Search tips
Search criteria

Results 1-25 (207429)

Clipboard (0)

Related Articles

1.  A network-based integrative approach to prioritize reliable hits from multiple genome-wide RNAi screens in Drosophila 
BMC Genomics  2009;10:220.
The recently developed RNA interference (RNAi) technology has created an unprecedented opportunity which allows the function of individual genes in whole organisms or cell lines to be interrogated at genome-wide scale. However, multiple issues, such as off-target effects or low efficacies in knocking down certain genes, have produced RNAi screening results that are often noisy and that potentially yield both high rates of false positives and false negatives. Therefore, integrating RNAi screening results with other information, such as protein-protein interaction (PPI), may help to address these issues.
By analyzing 24 genome-wide RNAi screens interrogating various biological processes in Drosophila, we found that RNAi positive hits were significantly more connected to each other when analyzed within a protein-protein interaction network, as opposed to random cases, for nearly all screens. Based on this finding, we developed a network-based approach to identify false positives (FPs) and false negatives (FNs) in these screening results. This approach relied on a scoring function, which we termed NePhe, to integrate information obtained from both PPI network and RNAi screening results. Using a novel rank-based test, we compared the performance of different NePhe scoring functions and found that diffusion kernel-based methods generally outperformed others, such as direct neighbor-based methods. Using two genome-wide RNAi screens as examples, we validated our approach extensively from multiple aspects. We prioritized hits in the original screens that were more likely to be reproduced by the validation screen and recovered potential FNs whose involvements in the biological process were suggested by previous knowledge and mutant phenotypes. Finally, we demonstrated that the NePhe scoring system helped to biologically interpret RNAi results at the module level.
By comprehensively analyzing multiple genome-wide RNAi screens, we conclude that network information can be effectively integrated with RNAi results to produce suggestive FPs and FNs, and to bring biological insight to the screening results.
PMCID: PMC2697172  PMID: 19435510
2.  An RIG-I-Like RNA Helicase Mediates Antiviral RNAi Downstream of Viral siRNA Biogenesis in Caenorhabditis elegans 
PLoS Pathogens  2009;5(2):e1000286.
Dicer ribonucleases of plants and invertebrate animals including Caenorhabditis elegans recognize and process a viral RNA trigger into virus-derived small interfering RNAs (siRNAs) to guide specific viral immunity by Argonaute-dependent RNA interference (RNAi). C. elegans also encodes three Dicer-related helicase (drh) genes closely related to the RIG-I-like RNA helicase receptors which initiate broad-spectrum innate immunity against RNA viruses in mammals. Here we developed a transgenic C. elegans strain that expressed intense green fluorescence from a chromosomally integrated flock house virus replicon only after knockdown or knockout of a gene required for antiviral RNAi. Use of the reporter nematode strain in a feeding RNAi screen identified drh-1 as an essential component of the antiviral RNAi pathway. However, RNAi induced by either exogenous dsRNA or the viral replicon was enhanced in drh-2 mutant nematodes, whereas exogenous RNAi was essentially unaltered in drh-1 mutant nematodes, indicating that exogenous and antiviral RNAi pathways are genetically distinct. Genetic epistatic analysis shows that drh-1 acts downstream of virus sensing and viral siRNA biogenesis to mediate specific antiviral RNAi. Notably, we found that two members of the substantially expanded subfamily of Argonautes specific to C. elegans control parallel antiviral RNAi pathways. These findings demonstrate both conserved and unique strategies of C. elegans in antiviral defense.
Author Summary
The genome of Caenorhabditis elegans encodes three Dicer-related helicases (DRHs) highly homologous to the DExD/H box helicase domain found in two distinct families of virus sensors, Dicer ribonucleases and RIG-I-like helicases (RLRs). Dicer initiates the specific, RNAi-mediated viral immunity in plants, fungi and invertebrates by producing virus-derived small interfering RNAs (siRNAs). By contrast, mammalian RLRs trigger interferon production and broad-spectrum viral immunity, although one of the three RLRs may act as both a negative and positive regulator of viral immunity. In this study we developed a transgenic C. elegans strain for high-throughput genetic screens and identified 35 genes including drh-1 that are required for RNAi-mediated viral immunity. Genetic epistatic analyses demonstrate that drh-1 mediates RNAi immunity downstream of the production of viral siRNAs. Notably, we found that drh-2 functions as a negative regulator of the viral immunity. Thus, both nematode DRHs and mammalian RLRs participate in antiviral immune responses. Unlike mammalian RLRs, however, nematode DRH-1 employs an RNAi effector mechanism and is unlikely to be involved in direct virus sensing.
PMCID: PMC2629121  PMID: 19197349
3.  A nuclear Argonaute promotes multi-generational epigenetic inheritance and germline immortality 
Nature  2012;489(7416):447-451.
Epigenetic information is frequently erased near the start of each new generation (1). In some cases, however, epigenetic information can be transmitted from parent to progeny (epigenetic inheritance) (2). A particularly striking example of epigenetic inheritance is dsRNA-mediated gene silencing (RNAi) in C. elegans, which can be inherited for more than five generations (3–8). To understand this process we conducted a genetic screen for animals defective for transmitting RNAi silencing signals to future generations. This screen identified the gene heritable RNAi defective (hrde)-1. hrde-1 encodes an Argonaute (Ago) that associates with small interfering (si)RNAs in germ cells of the progeny of animals exposed to dsRNA. In nuclei of these germ cells, HRDE-1 engages the Nrde nuclear RNAi pathway to direct H3K9me3 at RNAi targeted genomic loci and promote RNAi inheritance. Under normal growth conditions, HRDE-1 associates with endogenously expressed siRNAs, which direct nuclear gene silencing in germ cells. In hrde-1 or nuclear RNAi deficient animals, germline silencing is lost over generational time. Concurrently, these animals exhibit steadily worsening defects in gamete formation and function that ultimately lead to sterility. These results establish that the Ago HRDE-1 directs gene-silencing events in germ cell nuclei, which drive multi-generational RNAi inheritance and promote immortality of the germ cell lineage. We propose that C. elegans uses the RNAi inheritance machinery to transmit epigenetic information, accrued by past generations, into future generations to regulate important biological processes.
PMCID: PMC3509936  PMID: 22810588
4.  RNA Interference in Schistosoma mansoni Schistosomula: Selectivity, Sensitivity and Operation for Larger-Scale Screening 
The possible emergence of resistance to the only available drug for schistosomiasis spurs drug discovery that has been recently incentivized by the availability of improved transcriptome and genome sequence information. Transient RNAi has emerged as a straightforward and important technique to interrogate that information through decreased or loss of gene function and identify potential drug targets. To date, RNAi studies in schistosome stages infecting humans have focused on single (or up to 3) genes of interest. Therefore, in the context of standardizing larger RNAi screens, data are limited on the extent of possible off-targeting effects, gene-to-gene variability in RNAi efficiency and the operational capabilities and limits of RNAi.
Methodology/Principal Findings
We investigated in vitro the sensitivity and selectivity of RNAi using double-stranded (ds)RNA (approximately 500 bp) designed to target 11 Schistosoma mansoni genes that are expressed in different tissues; the gut, tegument and otherwise. Among the genes investigated were 5 that had been previously predicted to be essential for parasite survival. We employed mechanically transformed schistosomula that are relevant to parasitism in humans, amenable to screen automation and easier to obtain in greater numbers than adult parasites. The operational parameters investigated included defined culture media for optimal parasite maintenance, transfection strategy, time- and dose- dependency of RNAi, and dosing limits. Of 7 defined culture media tested, Basch Medium 169 was optimal for parasite maintenance. RNAi was best achieved by co-incubating parasites and dsRNA (standardized to 30 µg/ml for 6 days); electroporation provided no added benefit. RNAi, including interference of more than one transcript, was selective to the gene target(s) within the pools of transcripts representative of each tissue. Concentrations of dsRNA above 90 µg/ml were directly toxic. RNAi efficiency was transcript-dependent (from 40 to >75% knockdown relative to controls) and this may have contributed to the lack of obvious phenotypes observed, even after prolonged incubations of 3 weeks. Within minutes of their mechanical preparation from cercariae, schistosomula accumulated fluorescent macromolecules in the gut indicating that the gut is an important route through which RNAi is expedited in the developing parasite.
Transient RNAi operates gene-selectively in S. mansoni newly transformed schistosomula yet the sensitivity of individual gene targets varies. These findings and the operational parameters defined will facilitate larger RNAi screens.
Author Summary
RNA interference (RNAi) is a technique to selectively suppress mRNA of individual genes and, consequently, their cognate proteins. RNAi using double-stranded (ds) RNA has been used to interrogate the function of mainly single genes in the flatworm, Schistosoma mansoni, one of a number of schistosome species causing schistosomiasis. In consideration of large-scale screens to identify candidate drug targets, we examined the selectivity and sensitivity (the degree of suppression) of RNAi for 11 genes produced in different tissues of the parasite: the gut, tegument (surface) and otherwise. We used the schistosomulum stage prepared from infective cercariae larvae which are accessible in large numbers and adaptable to automated screening platforms. We found that RNAi suppresses transcripts selectively, however, the sensitivity of suppression varies (40%–>75%). No obvious changes in the parasite occurred post-RNAi, including after targeting the mRNA of genes that had been computationally predicted to be essential for survival. Additionally, we defined operational parameters to facilitate large-scale RNAi, including choice of culture medium, transfection strategy to deliver dsRNA, dose- and time-dependency, and dosing limits. Finally, using fluorescent probes, we show that the developing gut allows rapid entrance of dsRNA into the parasite to initiate RNAi.
PMCID: PMC2957409  PMID: 20976050
5.  Advances in genome-wide RNAi cellular screens: a case study using the Drosophila JAK/STAT pathway 
BMC Genomics  2012;13:506.
Genome-scale RNA-interference (RNAi) screens are becoming ever more common gene discovery tools. However, whilst every screen identifies interacting genes, less attention has been given to how factors such as library design and post-screening bioinformatics may be effecting the data generated.
Here we present a new genome-wide RNAi screen of the Drosophila JAK/STAT signalling pathway undertaken in the Sheffield RNAi Screening Facility (SRSF). This screen was carried out using a second-generation, computationally optimised dsRNA library and analysed using current methods and bioinformatic tools. To examine advances in RNAi screening technology, we compare this screen to a biologically very similar screen undertaken in 2005 with a first-generation library. Both screens used the same cell line, reporters and experimental design, with the SRSF screen identifying 42 putative regulators of JAK/STAT signalling, 22 of which verified in a secondary screen and 16 verified with an independent probe design. Following reanalysis of the original screen data, comparisons of the two gene lists allows us to make estimates of false discovery rates in the SRSF data and to conduct an assessment of off-target effects (OTEs) associated with both libraries. We discuss the differences and similarities between the resulting data sets and examine the relative improvements in gene discovery protocols.
Our work represents one of the first direct comparisons between first- and second-generation libraries and shows that modern library designs together with methodological advances have had a significant influence on genome-scale RNAi screens.
PMCID: PMC3526451  PMID: 23006893
Genome screening; RNAi; Off-target effect; JAK/STAT pathway; Functional genomics; dsRNA
6.  Comparative Genomics Reveals Two Novel RNAi Factors in Trypanosoma brucei and Provides Insight into the Core Machinery 
PLoS Pathogens  2012;8(5):e1002678.
The introduction ten years ago of RNA interference (RNAi) as a tool for molecular exploration in Trypanosoma brucei has led to a surge in our understanding of the pathogenesis and biology of this human parasite. In particular, a genome-wide RNAi screen has recently been combined with next-generation Illumina sequencing to expose catalogues of genes associated with loss of fitness in distinct developmental stages. At present, this technology is restricted to RNAi-positive protozoan parasites, which excludes T. cruzi, Leishmania major, and Plasmodium falciparum. Therefore, elucidating the mechanism of RNAi and identifying the essential components of the pathway is fundamental for improving RNAi efficiency in T. brucei and for transferring the RNAi tool to RNAi-deficient pathogens. Here we used comparative genomics of RNAi-positive and -negative trypanosomatid protozoans to identify the repertoire of factors in T. brucei. In addition to the previously characterized Argonaute 1 (AGO1) protein and the cytoplasmic and nuclear Dicers, TbDCL1 and TbDCL2, respectively, we identified the RNA Interference Factors 4 and 5 (TbRIF4 and TbRIF5). TbRIF4 is a 3′-5′ exonuclease of the DnaQ superfamily and plays a critical role in the conversion of duplex siRNAs to the single-stranded form, thus generating a TbAGO1-siRNA complex required for target-specific cleavage. TbRIF5 is essential for cytoplasmic RNAi and appears to act as a TbDCL1 cofactor. The availability of the core RNAi machinery in T. brucei provides a platform to gain mechanistic insights in this ancient eukaryote and to identify the minimal set of components required to reconstitute RNAi in RNAi-deficient parasites.
Author Summary
RNA interference (RNAi), a naturally-occurring pathway whereby the presence of double-stranded RNA in a cell triggers the degradation of homologous mRNA, has been harnessed in many organisms as an invaluable molecular biology tool to interrogate gene function. Although this technology is widely used in the protozoan parasite Trypanosoma brucei, other parasites of considerable public health significance, such as Trypanosoma cruzi, Leishmania major, and Plasmodium falciparum do not perform RNAi. Since RNAi has recently been introduced into budding yeast, this opens up the possibility that RNAi can be reconstituted in these pathogens. The key to this is getting a handle on the essential RNAi factors in T. brucei. By applying comparative genomics we identified five genes that are present in the RNAi-proficient species, but not in RNAi-deficient species: three previously identified RNAi factors, and two novel ones, which are described here. This insight into the core T. brucei RNAi machinery represents a major step towards transferring this pathway to RNAi-deficient parasites.
PMCID: PMC3359990  PMID: 22654659
7.  A protein network-guided screen for cell cycle regulators in Drosophila 
BMC Systems Biology  2011;5:65.
Large-scale RNAi-based screens are playing a critical role in defining sets of genes that regulate specific cellular processes. Numerous screens have been completed and in some cases more than one screen has examined the same cellular process, enabling a direct comparison of the genes identified in separate screens. Surprisingly, the overlap observed between the results of similar screens is low, suggesting that RNAi screens have relatively high levels of false positives, false negatives, or both.
We re-examined genes that were identified in two previous RNAi-based cell cycle screens to identify potential false positives and false negatives. We were able to confirm many of the originally observed phenotypes and to reveal many likely false positives. To identify potential false negatives from the previous screens, we used protein interaction networks to select genes for re-screening. We demonstrate cell cycle phenotypes for a significant number of these genes and show that the protein interaction network is an efficient predictor of new cell cycle regulators. Combining our results with the results of the previous screens identified a group of validated, high-confidence cell cycle/cell survival regulators. Examination of the subset of genes from this group that regulate the G1/S cell cycle transition revealed the presence of multiple members of three structurally related protein complexes: the eukaryotic translation initiation factor 3 (eIF3) complex, the COP9 signalosome, and the proteasome lid. Using a combinatorial RNAi approach, we show that while all three of these complexes are required for Cdk2/Cyclin E activity, the eIF3 complex is specifically required for some other step that limits the G1/S cell cycle transition.
Our results show that false positives and false negatives each play a significant role in the lack of overlap that is observed between similar large-scale RNAi-based screens. Our results also show that protein network data can be used to minimize false negatives and false positives and to more efficiently identify comprehensive sets of regulators for a process. Finally, our data provides a high confidence set of genes that are likely to play key roles in regulating the cell cycle or cell survival.
PMCID: PMC3113730  PMID: 21548953
8.  GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update 
Nucleic Acids Research  2012;41(Database issue):D1021-D1026.
RNA interference (RNAi) represents a powerful method to systematically study loss-of-function phenotypes on a large scale with a wide variety of biological assays, constituting a rich source for the assignment of gene function. The GenomeRNAi database ( makes available RNAi phenotype data extracted from the literature for human and Drosophila. It also provides RNAi reagent information, along with an assessment as to their efficiency and specificity. This manuscript describes an update of the database previously featured in the NAR Database Issue. The new version has undergone a complete re-design of the user interface, providing an intuitive, flexible framework for additional functionalities. Screen information and gene-reagent-phenotype associations are now available for download. The integration with other resources has been improved by allowing in-links via GenomeRNAi screen IDs, or external gene or reagent identifiers. A distributed annotation system (DAS) server enables the visualization of the phenotypes and reagents in the context of a genome browser. We have added a page listing ‘frequent hitters’, i.e. genes that show a phenotype in many screens, which might guide on-going RNAi studies. Structured annotation guidelines have been established to facilitate consistent curation, and a submission template for direct submission by data producers is available for download.
PMCID: PMC3531141  PMID: 23193271
9.  Small regulatory RNAs inhibit RNA Polymerase II during the elongation phase of transcription 
Nature  2010;465(7301):1097-1101.
Eukaryotic cells express a wide variety of endogenous small regulatory RNAs that regulate heterochromatin formation, developmental timing, defense against parasitic nucleic acids, and genome rearrangement. Many small regulatory RNAs are thought to function in nuclei 1-2. For instance, in plants and fungi siRNAs associate with nascent transcripts and direct chromatin and/or DNA modifications 1-2. To further understand the biological roles of small regulatory RNAs, we conducted a genetic screen to identify factors required for RNA interference (RNAi) in C. elegans nuclei 3. Here we show that nrde-2 encodes an evolutionarily conserved protein that is required for small interfering (si)RNA-mediated silencing in nuclei. NRDE-2 associates with the Argonaute protein NRDE-3 within nuclei and is recruited by NRDE-3/siRNA complexes to nascent transcripts that have been targeted by RNAi. We find that nuclear-localized siRNAs direct a NRDE-2-dependent silencing of pre-mRNAs 3’ to sites of RNAi, a NRDE-2-dependent accumulation of RNA Polymerase (RNAP) II at genomic loci targeted by RNAi, and NRDE-2-dependent decreases in RNAP II occupancy and RNAP II transcriptional activity 3’ to sites of RNAi. These results define NRDE-2 as a component of the nuclear RNAi machinery and demonstrate that metazoan siRNAs can silence nuclear-localized RNAs co-transcriptionally. In addition, these results establish a novel mode of RNAP II regulation; siRNA-directed recruitment of NRDE factors that inhibit RNAP II during the elongation phase of transcription.
PMCID: PMC2892551  PMID: 20543824
10.  The anti-genomic (negative) strand of Hepatitis C Virus is not targetable by shRNA 
Nucleic Acids Research  2013;41(6):3688-3698.
Hepatitis C Virus (HCV) and other plus-strand RNA viruses typically require the generation of a small number of negative genomes (20–100× lower than the positive genomes) for replication, making the less-abundant antigenome an attractive target for RNA interference(RNAi)-based therapy. Because of the complementarity of duplex short hairpin RNA/small interfering RNA (shRNA/siRNAs) with both genomic and anti-genomic viral RNA strands, and the potential of both shRNA strands to become part of the targeting complexes, preclinical RNAi studies cannot distinguish which viral strand is actually targeted in infected cells. Here, we addressed the question whether the negative HCV genome was bioaccessible to RNAi. We first screened for the most active shRNA molecules against the most conserved regions in the HCV genome, which were then used to generate asymmetric anti-HCV shRNAs that produce biologically active RNAi specifically directed against the genomic or antigenomic HCV sequences. Using this simple but powerful and effective method to screen for shRNA strand selectivity, we demonstrate that the antigenomic strand of HCV is not a viable RNAi target during HCV replication. These findings provide new insights into HCV biology and have important implications for the design of more effective and safer antiviral RNAi strategies seeking to target HCV and other viruses with similar replicative strategies.
PMCID: PMC3616702  PMID: 23396439
11.  The miR-35-41 Family of MicroRNAs Regulates RNAi Sensitivity in Caenorhabditis elegans 
PLoS Genetics  2012;8(3):e1002536.
RNA interference (RNAi) utilizes small interfering RNAs (siRNAs) to direct silencing of specific genes through transcriptional and post-transcriptional mechanisms. The siRNA guides can originate from exogenous (exo–RNAi) or natural endogenous (endo–RNAi) sources of double-stranded RNA (dsRNA). In Caenorhabditis elegans, inactivation of genes that function in the endo–RNAi pathway can result in enhanced silencing of genes targeted by siRNAs from exogenous sources, indicating cross-regulation between the pathways. Here we show that members of another small RNA pathway, the mir-35-41 cluster of microRNAs (miRNAs) can regulate RNAi. In worms lacking miR-35-41, there is reduced expression of lin-35/Rb, the C. elegans homolog of the tumor suppressor Retinoblastoma gene, previously shown to regulate RNAi responsiveness. Genome-wide microarray analyses show that targets of endo–siRNAs are up-regulated in mir-35-41 mutants, a phenotype also displayed by lin-35/Rb mutants. Furthermore, overexpression of lin-35/Rb specifically rescues the RNAi hypersensitivity of mir-35-41 mutants. Although the mir-35-41 miRNAs appear to be exclusively expressed in germline and embryos, their effect on RNAi sensitivity is transmitted to multiple tissues and stages of development. Additionally, we demonstrate that maternal contribution of miR-35-41 or lin-35/Rb is sufficient to reduce RNAi effectiveness in progeny worms. Our results reveal that miRNAs can broadly regulate other small RNA pathways and, thus, have far reaching effects on gene expression beyond directly targeting specific mRNAs.
Author Summary
RNA interference (RNAi) has become a widely used approach for silencing genes of interest. This tool is possible because endogenous RNA silencing pathways exist broadly across organisms, including humans, worms, and plants. The general RNAi pathway utilizes small ∼21-nucleotide RNAs to target specific protein-coding genes through base-pairing interactions. Since RNAs from exogenous sources require some of the same factors as endogenous small RNAs to silence gene expression, there can be competition between the pathways. Thus, perturbations in the endogenous RNAi pathway can result in enhanced silencing efficiency by exogenous small RNAs. MicroRNAs (miRNAs) comprise another endogenous small RNA pathway, but their biogenesis and mechanism of gene silencing are distinct in many ways from RNAi pathways. Here we show that a family of miRNAs regulates the effectiveness of RNAi in Caenorhabditis elegans. Loss of mir-35-41 results in enhanced RNAi by exogenous RNAs and reduced silencing of endogenous RNAi targets. The embryonic miR-35-41 miRNAs regulate the sensitivity to RNAi through lin-35/Rb, a homolog of the human Retinoblastoma tumor suppressor gene previously shown to regulate RNAi effectiveness in C. elegans. Additionally, we show that this sensitivity can be passed on to the next generation of worms, demonstrating a far-reaching effect of the miR-35-41 miRNAs on gene regulation by other small RNA pathways.
PMCID: PMC3297572  PMID: 22412382
12.  Effects of small interfering RNA inhibit Class I phosphoinositide 3-kinase on human gastric cancer cells 
AIM: To investigate the effects of small interfering RNA (siRNA)-mediated inhibition of Class I phosphoinositide 3-kinase (Class I PI3K) signal transduction on the proliferation, apoptosis, and autophagy of gastric cancer SGC7901 and MGC803 cells.
METHODS: We constructed the recombinant replication adenovirus PI3K(I)-RNA interference (RNAi)-green fluorescent protein (GFP) and control adenovirus NC-RNAi-GFP, and infected it into human gastric cancer cells. MTT assay was used to determine the growth rate of the gastric cancer cells. Activation of autophagy was monitored with monodansylcadaverine (MDC) staining after adenovirus PI3K(I)-RNAi-GFP and control adenovirus NC-RNAi-GFP treatment. Immunofluorescence staining was used to detect the expression of microtubule-associated protein 1 light chain 3 (LC3). Mitochondrial membrane potential was measured using the fluorescent probe JC-1. The expression of autophagy was monitored with MDC, LC3 staining, and transmission electron microscopy. Western blotting was used to detect p53, Beclin-1, Bcl-2, and LC3 protein expression in the culture supernatant.
RESULTS: The viability of gastric cancer cells was inhibited after siRNA targeting to the Class I PI3K blocked Class I PI3K signal pathway. MTT assays revealed that, after SGC7901 cancer cells were treated with adenovirus PI3K(I)-RNAi-GFP, the rate of inhibition reached 27.48% ± 2.71% at 24 h, 41.92% ± 2.02% at 48 h, and 50.85% ± 0.91% at 72 h. After MGC803 cancer cells were treated with adenovirus PI3K(I)-RNAi-GFP, the rate of inhibition reached 24.39% ± 0.93% at 24 h, 47.00% ± 0.87% at 48 h, and 70.30% ± 0.86% at 72 h (P < 0.05 compared to control group). It was determined that when 50 MOI, the transfection efficiency was 95% ± 2.4%. Adenovirus PI3K(I)-RNAi-GFP (50 MOI) induced mitochondrial dysfunction and activated cell apoptosis in SGC7901 cells, and the results described here prove that RNAi of Class I PI3K induced apoptosis in SGC7901 cells. The results showed that adenovirus PI3K(I)-RNAi-GFP transfection induced punctate distribution of LC3 immunoreactivity, indicating increased formation of autophagosomes. The results showed that the basal level of Beclin-1 and LC3 protein in SGC7901 cells was low. After incubating with adenovirus PI3K(I)-RNAi-GFP (50 MOI), Beclin-1, LC3, and p53 protein expression was significantly increased from 24 to 72 h. We also found that Bcl-2 protein expression down-regulated with the treatment of adenovirus PI3K(I)-RNAi-GFP (50 MOI). A number of isolated membranes, possibly derived from ribosome-free endoplasmic reticulum, were seen. These isolated membranes were elongated and curved to engulf a cytoplasmic fraction and organelles. We used transmission electron microscopy to identify ultrastructural changes in SGC7901 cells after adenovirus PI3K(I)-RNAi-GFP (50 MOI) treatment. Control cells showed a round shape and contained normal-looking organelles, nucleus, and chromatin, while adenovirus PI3K(I)-RNAi-GFP (50 MOI)-treated cells exhibited the typical signs of autophagy.
CONCLUSION: After the Class I PI3K signaling pathway has been blocked by siRNA, the proliferation of cells was inhibited and the apoptosis of gastric cancer cells was enhanced.
PMCID: PMC3607752  PMID: 23555164
Gastric cancer cells; Class I phosphoinositide 3-kinase; RNA interference; Apoptosis; Autophagy
13.  Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans 
Genome Biology  2000;2(1):research0002.1-research0002.10.
RNAi can be achieved by feeding worms Escherichia coli expressing dousble-stranded RNA corresponding to a specific gene. An optimized feeding method is presented that results in phenotypes at least as strong as those produced by direct injection of RNA for embryonic lethal genes, and stronger for genes with post-embryonic phenotypes.
In Caenorhabditis elegans, injection of double-stranded RNA (dsRNA) results in the specific inactivation of genes containing homologous sequences, a technique termed RNA-mediated interference (RNAi). It has previously been shown that RNAi can also be achieved by feeding worms Escherichia coli expressing dsRNA corresponding to a specific gene; this mode of dsRNA introduction is conventionally considered to be less efficient than direct injection, however, and has therefore seen limited use, even though it is considerably less labor-intensive.
Here we present an optimized feeding method that results in phenotypes at least as strong as those produced by direct injection of dsRNA for embryonic lethal genes, and stronger for genes with post-embryonic phenotypes. In addition, the interference effect generated by feeding can be titrated to uncover a series of hypomorphic phenotypes informative about the functions of a given gene. Using this method, we screened 86 random genes on consecutive cosmids and identified functions for 13 new genes. These included two genes producing an uncoordinated phenotype (a previously uncharacterized POU homeodomain gene, ceh-6, and a gene encoding a MADS-box protein) and one gene encoding a novel protein that results in a high-incidence-of-males phenotype.
RNAi by feeding can provide significant information about the functions of an individual gene beyond that provided by injection. Moreover, it can be used for special applications for which injection or the use of mutants is sometimes impracticable (for example, titration, biochemistry and large-scale screening). Thus, RNAi by feeding should make possible new experimental approaches for the use of genomic sequence information.
PMCID: PMC17598  PMID: 11178279
14.  Systemic RNAi mediated gene silencing in the anhydrobiotic nematode Panagrolaimus superbus 
Gene silencing by RNA interference (RNAi) is a powerful tool for functional genomics. Although RNAi was first described in Caenorhabditis elegans, several nematode species are unable to mount an RNAi response when exposed to exogenous double stranded RNA (dsRNA). These include the satellite model organisms Pristionchus pacificus and Oscheius tipulae. Available data also suggest that the RNAi pathway targeting exogenous dsRNA may not be fully functional in some animal parasitic nematodes. The genus Panagrolaimus contains bacterial feeding nematodes which occupy a diversity of niches ranging from polar, temperate and semi-arid soils to terrestrial mosses. Thus many Panagrolaimus species are adapted to tolerate freezing and desiccation and are excellent systems to study the molecular basis of environmental stress tolerance. We investigated whether Panagrolaimus is susceptible to RNAi to determine whether this nematode could be used in large scale RNAi studies in functional genomics.
We studied two species: Panagrolaimus sp. PS1159 and Panagrolaimus superbus. Both nematode species displayed embryonic lethal RNAi phenotypes following ingestion of Escherichia coli expressing dsRNA for the C. elegans embryonic lethal genes Ce-lmn-1 and Ce-ran-4. Embryonic lethal RNAi phenotypes were also obtained in both species upon ingestion of dsRNA for the Panagrolaimus genes ef1b and rps-2. Single nematode RT-PCR showed that a significant reduction in mRNA transcript levels occurred for the target ef1b and rps-2 genes in RNAi treated Panagrolaimus sp. 1159 nematodes. Visible RNAi phenotypes were also observed when P. superbus was exposed to dsRNA for structural genes encoding contractile proteins. All RNAi phenotypes were highly penetrant, particularly in P. superbus.
This demonstration that Panagrolaimus is amenable to RNAi by feeding will allow the development of high throughput methods of RNAi screening for P. superbus. This greatly enhances the utility of this nematode as a model system for the study of the molecular biology of anhydrobiosis and cryobiosis and as a possible satellite model nematode for comparative and functional genomics. Our data also identify another nematode infraorder which is amenable to RNAi and provide additional information on the diversity of RNAi phenotypes in nematodes.
PMCID: PMC2453295  PMID: 18565215
15.  Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference 
Genome Biology  2006;7(1):R4.
Mutations in lin-35, the worm ortholog of a mammalian tumor suppressor gene, and other synMuv B genes result in an increased sensitivity to RNAi and enhanced somatic transgene silencing.
Genome-wide RNA interference (RNAi) screening is a very powerful tool for analyzing gene function in vivo in Caenorhabditis elegans. The effectiveness of RNAi varies from gene to gene, however, and neuronally expressed genes are largely refractive to RNAi in wild-type worms.
We found that C. elegans strains carrying mutations in lin-35, the worm ortholog of the tumor suppressor gene p105Rb, or a subset of the genetically related synMuv B family of chromatin-modifying genes, show increased strength and penetrance for many germline, embryonic, and post-embryonic RNAi phenotypes, including neuronal RNAi phenotypes. Mutations in these same genes also enhance somatic transgene silencing via an RNAi-dependent mechanism. Two genes, mes-4 and zfp-1, are required both for the vulval lineage defects resulting from mutations in synMuv B genes and for RNAi, suggesting a common mechanism for the function of synMuv B genes in vulval development and in regulating RNAi. Enhanced RNAi in the germline of lin-35 worms suggests that misexpression of germline genes in somatic cells cannot alone account for the enhanced RNAi observed in this strain.
A worm strain with a null mutation in lin-35 is more sensitive to RNAi than any other previously described single mutant strain, and so will prove very useful for future genome-wide RNAi screens, particularly for identifying genes with neuronal functions. As lin-35 is the worm ortholog of the mammalian tumor suppressor gene p105Rb, misregulation of RNAi may be important during human oncogenesis.
PMCID: PMC1431716  PMID: 16507136
16.  Silencing of Aphid Genes by dsRNA Feeding from Plants 
PLoS ONE  2011;6(10):e25709.
RNA interference (RNAi) is a valuable reverse genetics tool to study gene function in various organisms, including hemipteran insects such as aphids. Previous work has shown that RNAi-mediated knockdown of pea aphid (Acyrthosiphon pisum) genes can be achieved through direct injection of double-stranded RNA (dsRNA) or small-interfering RNAs (siRNA) into the pea aphid hemolymph or by feeding these insects on artificial diets containing the small RNAs.
Methodology/Principal Findings
In this study, we have developed the plant-mediated RNAi technology for aphids to allow for gene silencing in the aphid natural environment and minimize handling of these insects during experiments. The green peach aphid M. persicae was selected because it has a broad plant host range that includes the model plants Nicotiana benthamiana and Arabidopsis thaliana for which transgenic materials can relatively quickly be generated. We targeted M. persicae Rack1, which is predominantly expressed in the gut, and M. persicae C002 (MpC002), which is predominantly expressed in the salivary glands. The aphids were fed on N. benthamiana leaf disks transiently producing dsRNA corresponding to these genes and on A. thaliana plants stably producing the dsRNAs. MpC002 and Rack-1 expression were knocked down by up to 60% on transgenic N. benthamiana and A. thaliana. Moreover, silenced M. persicae produced less progeny consistent with these genes having essential functions.
Similar levels of gene silencing were achieved in our plant-mediated RNAi approach and published silencing methods for aphids. Furthermore, the N. benthamiana leaf disk assay can be developed into a screen to assess which genes are essential for aphid survival on plants. Our results also demonstrate the feasibility of the plant-mediated RNAi approach for aphid control.
PMCID: PMC3187792  PMID: 21998682
17.  Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome 
First systematic analysis of the evolutionary conserved InR/TOR pathway interaction proteome in Drosophila.Quantitative mass spectrometry revealed that 22% of identified protein interactions are regulated by the growth hormone insulin affecting membrane proximal as well as intracellular signaling complexes.Systematic RNA interference linked a significant fraction of network components to the control of dTOR kinase activity.Combined biochemical and genetic data suggest dTTT, a dTOR-containing complex required for cell growth control by dTORC1 and dTORC2 in vivo.
Cellular growth is a fundamental process that requires constant adaptations to changing environmental conditions, like growth factor and nutrient availability, energy levels and more. Over the years, the insulin receptor/target of rapamycin pathway (InR/TOR) emerged as a key signaling system for the control of metazoan cell growth. Genetic screens carried out in the fruit fly Drosophila melanogaster identified key InR/TOR pathway components and their relationships. Phenotypes such as altered cell growth are likely to emerge from perturbed dynamic networks containing InR/TOR pathway components, which stably or transiently interact with other cellular proteins to form complexes and networks thereof. Systematic studies on the topology and dynamics of protein interaction networks become therefore highly relevant to gain systems level understanding of deregulated cell growth. Despite much progress in genetic analysis only few systematic protein interaction studies have been reported for Drosophila, which in most cases lack quantitative information representing the dynamic nature of such networks. Here, we present the first quantitative affinity purification mass spectrometry (AP–MS/MS) analysis on the evolutionary conserved InR/TOR signaling network in Drosophila. Systematic RNAi-based functional analysis of identified network components revealed key components linked to the regulation of the central effector kinase dTOR. This includes also dTTT, a novel dTOR-containing complex required for the control of dTORC1 and dTORC2 in vivo.
For systematic AP–MS analysis, we generated Drosophila Kc167 cell lines inducibly expressing affinity-tagged bait proteins previously linked to InR/TOR signaling. Bait expressing Kc167 cell lines were harvested before and after insulin stimulation for subsequent affinity purification. Following LC–MS/MS analysis and probabilistic data filtering using SAINT (Choi et al, 2010), we generated a quantitative network model from 97 high confidence protein–protein interactions and 58 network components (Figure 2). The presented network displayed a high degree of orthologous interactions conserved also in human cells and identified a number of novel molecular interactions with InR/TOR signaling components for future hypothesis driven analysis.
To measure insulin-induced changes within the InR/TOR interaction proteome, we applied a recently introduced label-free quantitative MS approach (Rinner et al, 2007). The obtained quantitative data suggest that 22% of all interactions in the network are regulated by insulin. Major changes could be observed within the membrane proximal InR/chico/PI3K signaling complexes, and also in 14-3-3 protein containing signaling complexes and dTORC1, a complex that contains besides dTOR all major orthologous proteins found also in human mTORC1 including the two dTORC1 substrates d4E-BP (Thor) and S6 Kinase (S6K). Insulin triggered both, dissociation and association of dTORC1 proteins. Among the proteins that showed enhanced binding to dTORC1 upon insulin stimulation we found Unkempt, a RING-finger protein with a proposed role in ubiquitin-mediated protein degradation (Lores et al, 2010). Besides dTORC1 our systematic AP–MS analysis also revealed the presence of dTORC2, the second major TOR complex in Drosophila. dTORC2 contains the Drosophila orthologous of human mTORC2 proteins, but in contrast to dTORC1 was not affected upon insulin stimulation. Interestingly, we also found a specific set of proteins that were not linked to the canonical TOR complexes TORC1 and TORC2 in dTOR purifications. These include LqfR (liquid facets related), Pontin, Reptin, Spaghetti and the gene product of CG16908. We found the same set of proteins when we used CG16908 as a bait, suggesting complex formation among the identified proteins. None of the dTORC1/2 components besides dTOR was identified in CG16908 purifications, indicating that these proteins form dTOR complexes distinct from dTORC1 and dTORC2. Based on known interaction information from other species and data obtained from this study we refer to this complex as dTTT (Drosophila TOR, TELO2, TTI1) (Horejsi et al, 2010; [18]Hurov et al, 2010; [20]Kaizuka et al, 2010). A directed quantitative MS analysis of dTOR complex components suggests that dTORC1 is the most abundant dTOR complex we identified in Kc167 cells.
We next studied the potential roles of the identified network components for controlling the activity of the dInR/TOR pathway using systematic RNAi depletion and quantitative western blotting to measure the changes in abundance of phosphorylated substrates of dTORC1 (Thor/d4E-BP, dS6K) and dTORC2 (dPKB) in RNAi-treated cells (Figure 5). Overall, we could identify 16 proteins (out of 58) whose depletion caused an at least 50% increase or decrease in the levels of phosphorylated d4E-BP, S6K and/or PKB compared with control GFP RNAi. Besides established pathway components, we found several novel regulators within the dInR/TOR interaction network. For example, RNAi against the novel insulin-regulated dTORC1 component Unkempt resulted in enhanced phosphorylation of the dTORC1 substrate d4E-BP, which suggests a negative role for Unkempt on dTORC1 activity. In contrast, depletion of CG16908 and LqfR caused hypo-phosphorylation of all dTOR substrates similar to dTOR itself, suggesting a positive role for the dTTT complex on dTOR activity. Subsequently, we tested whether dTTT components also plays a role in dTOR-mediated cell growth in vivo. Depletion of both dTTT components, CG16908 and LqfR, in the Drosophila eye resulted in a substantial decrease in eye size. Likewise, FLP-FRT-mediated mitotic recombination resulted in CG16908 and LqfR mutant clones with a similar reduced growth phenotype as observed in dTOR mutant clones. Hence, the combined biochemical and genetic analysis revealed dTTT as a dTOR-containing complex required for the activity of both dTORC1 and dTORC2 and thus plays a critical role in controlling cell growth.
Taken together, these results illustrate how a systematic quantitative AP–MS approach when combined with systematic functional analysis in Drosophila can reveal novel insights into the dynamic organization of regulatory networks for cell growth control in metazoans.
Using quantitative mass spectrometry, this study reports how insulin affects the modularity of the interaction proteome of the Drosophila InR/TOR pathway, an evolutionary conserved signaling system for the control of metazoan cell growth. Systematic functional analysis linked a significant number of identified network components to the control of dTOR activity and revealed dTTT, a dTOR complex required for in vivo cell growth control by dTORC1 and dTORC2.
Genetic analysis in Drosophila melanogaster has been widely used to identify a system of genes that control cell growth in response to insulin and nutrients. Many of these genes encode components of the insulin receptor/target of rapamycin (InR/TOR) pathway. However, the biochemical context of this regulatory system is still poorly characterized in Drosophila. Here, we present the first quantitative study that systematically characterizes the modularity and hormone sensitivity of the interaction proteome underlying growth control by the dInR/TOR pathway. Applying quantitative affinity purification and mass spectrometry, we identified 97 high confidence protein interactions among 58 network components. In all, 22% of the detected interactions were regulated by insulin affecting membrane proximal as well as intracellular signaling complexes. Systematic functional analysis linked a subset of network components to the control of dTORC1 and dTORC2 activity. Furthermore, our data suggest the presence of three distinct dTOR kinase complexes, including the evolutionary conserved dTTT complex (Drosophila TOR, TELO2, TTI1). Subsequent genetic studies in flies suggest a role for dTTT in controlling cell growth via a dTORC1- and dTORC2-dependent mechanism.
PMCID: PMC3261712  PMID: 22068330
cell growth; InR/TOR pathway; interaction proteome; quantitative mass spectrometry; signaling
18.  A systematic genetic screen identifies new factors influencing centromeric heterochromatin integrity in fission yeast 
Genome Biology  2014;15(10):481.
Heterochromatin plays important roles in the regulation and stability of eukaryotic genomes. Both heterochromatin components and pathways that promote heterochromatin assembly, including RNA interference, RNAi, are broadly conserved between the fission yeast Schizosaccharomyces pombe and humans. As a result, fission yeast has emerged as an important model system for dissecting mechanisms governing heterochromatin integrity. Thus far, over 50 proteins have been found to contribute to heterochromatin assembly at fission yeast centromeres. However, previous studies have not been exhaustive, and it is therefore likely that further factors remain to be identified.
To gain a more complete understanding of heterochromatin assembly pathways, we have performed a systematic genetic screen for factors required for centromeric heterochromatin integrity. In addition to known RNAi and chromatin modification components, we identified several proteins with previously undescribed roles in heterochromatin regulation. These included both known and newly characterised splicing-associated proteins, which are required for proper processing of centromeric transcripts by the RNAi pathway, and COP9 signalosome components Csn1 and Csn2, whose role in heterochromatin assembly can be explained at least in part by a role in the Ddb1-dependent degradation of the heterochromatin regulator Epe1.
This work has revealed new factors involved in RNAi-directed heterochromatin assembly in fission yeast. Our findings support and extend previous observations that implicate components of the splicing machinery as a platform for RNAi, and demonstrate a novel role for the COP9 signalosome in heterochromatin regulation.
Electronic supplementary material
The online version of this article (doi:10.1186/s13059-014-0481-4) contains supplementary material, which is available to authorized users.
PMCID: PMC4210515  PMID: 25274039
19.  Pooled shRNA screen for sensitizers to inhibition of the mitotic regulator polo-like kinase (PLK1) 
Oncotarget  2011;2(12):1254-1264.
RNAi screening holds the promise of systemizing the search for combination therapeutic strategies. Here we performed a pooled shRNA library screen to look for promising targets to inhibit in combination with inhibition of the mitotic regulator polo-like kinase (PLK1). The library contained ~4,500 shRNAs targeting various signaling and cancer-related genes and was screened in four lung cancer cell lines using both high (IC80) and low (IC20) amounts of the PLK1 inhibitor GSK461364. The relative abundance of cells containing individual shRNAs following drug treatment was determined by microarray analysis, using the mock treatment replicates as the normalizing reference. Overall, the inferred influences of individual shRNAs in both high and low drug treatment were remarkably similar in all four cell lines and involved a large percentage of the library. To investigate which functional categories of shRNAs were most prominent in influencing drug response, we used statistical analysis of microarrays (SAM) in combination with a filter for genes that had two or more concordant shRNAs. The most significant functional categories that came out of this analysis included receptor tyrosine kinases and nuclear hormone receptors. Through individual validation experiments, we determined that the two shRNAs from the library targeting the nuclear retinoic acid receptor gene RARA did indeed silence RARA expression and as predicted conferred resistance to GSK461364. This led us to test whether activation of RARA receptor with retinoids could sensitize cells to GSK461364. We found that retinoids did increase the drug sensitivity and enhanced the ability of PLK1 inhibition to induce mitotic arrest and apoptosis. These results suggest that retinoids could be used to enhance the effectiveness of GSK461364 and provide further evidence that RNAi screens can be effective tools to identify combination target strategies.
PMCID: PMC3282082  PMID: 22248814
Polo-like kinase 1; shRNA library screening; retinoids; combination therapy strategies
20.  Single-cell analysis of population context advances RNAi screening at multiple levels 
A large set of high-content RNAi screens investigating mammalian virus infection and multiple cellular activities is analysed to reveal the impact of population context on phenotypic variability and to identify indirect RNAi effects.
Cell population context determines phenotypes in RNAi screens of multiple cellular activities (including virus infection, cell size regulation, endocytosis, and lipid homeostasis), which can be accounted for by a combination of novel image analysis and multivariate statistical methods.Accounting for cell population context-mediated effects strongly changes the reproducibility and consistency of RNAi screens across cell lines as well as of siRNAs targeting the same gene.Such analyses can identify the perturbed regulation of population context dependent cell-to-cell variability, a novel perturbation phenotype.Overall, these methods advance the use of large-scale RNAi screening for a systems-level understanding of cellular processes.
Isogenic cells in culture show strong variability, which arises from dynamic adaptations to the microenvironment of individual cells. Here we study the influence of the cell population context, which determines a single cell's microenvironment, in image-based RNAi screens. We developed a comprehensive computational approach that employs Bayesian and multivariate methods at the single-cell level. We applied these methods to 45 RNA interference screens of various sizes, including 7 druggable genome and 2 genome-wide screens, analysing 17 different mammalian virus infections and four related cell physiological processes. Analysing cell-based screens at this depth reveals widespread RNAi-induced changes in the population context of individual cells leading to indirect RNAi effects, as well as perturbations of cell-to-cell variability regulators. We find that accounting for indirect effects improves the consistency between siRNAs targeted against the same gene, and between replicate RNAi screens performed in different cell lines, in different labs, and with different siRNA libraries. In an era where large-scale RNAi screens are increasingly performed to reach a systems-level understanding of cellular processes, we show that this is often improved by analyses that account for and incorporate the single-cell microenvironment.
PMCID: PMC3361004  PMID: 22531119
cell-to-cell variability; image analysis; population context; RNAi; virus infection
21.  Genome-Wide RNAi of C. elegans Using the Hypersensitive rrf-3 Strain Reveals Novel Gene Functions 
PLoS Biology  2003;1(1):e12.
RNA-mediated interference (RNAi) is a method to inhibit gene function by introduction of double-stranded RNA (dsRNA). Recently, an RNAi library was constructed that consists of bacterial clones expressing dsRNA, corresponding to nearly 90% of the 19,427 predicted genes of C. elegans. Feeding of this RNAi library to the standard wild-type laboratory strain Bristol N2 detected phenotypes for approximately 10% of the corresponding genes. To increase the number of genes for which a loss-of-function phenotype can be detected, we undertook a genome-wide RNAi screen using the rrf-3 mutant strain, which we found to be hypersensitive to RNAi. Feeding of the RNAi library to rrf-3 mutants resulted in additional loss-of-function phenotypes for 393 genes, increasing the number of genes with a phenotype by 23%. These additional phenotypes are distributed over different phenotypic classes. We also studied interexperimental variability in RNAi results and found persistent levels of false negatives. In addition, we used the RNAi phenotypes obtained with the genome-wide screens to systematically clone seven existing genetic mutants with visible phenotypes. The genome-wide RNAi screen using rrf-3 significantly increased the functional data on the C. elegans genome. The resulting dataset will be valuable in conjunction with other functional genomics approaches, as well as in other model organisms.
The screen suggested functions for 393 genes for which no RNAi-mediated phenotype was known. The comparison with similar screens in worms has general implications for RNAi experiments
PMCID: PMC212692  PMID: 14551910
22.  Modeling Recursive RNA Interference 
PLoS Computational Biology  2008;4(9):e1000183.
An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off–switch on experiments.
Author Summary
RNA interference is a gene regulatory system in which small RNA molecules turn off genes that have similar sequences to the small RNAs. This has become a powerful tool because a researcher can use RNA interference to turn off any gene of interest in order to test its function. There is great interest in identifying the genes required for the RNA interference pathway, and one approach to identifying such genes has been to use RNA interference to turn off potential RNA interference genes and to ask whether RNA interference still functions when these genes are turned off. The goal of our report is to ask how it is possible for RNA interference to turn itself off, using a mathematical model of the system. The results show that RNA interference cannot turn itself off if the RNA interference pathway is too effective to start with, so that experiments in which RNA interference acts on itself will only work in systems having a low efficiency. The results of our model suggest possible ways to improve the self-inactivation of RNA interference.
PMCID: PMC2522276  PMID: 18802453
23.  Automated Screening of Microtubule Growth Dynamics Identifies MARK2 as a Regulator of Leading Edge Microtubules Downstream of Rac1 in Migrating Cells 
PLoS ONE  2012;7(7):e41413.
Polarized microtubule (MT) growth in the leading edge is critical to directed cell migration, and is mediated by Rac1 GTPase. To find downstream targets of Rac1 that affect MT assembly dynamics, we performed an RNAi screen of 23 MT binding and regulatory factors and identified RNAi treatments that suppressed changes in MT dynamics induced by constitutively activated Rac1. By analyzing fluorescent EB3 dynamics with automated tracking, we found that RNAi treatments targeting p150glued, APC2, spastin, EB1, Op18, or MARK2 blocked Rac1-mediated MT growth in lamellipodia. MARK2 was the only protein whose RNAi targeting additionally suppressed Rac1 effects on MT orientation in lamellipodia, and thus became the focus of further study. We show that GFP-MARK2 rescued effects of MARK2 depletion on MT growth lifetime and orientation, and GFP-MARK2 localized in lamellipodia in a Rac1-activity-dependent manner. In a wound-edge motility assay, MARK2-depleted cells failed to polarize their centrosomes or exhibit oriented MT growth in the leading edge, and displayed defects in directional cell migration. Thus, automated image analysis of MT assembly dynamics identified MARK2 as a target regulated downstream of Rac1 that promotes oriented MT growth in the leading edge to mediate directed cell migration.
PMCID: PMC3404095  PMID: 22848487
24.  Identification of Drosophila Mitotic Genes by Combining Co-Expression Analysis and RNA Interference 
PLoS Genetics  2008;4(7):e1000126.
RNAi screens have, to date, identified many genes required for mitotic divisions of Drosophila tissue culture cells. However, the inventory of such genes remains incomplete. We have combined the powers of bioinformatics and RNAi technology to detect novel mitotic genes. We found that Drosophila genes involved in mitosis tend to be transcriptionally co-expressed. We thus constructed a co-expression–based list of 1,000 genes that are highly enriched in mitotic functions, and we performed RNAi for each of these genes. By limiting the number of genes to be examined, we were able to perform a very detailed phenotypic analysis of RNAi cells. We examined dsRNA-treated cells for possible abnormalities in both chromosome structure and spindle organization. This analysis allowed the identification of 142 mitotic genes, which were subdivided into 18 phenoclusters. Seventy of these genes have not previously been associated with mitotic defects; 30 of them are required for spindle assembly and/or chromosome segregation, and 40 are required to prevent spontaneous chromosome breakage. We note that the latter type of genes has never been detected in previous RNAi screens in any system. Finally, we found that RNAi against genes encoding kinetochore components or highly conserved splicing factors results in identical defects in chromosome segregation, highlighting an unanticipated role of splicing factors in centromere function. These findings indicate that our co-expression–based method for the detection of mitotic functions works remarkably well. We can foresee that elaboration of co-expression lists using genes in the same phenocluster will provide many candidate genes for small-scale RNAi screens aimed at completing the inventory of mitotic proteins.
Author Summary
Mitosis is the evolutionarily conserved process that enables a dividing cell to equally partition its genetic material between the two daughter cells. The fidelity of mitotic division is crucial for normal development of multicellular organisms and to prevent cancer or birth defects. Understanding the molecular mechanisms of mitosis requires the identification of genes involved in this process. Previous studies have shown that such genes can be readily identified by RNA interference (RNAi) in Drosophila tissue culture cells. Because the inventory of mitotic genes is still incomplete, we have undertaken an RNAi screen using a novel approach. We used a co-expression–based bioinformatic procedure to select a group of 1,000 genes enriched in mitotic functions from a dataset of 13,166 Drosophila genes. This group includes roughly half of the known mitotic genes, implying that it should contain half of all mitotic genes, including those that are currently unknown. We performed RNAi against each of the 1,000 genes in the group. By limiting the number of genes to be examined, we were able to perform a very detailed phenotypic analysis of RNAi cells. This analysis allowed the identification of 70 genes whose mitotic role was previously unknown; 30 are required for proper chromosome segregation and 40 are required to maintain chromosome integrity.
PMCID: PMC2537813  PMID: 18797514
25.  Genome wide screening of RNAi factors of Sf21 cells reveal several novel pathway associated proteins 
BMC Genomics  2014;15(1):775.
RNA interference (RNAi) leads to sequence specific knock-down of gene expression and has emerged as an important tool to analyse gene functions, pathway analysis and gene therapy. Although RNAi is a conserved cellular process involving common elements and factors, species-specific differences have been observed among different eukaryotes. Identification of components for RNAi pathway is pursued intensively and successful genome-wide screens have been performed for components of RNAi pathways in various organisms. Functional comparative genomics analysis offers evolutionary insight that forms basis of discoveries of novel RNAi-factors within related organisms. Keeping in view the academic and commercial utility of insect derived cell-line from Spodoptera frugiperda, we pursued the identification and functional analysis of components of RNAi-machinery of Sf21 cell-line using genome-wide application.
The genome and transcriptome of Sf21 was assembled and annotated. In silico application of comparative genome analysis among insects allowed us to identify several RNAi factors in Sf21 line. The candidate RNAi factors from assembled genome were validated by knockdown analysis of candidate factors using the siRNA screens on the Sf21-gfp reporter cell-line. Forty two (42) potential factors were identified using the cell based assay. These include core RNAi elements including Dicer-2, Argonaute-1, Drosha, Aubergine and auxiliary modules like chromatin factors, RNA helicases, RNA processing module, signalling allied proteins and others. Phylogenetic analyses and domain architecture revealed that Spodoptera frugiperda homologs retained identity with Lepidoptera (Bombyx mori) or Coleoptera (Tribolium castaneum) sustaining an evolutionary conserved scaffold in post-transcriptional gene silencing paradigm within insects.
The database of RNAi-factors generated by whole genome association survey offers comprehensive outlook about conservation as well as specific differences of the proteins of RNAi machinery. Understanding the interior involved in different phases of gene silencing also offers impending tool for RNAi-based applications.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-775) contains supplementary material, which is available to authorized users.
PMCID: PMC4247154  PMID: 25199785
RNA interference; siRNA screening; Sf21 cells; Genome-wide screening; Insect RNAi; Spodoptera frugiperda

Results 1-25 (207429)