant replication studies. This resource of GWA results for pulmonary function measures is publicly available at .
PMCID: PMC1995616  PMID: 17903307
17.  Lower FEV1 in non-COPD, nonasthmatic subjects: association with smoking, annual decline in FEV1, total IgE levels, and TSLP genotypes 
Few studies have investigated the significance of decreased FEV1 in non-COPD, nonasthmatic healthy subjects. We hypothesized that a lower FEV1 in these subjects is a potential marker of an increased susceptibility to obstructive lung disease such as asthma and COPD. This was a cross-sectional analysis of 1505 Japanese adults. We divided the population of healthy adults with no respiratory diseases whose FEV1/FVC ratio was ≥70% (n = 1369) into 2 groups according to their prebronchodilator FEV1 (% predicted) measurements: <80% (n = 217) and ≥80% (n = 1152). We compared clinical data – including gender, age, smoking habits, total IgE levels, and annual decline of FEV1 – between these 2 groups. In addition, as our group recently found that TSLP variants are associated with asthma and reduced lung function, we assessed whether TSLP single nucleotide polymorphisms (SNPs) were associated with baseline lung function in non-COPD, nonasthmatic healthy subjects (n = 1368). Although about half of the subjects with lower FEV1 had never smoked, smoking was the main risk factor for the decreased FEV1 in non-COPD, nonasthmatic subjects. However, the subjects with lower FEV1 had a significantly higher annual decline in FEV1 independent of smoking status. Airflow obstruction was associated with increased levels of total serum IgE (P = 0.029) and with 2 functional TSLP SNPs (corrected P = 0.027–0.058 for FEV1% predicted, corrected P = 0.015–0.033 for FEV1/FVC). This study highlights the importance of early recognition of a decreased FEV1 in healthy subjects without evident pulmonary diseases because it predicts a rapid decline in FEV1 irrespective of smoking status. Our series of studies identified TSLP variants as a potential susceptibility locus to asthma and to lower lung function in non-COPD, nonasthmatic healthy subjects, which may support the contention that genetic determinants of lung function influence susceptibility to asthma.
PMCID: PMC3064418  PMID: 21468164
airflow obstruction; asthma; chronic obstructive pulmonary disease; pulmonary function test; thymic stromal lymphopoietin
18.  Clinical and Radiographic Predictors of GOLD–Unclassified Smokers in the COPDGene Study 
Rationale: A significant proportion of smokers have lung function impairment characterized by a reduced FEV1 with a preserved FEV1/FVC ratio. These smokers are a poorly characterized group due to their systematic exclusion from chronic obstructive pulmonary disease (COPD) studies.
Objectives: To characterize the clinical, functional, and radiographic features of Global Initiative for Chronic Obstructive Lung Disease (GOLD)-Unclassified (FEV1/FVC ≥ 0.7 and FEV1 < 80% predicted) and lower limits of normal (LLN)-unclassified (FEV1/FVC ≥ LLN and FEV1 < LLN) subjects compared to smokers with normal lung function and subjects with COPD.
Methods: Data from the first 2,500 subjects enrolled in the COPDGene study were analyzed. All subjects had 10 or more pack-years of smoking and were between the ages of 45 and 80 years. Multivariate regression models were constructed to determine the clinical and radiological variables associated with GOLD-Unclassified (GOLD-U) and LLN-Unclassified status. Separate multivariate regressions were performed in the subgroups of subjects with complete radiologic measurement variables available.
Measurements and Main Results: GOLD-U smokers account for 9% of smokers in COPDGene and have increased body mass index (BMI), a disproportionately reduced total lung capacity, and a higher proportion of nonwhite subjects and subjects with diabetes. GOLD-U subjects exhibit increased airway wall thickness compared to smoking control subjects and decreased gas trapping and bronchodilator responsiveness compared to subjects with COPD. When LLN criteria were used to define the “unclassified” group, African American subjects were no longer overrepresented. Both GOLD-U and LLN-Unclassified subjects demonstrated a wide range of lung function impairment, BMI, and percentage of total lung emphysema.
Conclusions: Subjects with reduced FEV1 and a preserved FEV1/FVC ratio are a heterogeneous group with significant symptoms and functional limitation who likely have a variety of underlying etiologies beyond increased BMI.
Clinical trial registered with (NCT000608764).
PMCID: PMC3172890  PMID: 21493737
lung diseases, classification; lung diseases, diagnosis; lung diseases, epidemiology
19.  Panax ginseng C.A Meyer root extract for moderate Chronic Obstructive Pulmonary Disease (COPD): study protocol for a randomised controlled trial 
Trials  2011;12:164.
Chronic obstructive pulmonary disease (COPD) impairs quality of life and leads to premature mortality. COPD sufferers experience progressive deterioration of lung function and decreased ability to undertake day-to-day activities. Ginseng has been used for thousands of years in Chinese medicine for respiratory symptoms. Several controlled clinical trials using ginseng for COPD have shown promising clinical effect, however these studies were generally small and with some potential bias, prompting the need for rigorously designed studies.
The objective of this study is to evaluate the therapeutic value and safety profile of a standardised root extract of Panax ginseng C.A Meyer (ginseng) for symptomatic relief, with a focus on quality of life (QoL) improvements in individuals with moderate (Stage II) COPD FEV1/FVC < 0.7 and FEV1 50% - 80% predicted.
This paper describes the design of a randomised, multi-centre, double-blind, placebo controlled, two-armed parallel clinical trial. Two trial sites in Melbourne Australia will proportionately randomise a total of 168 participants to receive either ginseng capsule (100 mg) or matching placebo twice daily for 24 weeks. The primary outcomes will be based on three validated QoL questionnaires, St Georges Respiratory Questionnaire (SGRQ), Short Form Health Survey (SF-36) and the COPD Assessment Test (CAT). Secondary outcomes are based on lung function testing, relief medication usage and exacerbation frequency and severity. Safety endpoints include blood tests and adverse event reporting. Intention-to-treat will be applied to all data analyses.
Findings from this study may lead to new therapeutic development for chronic respiratory diseases, particularly COPD. This protocol may also guide other investigators to develop quality herbal medicine clinical trials in the future.
Trial registration
Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12610000768099
PMCID: PMC3150256  PMID: 21718484
20.  GSTCD and INTS12 Regulation and Expression in the Human Lung 
PLoS ONE  2013;8(9):e74630.
Genome-Wide Association Study (GWAS) meta-analyses have identified a strong association signal for lung function, which maps to a region on 4q24 containing two oppositely transcribed genes: glutathione S-transferase, C-terminal domain containing (GSTCD) and integrator complex subunit 12 (INTS12). Both genes were found to be expressed in a range of human airway cell types. The promoter regions and transcription start sites were determined in mRNA from human lung and a novel splice variant was identified for each gene. We obtained the following evidence for GSTCD and INTS12 co-regulation and expression: (i) correlated mRNA expression was observed both via Q-PCR and in a lung expression quantitative trait loci (eQTL) study, (ii) induction of both GSTCD and INTS12 mRNA expression in human airway smooth muscle cells was seen in response to TGFβ1, (iii) a lung eQTL study revealed that both GSTCD and INTS12 mRNA levels positively correlate with percent predicted FEV1, and (iv) FEV1 GWAS associated SNPs in 4q24 were found to act as an eQTL for INTS12 in a number of tissues. In fixed sections of human lung tissue, GSTCD protein expression was ubiquitous, whereas INTS12 expression was predominantly in epithelial cells and pneumocytes. During human fetal lung development, GSTCD protein expression was observed to be highest at the earlier pseudoglandular stage (10-12 weeks) compared with the later canalicular stage (17-19 weeks), whereas INTS12 expression levels did not alter throughout these stages. Knowledge of the transcriptional and translational regulation and expression of GSTCD and INTS12 provides important insights into the potential role of these genes in determining lung function. Future work is warranted to fully define the functions of INTS12 and GSTCD.
PMCID: PMC3776747  PMID: 24058608
21.  The Association of Genome-Wide Significant Spirometric Loci with Chronic Obstructive Pulmonary Disease Susceptibility 
Two recent metaanalyses of genome-wide association studies conducted by the CHARGE and SpiroMeta consortia identified novel loci yielding evidence of association at or near genome-wide significance (GWS) with FEV1 and FEV1/FVC. We hypothesized that a subset of these markers would also be associated with chronic obstructive pulmonary disease (COPD) susceptibility. Thirty-two single-nucleotide polymorphisms (SNPs) in or near 17 genes in 11 previously identified GWS spirometric genomic regions were tested for association with COPD status in four COPD case-control study samples (NETT/NAS, the Norway case-control study, ECLIPSE, and the first 1,000 subjects in COPDGene; total sample size, 3,456 cases and 1,906 controls). In addition to testing the 32 spirometric GWS SNPs, we tested a dense panel of imputed HapMap2 SNP markers from the 17 genes located near the 32 GWS SNPs and in a set of 21 well studied COPD candidate genes. Of the previously identified GWS spirometric genomic regions, three loci harbored SNPs associated with COPD susceptibility at a 5% false discovery rate: the 4q24 locus including FLJ20184/INTS12/GSTCD/NPNT, the 6p21 locus including AGER and PPT2, and the 5q33 locus including ADAM19. In conclusion, markers previously associated at or near GWS with spirometric measures were tested for association with COPD status in data from four COPD case-control studies, and three loci showed evidence of association with COPD susceptibility at a 5% false discovery rate.
PMCID: PMC3262664  PMID: 21659657
22.  Incidence and determinants of moderate COPD (GOLD II) in male smokers aged 40–65 years: 5-year follow up 
Chronic obstructive pulmonary disease (COPD) is a major health problem with an estimated prevalence of 10–15% among smokers. The incidence of moderate COPD, as defined by the Global Initiative for Chronic Obstructive Lung Disease (GOLD), is largely unknown.
To determine the cumulative incidence of moderate COPD (forced expiratory volume in 1 second/forced vital capacity ratio [FEV1/FVC] <0.7 and FEV1 <80% predicted) and its association with patient characteristics in a cohort of male smokers.
Prospective cohort study.
The city of IJsselstein, a small town in the Netherlands.
Smokers aged 40–65 years who were registered with local GPs, participated in a study to identify undetected COPD. Baseline measurements were taken in 1998 of 399 smokers with normal spirometry (n = 292) or mild COPD (FEV1/FVC <0.7 and FEV1 ≥80% predicted, n = 107) and follow-up measurements were conducted in 2003.
After a mean follow-up of 5.2 years, 33 participants developed moderate COPD (GOLD II). This showed an estimated cumulative incidence of 8.3% (95% CI = 5.8 to 11.4) and a mean annual incidence of 1.6%. No participant developed severe airflow obstruction. The risk of developing moderate COPD in smokers with baseline mild COPD (GOLD I) was five times higher than in those with baseline normal spirometry (one in five versus one in 25).
In a cohort of middle-aged male smokers, the estimated cumulative incidence of moderate COPD (GOLD II) over 5 years was relatively high (8.3%). Age, childhood smoking, cough, and one or more GP contacts for lower respiratory tract problems were independently associated with incident moderate COPD.
PMCID: PMC1876630  PMID: 16953996
incidence; middle-age; moderate COPD; patient characteristics; smokers
23.  AGER -429T/C Is Associated with an Increased Lung Disease Severity in Cystic Fibrosis 
PLoS ONE  2012;7(7):e41913.
The clinical course of cystic fibrosis (CF) varies between patients bearing identical CFTR mutations, suggesting the involvement of modifier genes. We assessed the association of lung disease severity with the variant AGER -429 T/C, coding for RAGE, a pro-inflammatory protein, in CF patients from the French CF Gene Modifier Study. We analyzed the lung function of 967 CF patients p.Phe508del homozygous. FEV1 was analyzed as CF-specific percentile adjusted on age, height and mortality. AGER -429T/C polymorphism was genotyped and its function was evaluated in vitro by measurement of the luciferase activity. AGER -429 minor allele (C) was associated with poorer lung function (p = 0.03). In vitro, the promoter activity was higher in cells transfected with AGER -429C compared to cells transfected with the AGER -429T allele (p = 0.016 in BEAS-2B cells). AGER seems to be a modifier gene of lung disease severity in CF, and could be an interesting biomarker of CF airway inflammation. The functional promoter AGER -429C variant is associated with an increased RAGE expression that can lead to an increased lung inflammation and a more severe lung disease.
PMCID: PMC3408394  PMID: 22860029
24.  Loci Identified by Genome-wide Association Studies Influence Different Disease-related Phenotypes in Chronic Obstructive Pulmonary Disease 
Rationale: Genome-wide association studies have shown significant associations between variants near hedgehog interacting protein HHIP, FAM13A, and cholinergic nicotinic acetylcholine receptor CHRNA3/5 with increased risk of chronic obstructive pulmonary disease (COPD) in smokers; however, the disease mechanisms behind these associations are not well understood.
Objectives: To identify the association between replicated loci and COPD-related phenotypes in well-characterized patient populations.
Methods: The relationship between these three loci and COPD-related phenotypes was assessed in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-point (ECLIPSE) cohort. The results were validated in the family-based International COPD Genetics Network (ICGN).
Measurements and Main Results: The CHRNA3/5 locus was significantly associated with pack-years of smoking (P = 0.002 and 3 × 10−4), emphysema assessed by a radiologist using high-resolution computed tomography (P = 2 × 10−4 and 4.8 × 10−5), and airflow obstruction (P = 0.004 and 1.8 × 10−5) in the ECLIPSE and ICGN populations, respectively. However, variants in the IREB2 gene were only significantly associated with FEV1. The HHIP locus was not associated with smoking intensity but was associated with FEV1/FVC (P = 1.9 × 10−4 and 0.004 in the ECLIPSE and ICGN populations). The HHIP locus was also associated with fat-free body mass (P = 0.007) and with both retrospectively (P = 0.015) and prospectively (P = 0.024) collected COPD exacerbations in the ECLIPSE cohort. Single-nucleotide polymorphisms in the FAM13A locus were associated with lung function.
Conclusions: The CHRNA3/5 locus was associated with increased smoking intensity and emphysema in individuals with COPD, whereas the HHIP and FAM13A loci were not associated with smoking intensity. The HHIP locus was associated with the systemic components of COPD and with the frequency of COPD exacerbations. FAM13A locus was associated with lung function.
PMCID: PMC3029936  PMID: 20656943
COPD exacerbations; nicotine addiction; high-resolution CT; genetic association analysis; emphysema
25.  Chronic Obstructive Pulmonary Disease in Older Persons: A Comparison of Two Spirometric Definitions 
Respiratory medicine  2010;104(8):1189-1196.
Among older persons, we previously endorsed a two-step spirometric definition of chronic obstructive pulmonary disease (COPD) that requires a ratio of forced expiratory volume in 1-second to forced vital capacity (FEV1/FVC) below .70, and an FEV1 below the 5th or 10th standardized-residual percentile (“SR-tile strategy”).
To evaluate the clinical validity of an SR-tile strategy, compared to a current definition of COPD, as published by the Global Initiative for Obstructive Lung Disease (GOLD-COPD), in older persons.
We assessed national data from 2,480 persons aged 65-to-80 years. In separate analyses, we evaluated the association of an SR-tile strategy with mortality and respiratory symptoms, relative to GOLD-COPD. As per convention, GOLD-COPD was defined solely by an FEV1/FVC<.70, with severity staged according to FEV1 cut-points at 80 and 50 percent-predicted (%Pred).
Among 831 participants with GOLD-COPD, the risk of death was elevated only in 179 (21.5%) of those who also had an FEV1 <5thSR-tile; and the odds of having respiratory symptoms was elevated only in 310 (37.4%) of those who also had an FEV1 <10thSR-tile. In contrast, GOLD-COPD staged at an FEV1 50-79%Pred led to misclassification (overestimation) in terms of 209 (66.4%) and 77 (24.6%) participants, respectively, not having an increased risk of death or likelihood of respiratory symptoms.
Relative to an SR-tile strategy, the majority of older persons with GOLD-COPD had neither an increased risk of death nor an increased likelihood of respiratory symptoms. These results raise concerns about the clinical validity of GOLD guidelines in older persons.
PMCID: PMC2890041  PMID: 20199857
COPD; spirometry; respiratory symptoms; mortality

Results 1-25 (784277)