Search tips
Search criteria

Results 1-25 (756502)

Clipboard (0)

Related Articles

1.  Susceptibility of Several Common Subtropical Weeds to Meloidogyne arenaria, M. incognita, and M. javanica 
Journal of Nematology  2012;44(2):142-147.
Experiments were conducted in the greenhouse to assess root galling and egg production of three root-knot nematode species, Meloidogyne arenaria, M. incognita, and M. javanica, on several weeds common to Florida agricultural land. Weeds evaluated were Amaranthus retroflexus (redroot pigweed), Cyperus esculentus (yellow nutsedge), Eleusine indica (goosegrass), Portulaca oleracea (common purslane), and Solanum americanum (American black nightshade). Additionally, although it is recommended as a cover crop in southern regions of the U.S., Aeschynomene americana (American jointvetch) was evaluated as a weed following the detection of root galling in a heavy volunteer infestation of an experimental field in southeastern Florida. Weeds were propagated from seed and inoculated with 1000 nematode eggs when plants reached the two true-leaf stage. Tomato (Solanum lycopersicum ‘Rutgers’) was included as a positive control. Aeschynomene americana and P. oleracea roots supported the highest number of juveniles (J2) and had the highest number of eggs/g of root for all three species of Meloidogyne tested. However, though P. oleracea supported very high root levels of the three nematode species tested, its fleshy roots did not exhibit severe gall symptoms. Low levels of apparent galling, combined with high egg production, increase the potential for P. oleracea to support populations of these three species of root-knot nematodes to a degree that may not be appropriately recognized. This research quantifies the impact of P. oleracea as a host for M. arenaria, M. incognita, and M. javanica compared to several other important weeds commonly found in Florida agricultural production, and the potential for A. americana to serve as an important weed host of the three species of root-knot nematode tested in southern regions of Florida.
PMCID: PMC3578473  PMID: 23482324
Aeschynomene americana; Amaranthus retroflexus; Cyperus esculentus; Eleusine indica; Florida; host status; nematode reproduction; Portulaca oleracea; root-knot nematodes; Solanum americanum
2.  Potential of Leguminous Cover Crops in Management of a Mixed Population of Root-knot Nematodes (Meloidogyne spp.) 
Journal of Nematology  2010;42(3):173-178.
Root-knot nematode is an important pest in agricultural production worldwide. Crop rotation is the only management strategy in some production systems, especially for resource poor farmers in developing countries. A series of experiments was conducted in the laboratory with several leguminous cover crops to investigate their potential for managing a mixture of root-knot nematodes (Meloidogyne arenaria, M. incognita, M. javanica). The root-knot nematode mixture failed to multiply on Mucuna pruriens and Crotalaria spectabilis but on Dolichos lablab the population increased more than 2- fold when inoculated with 500 and 1,000 nematodes per plant. There was no root-galling on M. pruriens and C. spectabilis but the gall rating was noted on D. lablab. Greater mortality of juvenile root-knot nematodes occurred when exposed to eluants of roots and leaves of leguminous crops than those of tomato; 48.7% of juveniles died after 72 h exposure to root eluant of C. spectabilis. The leaf eluant of D. lablab was toxic to nematodes but the root eluant was not. Thus, different parts of a botanical contain different active ingredients or different concentrations of the same active ingredient. The numbers of root-knot nematode eggs that hatched in root exudates of M. pruriens and C. spectabilis were significantly lower (20% and 26%) than in distilled water, tomato and P. vulgaris root exudates (83%, 72% and 89%) respectively. Tomato lacks nematotoxic compounds found in M. pruriens and C. spectabilis. Three months after inoculating plants with 1,000 root-knot nematode juveniles the populations in pots with M. pruriens, C. spectabilis and C. retusa had been reduced by approximately 79%, 85% and 86% respectively; compared with an increase of 262% nematodes in pots with Phaseolus vulgaris. There was significant reduction of 90% nematodes in fallow pots with no growing plant. The results from this study demonstrate that some leguminous species contain compounds that either kill root-knot nematodes or interfere with hatching and affect their capacity to invade and develop within their roots. M. pruriens, C. spectabilis and C. retusa could be used with effect to decrease a mixed field populations of root-knot nematodes.
PMCID: PMC3380490  PMID: 22736854
Crotalaria spectabilis; Crotalaria retusa; Dolichos lablab; Mucuna pruriens; Phaseolus vulgaris; nematicidal compounds; phytoalexins
3.  Effects of Etomopathiogenic Nematodes on Meloidogyne javanica on Tomatoes and Soybeans 
Journal of Nematology  2002;34(3):239-245.
Two Hawaiian isolates of Steinernema feltiae MG-14 and Heterohabditis indica MG-13, a French isolate of S. feltiae SN, and a Texan isolate of S. riobrave TX were tested for their efficacy against the root-knot nematode, Meloidogyne javanica, in the laboratory and greenhouse. Experiments were conducted to investigate the effects of treatment application time and dose on M. javanica penetration in soybean, and egg production and plant development in tomato. Two experiments conducted to assess the effects of entomopathogenic nematode application time on M. javanica penetration demonstrated that a single application of 10⁴ S. feltiae MG-14 or SN infective juveniles per 100 cm³ of sterile soil, together with 500 (MG-14) or 1,500 (SN) second-stage juveniles of M. javanica, reduced root penetration 3 days after M. javanica inoculation compared to that of a water treatment. Entomopathogenic nematode infective juveniles applied to assess the effects on M. javanica egg production did not demonstrate a significant reduction compared to that of the water control treatment. There was no dose response effect by Steinernema spp. On M. javanica root penetration or egg production. Steinernema spp. did not affect the growth or development of M. javanica-infected plants, but H. indica MG-13-treated plants had lower biomass than untreated plants infected with M. javanica. Infective juveniles of S. riobrave TX, S. feltiae SN, and MG-14 but not those of H. indica MG-13 were found inside root cortical tissues of M. javanica-infected plants. Entomopathogenic nematode antagonism to M. javanica on soybean or tomato was insufficient in the present study to provide a consistent level of nematode suppression at the concentrations of infective juveniles applied.
PMCID: PMC2620564  PMID: 19265939
behavior; heterorhabditis; Meloidogyne javanica; root penetration; Steinernema; suppression
4.  Interaction of Vesicular-arbuscular Mycorrhizal Fungi and Phosphorus with Meloidogyne incognita on Tomato 
Journal of Nematology  1983;15(3):410-417.
The influence of two vesicular-arbuscular mycorrhizal fungi and phosphorus (P) nutrition on penetration, development, and reproduction by Meloidogyne incognita on Walter tomato was studied in the greenhouse. Inoculation with either Gigaspora margarita or Glomus mosseae 2 wk prior to nematode inoculation did not alter infection by M. incognita compared with nonmycorrhizal plants, regardless of soil P level (either 3 μg [low P] or 30 μg [high P] available P/g soil). At a given soil P level, nematode penetration and reproduction did not differ in mycorrhizal and nonmycorrhizal plants. However, plants grown in high P soil had greater root weights, increased nematode penetration and egg production per plant, and decreased colonization by mycorrhizal fungi, compared with plants grown in low P soil. The number of eggs per female nematode on mycorrhizal and nonmycorrhizal plants was not influenced by P treatment. Tomato plants with split root systems grown in double-compartment containers which had either low P soil in both sides or high P in one side and low P in the other, were inoculated at transplanting with G. margarita and 2 wk later one-half of the split root system of each plant was inoculated with M. incognita larvae. Although the mycoorhizal fungus increased the inorganic P content of the root to a level comparable to that in plants grown in high P soil, nematode penetration and reproduction were not altered. In a third series of experiments, the rate of nematode development was not influenced by either the presence of G. margarita or high soil P, compared with control plants grown in low P soil. These data indicate that supplemental P (30 μ/g soil) alters root-knot nematode infection of tomato more than G. mosseae and G. margarita.
PMCID: PMC2618293  PMID: 19295826
Glomus mosseae; Gigaspora margarita; root-knot nematode
5.  Response of Resistant and Susceptible Bell Pepper (Capsicum annuum) to a Southern California Meloidogyne incognita Population from a Commercial Bell Pepper Field 
Journal of Nematology  2014;46(4):346-351.
To determine the presence and level of root-knot nematode (Meloidogyne spp.) infestation in Southern California bell pepper (Capsicum annuum) fields, soil and root samples were collected in April and May 2012 and analyzed for the presence of root-knot nematodes. The earlier samples were virtually free of root-knot nematodes, but the later samples all contained, sometimes very high numbers, of root-knot nematodes. Nematodes were all identified as M. incognita. A nematode population from one of these fields was multiplied in a greenhouse and used as inoculum for two repeated pot experiments with three susceptible and two resistant bell pepper varieties. Fruit yields of the resistant peppers were not affected by the nematodes, whereas yields of two of the three susceptible pepper cultivars decreased as a result of nematode inoculation. Nematode-induced root galling and nematode multiplication was low but different between the two resistant cultivars. Root galling and nematode reproduction was much higher on the three susceptible cultivars. One of these susceptible cultivars exhibited tolerance, as yields were not affected by the nematodes, but nematode multiplication was high. It is concluded that M. incognita is common in Southern California bell pepper production, and that resistant cultivars may provide a useful tool in a nonchemical management strategy.
PMCID: PMC4284086  PMID: 25580027
bell pepper; Capsicum annuum; Meloidogyne incognita; resistance; root-knot nematode
6.  Bacterial Antagonists of Fungal Pathogens Also Control Root-Knot Nematodes by Induced Systemic Resistance of Tomato Plants 
PLoS ONE  2014;9(2):e90402.
The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such “multi-purpose” bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.
PMCID: PMC3938715  PMID: 24587352
7.  Effects of the Mi-1, N and Tabasco Genes on Infection and Reproduction of Meloidogyne mayaguensis on Tomato and Pepper Genotypes 
Journal of Nematology  2007;39(4):327-332.
Meloidogyne mayaguensis is a damaging root-knot nematode able to reproduce on root-knot nematode-resistant tomato and other economically important crops. In a growth chamber experiment conducted at 22 and 33°C, isolate 1 of M. mayaguensis reproduced at both temperatures on the Mi-1-carrying tomato lines BHN 543 and BHN 585, whereas M. incognita race 4 failed to reproduce at 22°C, but reproduced well at 33°C. These results were confirmed in another experiment at 26 ± 1.8°C, where minimal or no reproduction of M. incognita race 4 was observed on the Mi-1-carrying tomato genotypes BHN 543, BHN 585, BHN 586 and ‘Sanibel’, whereas heavy infection and reproduction of M. mayaguensis isolate 1 occurred on these four genotypes. Seven additional Florida M. mayaguensis isolates also reproduced on resistant ‘Sanibel’ tomato at 26 ± 1.8°C. Isolate 3 was the most virulent, with reproduction factor (Rf) equal to 8.4, and isolate 8 was the least virulent (Rf = 2.1). At 24°C, isolate 1 of M. mayaguensis also reproduced well (Rf ≥ 1) and induced numerous small galls and large egg masses on the roots of root-knot nematode-resistant bell pepper ‘Charleston Belle’ carrying the N gene and on three root-knot nematode-resistant sweet pepper lines (9913/2, SAIS 97.9001 and SAIS 97.9008) carrying the Tabasco gene. In contrast, M. incognita race 4 failed to reproduce or reproduced poorly on these resistant pepper genotypes. The ability of M. mayaguensis isolates to overcome the resistance of tomato and pepper genotypes carrying the Mi-1, N and Tabasco genes limits the use of resistant cultivars to manage this nematode species in infested tomato and pepper fields in Florida.
PMCID: PMC2586510  PMID: 19259507
Capsicum annuum; bell pepper; resistance; root-knot nematodes; Solanum lycopersicum; sweet pepper
8.  Evaluation of the Effect of Ecologic on Root Knot Nematode, Meloidogyne incognita, and Tomato Plant, Lycopersicon esculenum 
Nonchemical methods and strategies for nematode management including cultural methods and engineered measures have been recommended as an alternative to methyl bromide (a major soil fumigant), due to its role in the depletion of the ozone layer. Hence, an international agreement has recently been reached calling for its reduced consumption and complete phasing out. This present research evaluates the potential of Ecologic, a biological, marine shell meal chitin material, as a soil amendment management agent for root knot nematode, Meloidogyne incognita, control, and its effect on the growth of Floradel tomato plant, Lycopersicon esculentum. To accomplish this goal, studies were conducted during which, experimental pots were set up in greenhouse environments using sterilized soil inoculated with 5,000 root-knot eggs per 1500 g soil. There were 4 treatments and 5 replications. Treatments were: No chitin; 50 g chitin; 100 g chitin; and 200 g chitin. A two-week wait period following Ecologic amendment preceded Floradel tomato planting to allow breakdown of the chitin material into the soil. Fresh and dry weights of shoot and root materials were taken as growth end-points. A statistically significant difference (p ≤ 0.05) was obtained with regard to the growth rate of L. esculentum at 100 g chitin treatment compared to the control with no chitin. Mean fresh weights of Floradel tomato were 78.0 ± 22.3g, 81.0 ± 20.3g, 109.0 ± 25.4g and 102.0 ± 33.3g at 0, 50, 100 and 200g chitin, respectively. The analysis of root knot nematode concentrations indicated a substantial effect on reproduction rate associated with chitin amendment. Study results showed a significant decrease in both root knot nematode eggs and juveniles (J2) at 100g and 200g Ecologic chitin levels, however, an increase in nematode concentrations was recorded at the 50g Ecologic chitin level (p ≤ 0.05). The mean amounts of J2 population, as expressed per 1500cm3 soil, were 49,933 ± 38,819, 86,050 ± 25248, 103 ± 133 and 103 ± 133 for 0, 50, 100 and 200g chitin, respectively. Similarly, the mean numbers of root knot nematode eggs (per 1500cm3 of soil) were 40,759 ± 36,712, 66,048 ± 39,730, 9,904 ± 16,591 and 9,257 ± 17,204. Root gall rating was also significantly lower (p ≤ 0.05) at the 100g and 200g chitin levels compared to the control. Percent gall ratings were 3.3 ± 1.0%, 3.2 ± 1.0%, 1.0 ± 0.5%, and 1.0% ± 0.6% for amendment levels of 0, 50, 100, and 200g chitin, respectively.
PMCID: PMC3662226  PMID: 18678924
Ecologic chitin; root knot nematode; tomato plant; agricultural management
9.  Evaluation of Cover Crops with Potential for Use in Anaerobic Soil Disinfestation (ASD) for Susceptibility to Three Species of Meloidogyne 
Journal of Nematology  2013;45(4):272-278.
Several cover crops with potential for use in tropical and subtropical regions were assessed for susceptibility to three common species of root-knot nematode, Meloidogyne arenaria, M. incognita, and M. javanica. Crops were selected based on potential use as organic amendments in anaerobic soil disinfestation (ASD) applications. Nematode juvenile (J2) numbers in soil and roots, egg production, and host plant root galling were evaluated on arugula (Eruca sativa, cv. Nemat), cowpea (Vigna unguiculata, cv. Iron & Clay), jack bean (Canavalia ensiformis, cv. Comum), two commercial mixtures of Indian mustard and white mustard (Brassica juncea & Sinapis alba, mixtures Caliente 61 and Caliente 99), pearl millet (Pennisetum glaucum, cv. Tifleaf III), sorghum-sudangrass hybrid (Sorghum bicolor × S. bicolor var. sudanense, cv. Sugar Grazer II), and three cultivars of sunflower (Helianthus annuus, cvs. 545A, Nusun 660CL, and Nusun 5672). Tomato (Solanum lycopersicum, cv. Rutgers) was included in all trials as a susceptible host to all three nematode species. The majority of cover crops tested were less susceptible than tomato to M. arenaria, with the exception of jack bean. Sunflower cv. Nusun 5672 had fewer M. arenaria J2 isolated from roots than the other sunflower cultivars, less galling than tomato, and fewer eggs than tomato and sunflower cv. 545A. Several cover crops did not support high populations of M. incognita in roots or exhibit significant galling, although high numbers of M. incognita J2 were isolated from the soil. Arugula, cowpea, and mustard mixture Caliente 99 did not support M. incognita in soil or roots. Jack bean and all three cultivars of sunflower were highly susceptible to M. javanica, and all sunflower cultivars had high numbers of eggs isolated from roots. Sunflower, jack bean, and both mustard mixtures exhibited significant galling in response to M. javanica. Arugula, cowpea, and sorghum-sudangrass consistently had low numbers of all three Meloidogyne species associated with roots and are good selections for use in ASD for root-knot nematode control. The remainder of crops tested had significant levels of galling, J2, and eggs associated with roots, which varied among the Meloidogyne species tested.
PMCID: PMC3873904  PMID: 24379486
Anaerobic soil disinfestation; ASD; Brassica juncea & Sinapis alba; Canavalia ensiformis; cover crops; cowpea; Eruca sativa; Helianthus annuus; jack bean; management; Meloidogyne arenaria; M. incognita; M. javanica; mustard; pearl millet; Pennisetum glaucum; root-knot nematodes; sorghum-sudangrass; sunflower; Vigna unguiculata
10.  An In Vitro Test for Temperature Sensitivity and Resistance to Meloidogyne incognita in Tomato 
Journal of Nematology  1993;25(1):83-88.
An in vitro root explant tissue culture technique is described for determining susceptibility of tomato (Lycopersicon esculentum Mill.) breeding lines and cultivars to the root-knot nematode Meloidogyne incognita. Root explants were taken from 2-day-old seedlings cultured for 30 days at 28 C on Gamborg's B-5 medium with or without nematode inoculum. The remaining portion of the root and stem from the excised root explants was transferred to soil in pots and grown to maturity in the greenhouse. In vitro root explants were evaluated for growth and occurrence of juveniles, adults, and egg masses. The regenerated plants were used to produce more seed, The proposed technique is simple, reliable, and adapted to routine screening of large numbers of F₁ and F₂ samples, and it utilizes less space than tests performed on intact plants in the greenhouse or growth chamber. Evidence is presented also on the breakdown of resistance to M. incognita under high temperature stress using this in vitro root explant technique.
PMCID: PMC2619351  PMID: 19279747
Culture; Lycopersicon esculentum; Meloidogyne incognita; nematode; resistance; root-knot nematode; temperature
11.  Trichoderma harzianum Endochitinase Does Not Provide Resistance to Meloidogyne hapla in Transgenic Tobacco 
Journal of Nematology  2000;32(3):289-296.
Eggs of Meloidogyne hapla contain chitin, a substrate for chitinase. Our goal was to determine if endochitinase from the biocontrol fungus T. harzianum expressed in transgenic tobacco increases resistance to this nematode. Endochitinase-transgenic T₁ tobacco seedlings expressing increased endochitinase activity in leaves (11 to 125 times over control) and roots (2 to 15 times over control) were transferred to quartz sand:loam soil mix (4:1 ratio) and inoculated with 5,000 M. hapla eggs/pot. Tomato (cv. Rutgers), pepper (cv. California Dream), and non-transformed tobacco plants were used as susceptible controls. Two experiments were performed in the greenhouse with nine and ten transgenic tobacco lines, respectively. Roots were harvested 55 days after inoculation, and number of eggs, secondstage juveniles (J2), reproductive factor (Rf), and (eggs + nematodes [J2])/g of fresh root weight were determined. The reproduction factor for tobacco plants ranged from 1.06 to 3.40. Significant differences in number of J2 and egg counts were found between some transgenic lines and control tobacco; however, they were not consistent for lines tested in both experiments. No statistical differences were detected for (eggs + nematodes [J2])/g of fresh root weight in either experiment. We conclude that the elevated endochitinase activity did not provide protection against root-knot nematodes.
PMCID: PMC2620450  PMID: 19270979
biocontrol; chitinase; endochitinase; Meloidogyne hapla; Nicotiana tabacum; northern rootknot nematode; resistance; tobacco; transgenic; Trichoderma harzianum
12.  Reproduction of Meloidogyne javanica on Plant Roots Genetically Transformed by Agrobacterium rhizogenes 
Journal of Nematology  1988;20(4):599-604.
Reproduction of Meloidogyne javanica was compared on several Agrobacterium rhizogenes-transformed root cultures under monoxenic conditions. M. javanica reproduced on all transformed roots tested; however, more females and eggs were obtained on potato and South Australian Early Dwarf Red tomato than on bindweed, Tropic tomato, lima bean, or carrot. Roots that grew at moderate rates into the agar and produced many secondary roots supported the highest reproduction. Numbers of females produced in cultures of transformed potato roots increased with increasing nematode inoculum levels, whether inoculum was dispersed eggs or juveniles. Females appeared smaller, produced fewer eggs, and were found in coalesced galls at the higher inoculum levels. The ratio between the final and initial population decreased sharply as the juvenile inoculum increased. The second-stage juvenile was preferred to dispersed eggs or egg masses for inoculation of tissue culture systems because quantity and viability of inoculum were easily assessed. Meloidogyne javanica reared on transformed root cultures were able to complete their life cycles on new transformed root cultures or greenhouse tomato plants.
PMCID: PMC2618848  PMID: 19290260
Agrobacterium rhizogenes; bindweed; carrot; gnotobiotic; hairy root pathogen; inoculum level; lima bean; Meloidogyne javanica; monoxenic; nematode Stage; potato; root-knot nematode; tissue culture; tomato
13.  Evaluation of Paecilomyces lilacinus as a Biocontrol Agent of Meloidogyne javanica on Tobacco 
Journal of Nematology  1988;20(4):578-584.
The efficacy of the nematode parasite Paecilomyces lilacinus, alone and in combination with phenamiphos and ethoprop, for controlling the root-knot nematode Meloidogyne javanica on tobacco and the ability of this fungus to colonize in soil under field conditions were evaluated for 2 years in microplots. Combinations and individual treatments of the fungus grown on autoclaved wheat seed, M. javanica eggs (76,000 per plot), and nematicides were applied to specified microplots at the time of transplanting tobacco the first year. Vetch was planted as a winter cover crop, and the fungus and nematicides were applied again the second year to specified plots at transplanting time. The fungus did not control the nematode in either year of these experiments. The average root-gall index (0 = no visible galls and 5 = > 100 galls per root system) ranged from 2.7 to 3.9 the first year and from 4.3 to 5.0 the second in nematode-infested plots treated with nematicides. Plants with M. javanica alone or in combination with P. lilacinus had galling indices of 5.0 both years; the latter produced lower yields than all other treatments during both years of the study. Nevertheless, the average soil population densities of P. lilacinus remained high, ranging from 1.2 to 1.3 × 106 propagules/g soil 1 week after the initial inoculation and from 1.6 to 2.3 × 104 propagules/g soil at harvest the second year. At harvest the second year the density of fungal propagules was greatest at the depth of inoculation, 15 cm, and rapidly decreased below this level.
PMCID: PMC2618854  PMID: 19290257
biocontrol; ethoprop; 1,3-dichloropropene; fenamiphos; fungal egg parasite; Meloidogyne javanica; nematicide; Nicotiana tabacum; Paecilomyces lilacinus; root-knot nematode; tobacco; vetch; Vicia vilIosa
14.  (Homo)glutathione Deficiency Impairs Root-knot Nematode Development in Medicago truncatula 
PLoS Pathogens  2012;8(1):e1002471.
Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. Detailed analysis of glutathione (GSH) and homoglutathione (hGSH) metabolism demonstrated the importance of these compounds for the success of nematode infection in Medicago truncatula. We reported quantification of GSH and hGSH and gene expression analysis showing that (h)GSH metabolism in neoformed gall organs differs from that in uninfected roots. Depletion of (h)GSH content impaired nematode egg mass formation and modified the sex ratio. In addition, gene expression and metabolomic analyses showed a substantial modification of starch and γ-aminobutyrate metabolism and of malate and glucose content in (h)GSH-depleted galls. Interestingly, these modifications did not occur in (h)GSH-depleted roots. These various results suggest that (h)GSH have a key role in the regulation of giant cell metabolism. The discovery of these specific plant regulatory elements could lead to the development of new pest management strategies against nematodes.
Author Summary
Parasitic nematodes are microscopic worms that cause major diseases of plants, animals and humans. During compatible interactions, root-knot nematodes (RKN) induce the formation of galls in which redifferentiation of root cells into multinucleate and hypertrophied giant cells is essential for nematode growth and reproduction. The importance of glutathione (GSH), a major antioxidant molecule involved in plant development, in plant microbe interaction and in abiotic stress response, was analyzed during the plant-RKN interaction. Our analyses demonstrated that the gall development and functioning are characterized by an adapted GSH metabolism and that depletion of GSH content impairs nematode reproduction and modified sex ratio. This phenotype is linked to specific modifications of carbon metabolism which do not occur in uninfected roots indicating a peculiar metabolism of this neoformed organ. This first metabolomic analysis during the plant-RKN interaction highlights the regulatory role played by GSH in this pathogenic interaction and completes our vision of the role of GSH during plant-pathogen interactions. RKN sex ratio modification has previously been observed under unfavorable nematode feeding conditions suggesting that the GSH-redox system could be a general sensor of gall fitness in natural conditions.
PMCID: PMC3252378  PMID: 22241996
15.  Isolation and Characterization of a Rhizobacterial Antagonist of Root-Knot Nematodes 
PLoS ONE  2014;9(1):e85988.
The rhizobacterial strain Jdm2 was isolated from the rhizosphere of the traditional Chinese medicinal herb Trichosanthes kirilowii in Jiangsu province, China, and was identified as Bacillus subtilis. Exposure of cell-free filtrate of the strain to the root-knot nematode Meloidogyne incognita under in vitro conditions caused substantial mortality of the second stage juvenile (J2) and significantly reduced egg hatchability. A greenhouse trial demonstrated that 56 days after treatment with Jdm2, the number of galls associated with M. incognita infection in the tomato (Solanum lycopersicum) roots was significantly reduced compared to controls, and the disease severity of infected plants was lower in treated plants (36%) compared to water control (75%). Consistently, in the field trial, the biocontrol efficacy of Jdm2 reached 69%, 51% and 48% after 30, 60 and 90 days post-transplantation, respectively. As indicated by PCR-DGGE analysis, inoculation with Jdm2 strain had an effect on the bacterial community of the tomato rhizosphere at the first stage, but was not able to imperil the bacterial community stability for long time. The novel bacterial strain Jdm2 enhances plant growth and inhibits nematode activity, and has the potential to be a safe and effective microbial pesticide.
PMCID: PMC3897607  PMID: 24465828
16.  Comparison of Methods for Assessing Resistance to Meloidogyne arenaria in Peanut 
Journal of nematology  2007;39(2):169-175.
Use of resistant cultivars is a desirable approach to manage the peanut root-knot nematode (Meloidogyne arenaria). To incorporate resistance into commercially acceptable cultivars requires reliable, efficient screening methods. To optimize the resistance screening protocol, a series of greenhouse tests were done using seven genotypes with three levels of resistance to M. arenaria. The three resistance levels could be separated based on gall indices as early as two weeks after inoculation (WAI) using 8,000 eggs of M. arenaria per plant, while four or more weeks were needed when 1,000–6,000 eggs/plant were used. High inoculum densities (over 8,000 eggs/plant) were needed to separate the three resistance levels based on eggs per gram of root within eight WAI. A gall index based on percentage of galled roots could separate the three resistance levels at lower inoculum levels and earlier harvest dates than other assessment methods. The use of eggs vs. second-stage juveniles (J2) as inoculum provided similar results; however, it took three to five more days to collect J2 than to collect eggs from roots. Plant age affected gall index and nematode reproduction on peanut, especially on the susceptible genotypes AT201 and D098. The genotypes were separated into their correct resistance classes when inoculated 10 to 30 days after planting, but were not separated correctly when inoculated on day 40.
PMCID: PMC2586494  PMID: 19259486
Arachis hypogaea; assessment date; host-plant resistance; inoculation date; inoculum level; inoculum type; Meloidogyne arenaria; method; peanut; resistance evaluation; root-knot nematode
17.  Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions 
Numerous species of soil bacteria which flourish in the rhizosphere of plants or around plant tissues stimulate plant growth and reduce nematode population by antagonistic behavior. These bacteria are collectively known as PGPR (plant growth promoting rhizobacteria). The effects of six isolates of PGPR Pseudomonas putida, Pseudomonas fluorescens, Serratia marcescens, Bacillus amyloliquefaciens, Bacillus subtilis and Bacillus cereus, were studied on tomato plant growth and root knot nematode reproduction after 45 days from nematode infection. The highest number of shoot dry weight/g (43.00 g) was detected in the plant treated with S. marcescens; then P. putida (34.33 g), B. amyloliquefaciens (31.66 g), P. fluorescens (30.0 g), B. subtilis (29.0 g), B. cereus (27.0 g) and nematode alone (untreated) 20 g/plant. While the highest number of plant height was observed when plant was treated with S. marcescens, P. fluorescens, P. putida, B. amyloliquefaciens and P. putida 52.66, 50.66, 48 and 48 cm respectively. No significant differences were seen between previous treatments but only had significant differences compared with untreated plant. The highest number of fruit/plant was observed when plants were treated with S. marcescens (10.66), then B. amyloliquefaciens (8.66), P. putida (8), P. fluorescens (8) and B. cereus (7.66). No significant differences between the last 4 treatments, but all had significant differences compared with untreated plants. The highest weight of plant yield (g) was observed with S. marcescens (319.6 g/plant) and the lowest weight of plant yield was observed in plants treated with nematode alone (untreated). On the other hand, the lowest numbers of J2/10 g of soil (78), galls/root, (24.33) galls/root, egg masses/root (12.66) and egg/egg masses were observed in the plants treated with S. marcescens.
PMCID: PMC3730550  PMID: 23961220
PGPR; Meloidogyne; Biological control; Rhizobacteria; Pseudomonas
18.  Host Suitability of the Olive Cultivars Arbequina and Picual for Plant-Parasitic Nematodes 
Journal of Nematology  2003;35(1):29-34.
Host suitability of olive cultivars Arbequina and Picual to several plant-parasitic nematodes was studied under controlled conditions. Arbequina and Picual were not suitable hosts for the root-lesion nematodes Pratylenchus fallax, P. thornei, and Zygotylenchus guevarai. However, the ring nematode Mesocriconema xenoplax and the spiral nematodes Helicotylenchus digonicus and H. pseudorobustus reproduced on both olive cultivars. The potential of Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica, as well as P. vulnus and P. penetrans to damage olive cultivars, was also assessed. Picual planting stocks infected by root-knot nematodes showed a distinct yellowing affecting the uppermost leaves, followed by a partial defoliation. Symptoms were more severe on M. arenaria and M. javanica-infected plants than on M. incognita-infected plants. Inoculation of plants with 15,000 eggs + second-stage juveniles/pot of these Meloidogyne spp. suppressed the main height of shoot and number of nodes of Arbequina, but not Picual. Infection by each of the two lesion nematodes (5,000 nematodes/pot) or by each of the three Meloidogyne spp. suppressed (P < 0.05) the main stem diameter of both cultivars. On Arbequina, the reproduction rate of Meloidogyne spp. was higher (P < 0.05) than that of Pratylenchus spp.; on Picual, Pratylenchus spp. reproduction was higher (P < 0.05) than that of Meloidogyne spp.
PMCID: PMC2620601  PMID: 19265971
Helicotylenchus digonicus; H. pseudorobustus; Meloidogyne arenaria; M. incognita; M. javanica; Mesocriconema xenoplax; Olea europaea; olive nurseries; Pratylenchus fallax; P. penetrans; P. thornei; P. vulnus; reproduction; ring nematodes; root-knot nematodes; root-lesion nematodes; spain; spiral nematodes; Zygotylenchus guevarai
19.  The effect of different initial densities of nematode (Meloidogyne javanica) on the build-up of Pasteuria penetrans population 
Pasteuria penetrans will build-up faster where there is a high initial nematode density and can suppress root-knot nematode populations in the roots of tomato plants. The effect of different initial densities of nematode (Meloidogyne javanica) (150, 750, 1500, 3000) and P. penetrans infected females (F1, F3) densities (F0=control and AC=absolute control without nematode or P. penetrans inoculum) on the build-up of Pasteuria population was investigated over four crop cycles. Two major points of interest were highlighted. First, that within a confined soil volume, densities of P. penetrans can increase >100 times within 2 or 3 crop cycles. Second, from a relatively small amount of spore inoculum, infection of the host is very high. There were more infected females in the higher P. penetrans doses. The root growth data confirms the greater number of females in the controls particularly at the higher inoculum densities in the third and fourth crops. P. penetrans generally caused the fresh root weights to be higher than those in the control. P. penetrans has shown greater reduction of egg masses per plant at most densities. The effects of different initial densities of M. javanica and P. penetrans on the development of the pest and parasite populations were monitored. And no attempt was made to return the P. penetrans spores to the pots after each crop so the build-up in actual numbers of infected females and spores under natural conditions may be underestimated.
PMCID: PMC1389625  PMID: 15633246
Pasteuria penetrans; Meloidogyne javanica; Densities; Population build-up
20.  Carbon Partitioning in Soybean Infected with Meloidogyne incognita and M. javanica 
Journal of Nematology  1999;31(3):348-355.
Seven-day-old seedlings of two cultivars (Cristalina and UFV ITM1) of Glycine max were inoculated with 0, 3,000, 9,000, or 27,000 eggs of Meloidogyne incognita race 3 or M. javanica and maintained in a greenhouse. Thirty days later, plants were exposed to ¹⁴CO₂ for 4 hours. Twenty hours after ¹⁴CO₂ exposure, the root fresh weight, leaf dry weight, nematode eggs per gram of root, total and specific radioactivity of carbohydrates in roots, and root carbohydrate content were evaluated. Meloidogyne javanica produced more eggs than M. incognita on both varieties. A general increase in root weight and a decrease in leaf weight with increased inoculum levels were observed. Gall tissue appeared to account for most of the root mass increase in seedlings infected with M. javanica. For both nematodes there was an increase of total radioactivity in the root system with increased levels of nematodes, and this was positively related to the number of eggs per gram fresh weight and to the root fresh weight, but negatively related to leaf dry weight. In most cases, specific radioactivities of sucrose and reducing sugars were also increased with increased inoculum levels. Highest specific radioactivities were observed with reducing sugars. Although significant changes were not observed in endogenous levels of carbohydrates, sucrose content was higher than reducing sugars. The data show that nematodes are strong metabolic sinks and significantly change the carbon distribution pattern in infected soybean plants. Carbon partitioning in plants infected with nematodes may vary with the nematode genotype.
PMCID: PMC2620374  PMID: 19270907
carbohydrates; carbon partitioning; Glycine max; Meloidogyne incognita; Meloidogyne javanica; nematode; photoassimilate translocation; root growth; soybean
21.  Effect of Soils from Six Management Systems on Root-knot Nematodes and Plant Growth in Greenhouse Assays 
Journal of Nematology  2005;37(4):467-472.
The effects of soil management systems on root-knot nematode (Meloidogyne incognita) eggs and gall incidence on tomato (Lycopersicon esculentum) and cucumber (Cucumis sativus) following tomato were evaluated. Soil was collected from a replicated field experiment in which six management systems were being assessed for vegetable production. Soil management systems were conventional production, organic production, bahiagrass (Paspalum notatum) pasture, bahiagrass: Stylosanthes (Stylosanthes guianensis) pasture, bare ground fallow, and weed fallow. Soil was collected from field plots and used in greenhouse experiments. Identification of egg-parasitic fungi and the incidence of root-knot nematode galling were assessed both on tomato and cucumber planted in the same pots following the removal of tomato plants. Organic, bare ground fallow and conventional production treatments reduced galling both on tomato and on cucumber following tomato. Although no treatment consistently enhanced egg-parasitic fungi, management system did affect egg viability and the types of fungi isolated from parasitized eggs.
PMCID: PMC2620999  PMID: 19262892
biological control; cropping systems; cucumber; Cucumis sativus; fungal egg parasites; Lycopersicon esculentum; Meloidogyne incognita; root-knot nematode; tomato
22.  Incidence and Pathogenicity of Plant-Parasitic Nematodes Associated with Blueberry (Vaccinium spp.) Replant Disease in Georgia and North Carolina 
Journal of Nematology  2013;45(2):92-98.
Blueberry replant disease (BRD) is an emerging threat to continued blueberry (Vaccinium spp.) production in Georgia and North Carolina. Since high populations of ring nematode Mesocriconema ornatum were found to be associated with commercially grown blueberries in Georgia, we hypothesized that M. ornatum may be responsible for predisposing blueberry to BRD. We therefore tested the pathogenicity of M. ornatum on 10-wk-old Rabbiteye blueberries (Vaccinium virgatum) by inoculating with initial populations (Pi) of 0 (water control), 10, 100, 1,000. and 10,000 mixed stages of M. ornatum/pot under both greenhouse (25 ± 2°C) and field microplot conditions. Nematode soil population densities and reproduction rates were assessed 75, 150, 225, and 255, and 75, 150, 225, and 375 d after inoculation (DAI) in both the greenhouse and field experiments, respectively. Plant growth parameters were recorded in the greenhouse and field microplot experiments at 255 and 375 DAI, respectively. The highest M. ornatum population density occurred with the highest Pi level, at 75 and 150 DAI under both greenhouse (P < 0.01) and field (P < 0.01) conditions. However, M. ornatum rate of reproduction increased significantly in pots receiving the lowest Pi level of 10 nematodes/plant compared with the pots receiving Pi levels of 100, 1,000, and 10,000 nematodes 75 DAI. Plant-parasitic nematode populations were determined in commercial blueberry replant sites in Georgia and North Carolina during the 2010 growing season. Mesocriconema ornatum and Dolichodorus spp. were the predominant plant-parasitic nematodes in Georgia and North Carolina, respectively, with M. ornatum occurring in nearly half the blueberry fields sampled in Georgia. Other nematode genera detected in both states included Tylenchorhynchus spp., Hoplolaimus spp., Hemicycliophora spp., and Xiphinema spp. Paratrichodorus spp. was also found only in Georgia. In Georgia, our results indicate that blueberry is a host for M. ornatum and its relationship to BRD warrants further investigation.
PMCID: PMC3700742  PMID: 23833323
blueberry; host-parasitic relationship; Mesocriconema ornatum; replant disease; ring nematode; Vaccinium spp
23.  Optimum Initial Inoculum Levels for Evaluation of Resistance in Tomato to Meloidogyne spp. at Two Different Soil Temperatures 
Journal of Nematology  1982;14(4):536-539.
The effects of Meloidogyne incognita or M. javanica at five initial inoculum levels of 20, 100, 200, 1,000, and 2,000 eggs and infective juveniles per seedling on 'Floradade,' 'Nemarex,' 'Patriot,' and 'PI 129149-2(sib)-5' tomatoes maintained at 25 or 32.5 C were studied. The number of egg masses on roots of the susceptible cultivar Floradade was similar for both species of root-knot nematodes at either 2.5 or 32.5 C soil temperatures. At 25 C, very low numbers of egg masses were produced by both species of root-knot nematodes on Nematex, Patriot, and Lycopersicon peruvianum PI 129149-2(sib)-5. At 32.5 C, the best inoculum level for assessing resistance in these tomato genotypes was 200 eggs and infective juveniles per seedling. With 28 days of incubation, this temperature and inoculum level produced quantitative differences in resistance for both species of Meloidogyne.
PMCID: PMC2618214  PMID: 19295749
Lycopersicon; root-knot nematode
24.  Reproductive and Damage Potentials of Two Populations of Rotylenchulus reniformis on Sweetpotato and Related Comparisons with Meloidogyne javanica on Tomato 
Journal of Nematology  1993;25(4S):830-835.
Two Rotylenchulus reniformis populations (North Carolina and Georgia) were compared on sweetpotato and tomato. 'Beauregard' sweetpotato and 'Better Boy' and 'Marion' tomato were excellent hosts for both R. reniformis populations. On Beauregard sweetpotato, the two populations did not differ in fecundity; however, on both tomato cultivars, the Georgia population reproduced at a higher rate than the North Carolina population (P ≤ 0.05). Meloidogyne javanica reproduction was higher (P ≤ 0.05) on Marion than on Better Boy. Neither population of reniform nematodes suppressed shoot growth of tomato or sweetpotato at any Pi (initial population density). Both populations of R. reniformis, however, restricted storage-root growth of Beauregard sweetpotato but enhanced shoot growth. When the Georgia population was evaluated in microplots with Pi levels of 0, 20,000, or 40,000 R. reniformis/500 cm³ soil, total fruit weights of Better Boy tomato were not affected. In the greenhouse, Marion tomato fresh shoot and fruit growth (weights) was suppressed by M. javanica, but Better Boy was not affected. Root necrosis increased linearly with Pi on Beauregard sweetpotato grown in the greenhouse and became more pronounced as numbers of R. reniformis increased, regardless of the population. The cultivars of tomatoes evaluated were tolerant to the two populations ofR. reniformis in a sandy soil and exhibited no root necrosis. Marion tomato was highly susceptible to M. javanica, while Better Boy was tolerant.
PMCID: PMC2619457  PMID: 19279849
Ipomoea batatas; Lycopersicon esculentum; Meloidogyne javanica; nematode; reniform nematode; root-knot nematode; Rotylenchulus reniformis; sweetpotato; tomato; yield
25.  Relationships Between Tolerance and Resistance to Meloidogyne incognita in Cotton 
Journal of Nematology  2003;35(4):411-416.
The southern root-knot nematode, Meloidogyne incognita, is the most damaging pathogen of cotton in the United States, and both resistance and tolerance to M. incognita could be valuable management approaches. Our objectives were to evaluate advanced cotton breeding lines for resistance and tolerance to M. incognita and to determine if a relationship between resistance and tolerance exists. Reproduction of M. incognita was evaluated on 17 breeding lines, a susceptible control (Delta and Pine Land DP5415), and a resistant control (M-120) in two greenhouse trials with six replications in a randomized complete block design. Two-week-old seedlings were inoculated with 8,000 M. incognita eggs and assessed for egg production 8 weeks later. Reproduction on the resistant control was only 10% of that on the susceptible control. Eight breeding lines supported 45% to 57% less (P <= 0.05) nematode reproduction than the susceptible control, and none of them were as resistant as M-120. Yield was determined in 2001 and 2002 in fumigated (1,3-dichloropropene at 56 liters/ha) and nonfumigated plots in a strip-plot design with three replications in a field naturally infested with M. incognita. Yield suppression caused by nematode infection differed among genotypes (P ≤ 0.05 for genotype × fumigation interaction). Six genotypes in 2001 and nine in 2002 were tolerant to M. incognita based on no difference in yield between the fumigated and nonfumigated plots (P ≥ 0.10). However, only three genotypes had no significant yield suppression in both years, of which two also were resistant to M. incognita. Regression analysis indicated that yield suppression decreased linearly as nematode resistance increased.
PMCID: PMC2620686  PMID: 19262772
Gossypium hirsutum; Meloidogyne incognita; nematode management; southern root-knot nematode

Results 1-25 (756502)