PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (477712)

Clipboard (0)
None

Related Articles

1.  Overview of Organic Amendments for Management of Plant-Parasitic Nematodes, with Case Studies from Florida 
Journal of Nematology  2011;43(2):69-81.
Organic amendments have been widely used for management of plant-parasitic nematodes. Relatively rapid declines in nematode population levels may occur when decomposing materials release toxic compounds, while longer-term effects might include increases in nematode antagonists. Improved crop nutrition and plant growth following amendment use may lead to tolerance of plant-parasitic nematodes. Results depend on a great variety of factors such as material used, processing/composting of material, application rate, test arena, crop rotation and agronomic practices, soil type, climate, and other environmental factors. Reasons for variable performance and interpretation of results from amendment studies are discussed. Case studies of amendments for nematode management are reviewed from Florida, where composts and crop residues are the most frequently used amendments. Plant growth was often improved by amendment application, free-living nematodes (especially bacterivores) were often stimulated, but suppression of plant-parasitic nematodes was inconsistent. Amendments were generally not as effective as soil fumigation with methyl bromide for managing root-knot nematodes (Meloidogyne spp.), and often population levels or galling of root-knot nematodes in amended plots did not differ from those in non-amended control plots. While amendments may improve plant growth and stimulate soil food webs, additional study and testing are needed before they could be used reliably for management of plant-parasitic nematodes under Florida conditions.
PMCID: PMC3380460  PMID: 22791915
biological control; compost; free-living nematodes; mulch; organic agriculture; pest management; soil food web; sustainable agriculture
2.  Effect of Meloidogyne arenaria and Mulch Type on Okra in Microplot Experiments 
Journal of Nematology  1998;30(4S):616-623.
The effects of perennial peanut (Arachis glabrata) hay, an aged yard-waste compost (mainly woodchips), and a control treatment without amendment were determined on two population levels of root-knot (Melaidogyne arenaria) nematode over three consecutive years in field microplots. Okra (Hibiscus esculentus, susceptible to the root-knot nematode) and a rye (Secale cereale) cover crop (poor nematode host) were used in the summer and winter seasons, respectively. The organic amendment treatments affected plant growth parameters. In the first year, okra yields were greatest in peanut-amended plots. Yield differences with amendment treatment diminished in the second and third years. Okra plant height, total fruit weight, and fruit number were greater with the lower population level of the root-knot nematode. Residual levels of nutrients in soil were greater where root-knot nematode levels and damage were higher and plant growth was poor. Nutrient levels affected the growth of a subsequent rye cover crop.
PMCID: PMC2620323  PMID: 19274256
compost; Hibiscus esculentus; Meloidogyne arenaria; nematode; organic amendments; pest management; root-knot nematode; sustainable agriculture
3.  Assessing Cross-disciplinary Efficiency of Soil Amendments for Agro-biologically, Economically, and Ecologically Integrated Soil Health Management 
Journal of Nematology  2010;42(1):73-77.
Preventive and/or manipulative practices will be needed to maintain soil's biological, physiochemical, nutritional, and structural health in natural, managed, and disturbed ecosystems as a foundation for food security and global ecosystem sustainability. While there is a substantial body of interdisciplinary science on understanding function and structure of soil ecosystems, key gaps must be bridged in assessing integrated agro-biological, ecological, economical, and environmental efficiency of soil manipulation practices in time and space across ecosystems. This presentation discusses the application of a fertilizer use efficiency (FUE) model for assessing agronomic, economic, ecological, environmental, and nematode (pest) management efficiency of soil amendments. FUE is defined as increase in host productivity and/or decrease in plant-parasitic nematode population density in response to a given fertilizer treatment. Using the effects of nutrient amendment on Heterodera glycines population density and normalized difference vegetative index (indicator of physiological activities) of a soybean cultivar ‘CX 252’, how the FUE model recognizes variable responses and separates nutrient deficiency and toxicity from nematode parasitism as well as suitability of treatments designed to achieve desired biological and physiochemical soil health conditions is demonstrated. As part of bridging gaps between agricultural and ecological approaches to integrated understanding and management of soil health, modifications of the FUE model for analyzing the relationships amongst nematode community structure, soil parameters (eg. pH, nutrients, %OM), and plant response to soil amendment is discussed.
PMCID: PMC3380514  PMID: 22736840
fertilizer use efficiency model; normalized difference vegetative index; nutrient amendment; soil amendments; soil degradation; soybeans; soybean cyst nematode
4.  Effect of Broccoli (Brassica oleracea) Tissue, Incorporated at Different Depths in a Soil Column, on Meloidogyne incognita  
Journal of nematology  2007;39(2):111-117.
Brassicas have been used frequently for biofumigation, a pest-management strategy based on the release of biocidal volatiles during decomposition of soil-incorporated tissue. However, the role of such volatiles in control of plant-parasitic nematodes is unclear. The goal of this study was to determine the direct localized and indirect volatile effects of amending soil with broccoli tissue on root-knot nematode populations. Meloidogyne incognita-infested soil in 50-cm-long tubes was amended with broccoli tissue, which was mixed throughout the tube or concentrated in a 10-cm layer. After three weeks at 28°C, M. incognita populations in the amended tubes were 57 to 80% smaller than in non-amended tubes. Mixing broccoli throughout the tubes reduced M. incognita more than concentrating broccoli in a 10-cm layer. Amending a 10-cm layer reduced M. incognita in the non-amended layers of those tubes by 31 to 71%, probably due to a nematicidal effect of released volatiles. However, the localized direct effect was much stronger than the indirect effect of volatiles. The strong direct effect may have resulted from the release of non-volatile nematicidal compounds. Therefore, when using biofumigation with broccoli to control M. incognita, the tissue should be thoroughly and evenly mixed through the soil layer(s) where the target nematodes occur. Effects on saprophytic nematodes were the reverse. Amended soil layers had much greater numbers of saprophytic nematodes than non-amended layers, and there was no indirect effect of amendments on saprophytic nematodes in adjacent non-amended layers.
PMCID: PMC2586485  PMID: 19259479
amendment; biofumigation; broccoli; Brassica oleracea; management; Meloidogyne incognita; root-knot nematode; soil
5.  Nematode Population Fluctuations during Decomposition of Specific Organic Amendments 
Journal of Nematology  1999;31(1):37-44.
Population densities of nematodes in field soil without plants were monitored for 10 months following application of organic amendments to pots in a greenhouse. The four treatments consisted of three different kinds of organic amendments: homogeneous crop residues of maize (Zea mays, C:N = 48.0:1), Texas panicum (Panicum texanum, C:N = 32.9:1), or velvetbean (Mucuna pruriens, C:N = 18.6:1), plus a control without any amendment. Plant-parasitic nematodes declined in all treatments due to absence of a food source. Bacterivore numbers increased following amendment application and remained greater than initial population levels until 4 months after application. Fungivore numbers were higher than initial levels until 6 months after amendment application and did not decline below the initial numbers during the course of the experiment. On several sampling dates, the bacterivorous genera Cervidellus and Eucephalobus were most abundant in pots with maize residues. Among the fungivores, Aphelenchoides numbers early in the experiment were greatest in pots amended with velvetbean, whereas numbers of Aphelenchus, Nothotylenchus, and Tylenchidae (mainly Filenchus) were greatest during the latter half of the experiment following the maize amendment. Omnivorous nematodes, particularly Eudorylaimus, showed two peaks in abundance during the course of the experiment. Results provided some evidence that population levels of some genera of bacterivores and fungivores may be affected by specific organic amendments.
PMCID: PMC2620342  PMID: 19270873
bacterivores; fungivores; nematode community; omnivores; plant parasitics; predators; soil ecology; trophic groups
6.  Parasitism of Nematodes by the Fungus Hirsutella rhossiliensis as Affected by Certain Organic Amendments 
Journal of Nematology  1994;26(2):152-161.
Experiments were conducted to determine whether the addition of organic matter to soil increased numbers of bacterivorous nematodes and parasitic activity of the nematophagous fungus Hirsutella rhossiliensis. In a peach orchard on loamy sand, parasitism of the plant-parasitic nematode Criconemella xenoplax by H. rhossiliensis was slightly suppressed and numbers of C. xenoplax were not affected by addition of 73 metric tons of composted chicken manure/ha. In the laboratory, numbers of bacterivorous nematodes (especially Acrobeloides spp.) and fungivorous nematodes increased but parasitism of nematodes by H. rhossiliensis usually decreased with addition of wheat straw or composted cow manure to a loamy sand naturally infested with H. rhossiliensis. These results do not support the hypothesis that organic amendments will enhance parasitism of nematodes by H. rhossiliensis.
PMCID: PMC2619489  PMID: 19279878
bacterivorous nematode; biocontrol; biological control; Criconemella xenoplax; density-dependent parasitism; fungivorous nematode; Hirsutella rhossiliensis; nematode; nematophagous fungus; organic amendment
7.  Effects of Solarization and Ammonium Amendments on Plant-Parasitic Nematodes 
Journal of Nematology  2000;32(4S):537-541.
The effects of soil solarization and ammonium bicarbonate or ammonium sulfate against plant-parasitic nematodes on yellow squash (Cucurbita pepo) and on vinca (Catharanthus roseus) were evaluated at two sites. Solarization for 3 weeks in the spring suppressed population levels of Belonolaimus longicaudatus, Criconemella spp., and Dolichodorus heterocephalus throughout the growing season on both crops at both sites. Levels of Meloidogyne incognita were suppressed initially, but population densities increased by the end of the crop in several cases. In one site, numbers of Paratrichodorus minor resurged following solarization to levels that were greater than those present in unsolarized control plots. The effect of solarization was not enhanced by combination with ammonium amendments, but, in one site, application of ammonium bicarbonate or ammonium sulfate resulted in lower numbers of B. longicaudatus than in the unamended control. Additional research and improved efficacy of candidate amendments are required before they can be successfully integrated with solarization for nematode management. Efficacy of solarization against plant-parasitic nematodes was achieved despite a relatively short (3 weeks) solarization period.
PMCID: PMC2620486  PMID: 19271007
ammonium bicarbonate; ammonium sulfate; Belonolaimus longicaudatus; Catharanthus roseus; Cucurbita pepo; Dolichodorus heterocephalus; integrated pest management; Meloidogyne incognita; nematode; Paratrichodorus minor; squash; sustainable agriculture; vinca
8.  Nematode Indicators of Organic Enrichment 
Journal of nematology  2006;38(1):3-12.
The organisms of the soil food web, dependent on resources from plants or on amendment from other sources, respond characteristically to enrichment of their environment by organic matter. Primary consumers of the incoming substrate, including bacteria, fungi, plant-feeding nematodes, annelids, and some microarthropods, are entry-level indicators of enrichment. However, the quantification of abundance and biomass of this diverse group, as an indicator of resource status, requires a plethora of extraction and assessment techniques. Soluble organic compounds are absorbed by bacteria and fungi, while fungi also degrade more recalcitrant sources. These organisms are potential indicators of the nature of incoming substrate, but current methods of biomass determination do not reliably indicate their community composition. Guilds of nematodes that feed on bacteria (e.g., Rhabditidae, Panagrolaimidae) and fungi (e.g., Aphelenchidae, Aphelenchoididae) are responsive to changes in abundance of their food. Through direct herbivory, plant-feeding nematodes (e.g., many species of Tylenchina) also contribute to food web resources. Thus, analysis of the nematode community of a single sample provides indication of carbon flow through an important herbivore channel and through channels mediated by bacteria and fungi. Some nematode guilds are more responsive than others to resource enrichment. Generally, those bacterivores with short lifecycles and high reproductive potential (e.g., Rhabditidae) most closely mirror the bloom of bacteria or respond most rapidly to active plant growth. The feeding habits of some groups remain unclear. For example, nematodes of the Tylenchidae may constitute 30% or more of the individuals in a soil sample; further study is necessary to determine which resource channels they portray and the appropriate level of taxonomic resolution for this group. A graphic representation of the relative biomass of bacterivorous, fungivorous, and herbivorous nematodes provides a useful tool for assessing the importance of the bacterial, fungal, and plant resource channels in an extant food web.
PMCID: PMC2586436  PMID: 19259424
enrichment index; enrichment profile; faunal analysis; soil food web; structure index
9.  Response of Plant Parasitic and Free Living Soil Nematodes to Composted Animal Manure Soil Amendments 
Journal of Nematology  2012;44(4):329-336.
In an outside pot experiment, dry pig manure processed on pine sawdust litter and fermented for seven days by house fly larvae (fermented manure), and pine sawdust applied alone, and in combination with a spring application of inorganic nitrogen fertilizer were used to determine their effects on plant parasitic and free-living soil nematodes on sugar beets (cv. Antek). Non amended soil was used as a control. All treatments with fermented pig manure and sawdust with nitrogen fertilizer decreased number of plant parasitic nematodes and also root-fungal feeding nematodes compared to the untreated control. Sawdust applied alone had no effect on plant parasitic and root-fungal feeding nematode suppression. Free-living nematodes which were mainly bacteriovores and fungivores were significantly more abundant in soil amended with fermented pig manure, while the sawdust had no effect on these nematodes. The effect of all tested treatments on omnivores-predators was rather random, and in general, the number of these nematodes decreased after soil amendment applications compared to the untreated control.
PMCID: PMC3592367  PMID: 23482503
fermented animal manure; nematode trophic groups; nitrogen amendments; phytoparasitic nematodes; sawdust
10.  Nematode Communities in Organically and Conventionally Managed Agricultural Soils 
Journal of Nematology  1999;31(2):142-154.
Interpretation of nematode community indices requires a reference to a relatively undisturbed community. Maturity and trophic diversity index values were compared for five pairs of certified organically and conventionally managed soils in the Piedmont region of North Carolina. Available nitrogen (nitrate, ammonium) was estimated at various lag periods relative to times of sampling for nematode communities to determine the strength of correlative relationship between nematode communities and nitrogen availability. Soils were sampled six times yearly in 1993 and 1994 to determine the best time of year to sample. Maturity values for plant parasites were greater in organically than conventionally managed soils, and differences between management systems were greater in fall than spring months. However, other maturity and diversity indices did not differ between the two management practices. Differences in crop species grown in the two systems accounted for most differences observed in the community of plant-parasitic nematodes. Indices of free-living nematodes were correlated negatively with concentrations of ammonium, whereas indices of plant-parasitic nematodes were correlated positively with concentrations of nitrate. Due to the similarity of index values between the two systems, organically managed soils are not suitable reference sites for monitoring and assessing the biological aspects of soil quality for annually harvested crops.
PMCID: PMC2620368  PMID: 19270884
community structure; conventional farming; ecology; maturity index; monitoring; nematode; ordination; organic farming; reference sites; trophic diversity
11.  Evaluation of the Effect of Ecologic on Root Knot Nematode, Meloidogyne incognita, and Tomato Plant, Lycopersicon esculenum 
Nonchemical methods and strategies for nematode management including cultural methods and engineered measures have been recommended as an alternative to methyl bromide (a major soil fumigant), due to its role in the depletion of the ozone layer. Hence, an international agreement has recently been reached calling for its reduced consumption and complete phasing out. This present research evaluates the potential of Ecologic, a biological, marine shell meal chitin material, as a soil amendment management agent for root knot nematode, Meloidogyne incognita, control, and its effect on the growth of Floradel tomato plant, Lycopersicon esculentum. To accomplish this goal, studies were conducted during which, experimental pots were set up in greenhouse environments using sterilized soil inoculated with 5,000 root-knot eggs per 1500 g soil. There were 4 treatments and 5 replications. Treatments were: No chitin; 50 g chitin; 100 g chitin; and 200 g chitin. A two-week wait period following Ecologic amendment preceded Floradel tomato planting to allow breakdown of the chitin material into the soil. Fresh and dry weights of shoot and root materials were taken as growth end-points. A statistically significant difference (p ≤ 0.05) was obtained with regard to the growth rate of L. esculentum at 100 g chitin treatment compared to the control with no chitin. Mean fresh weights of Floradel tomato were 78.0 ± 22.3g, 81.0 ± 20.3g, 109.0 ± 25.4g and 102.0 ± 33.3g at 0, 50, 100 and 200g chitin, respectively. The analysis of root knot nematode concentrations indicated a substantial effect on reproduction rate associated with chitin amendment. Study results showed a significant decrease in both root knot nematode eggs and juveniles (J2) at 100g and 200g Ecologic chitin levels, however, an increase in nematode concentrations was recorded at the 50g Ecologic chitin level (p ≤ 0.05). The mean amounts of J2 population, as expressed per 1500cm3 soil, were 49,933 ± 38,819, 86,050 ± 25248, 103 ± 133 and 103 ± 133 for 0, 50, 100 and 200g chitin, respectively. Similarly, the mean numbers of root knot nematode eggs (per 1500cm3 of soil) were 40,759 ± 36,712, 66,048 ± 39,730, 9,904 ± 16,591 and 9,257 ± 17,204. Root gall rating was also significantly lower (p ≤ 0.05) at the 100g and 200g chitin levels compared to the control. Percent gall ratings were 3.3 ± 1.0%, 3.2 ± 1.0%, 1.0 ± 0.5%, and 1.0% ± 0.6% for amendment levels of 0, 50, 100, and 200g chitin, respectively.
PMCID: PMC3662226  PMID: 18678924
Ecologic chitin; root knot nematode; tomato plant; agricultural management
12.  Soil Organic Matter and Management of Plant-Parasitic Nematodes 
Journal of Nematology  2002;34(4):289-295.
Organic matter and its replenishment has become a major component of soil health management programs. Many of the soil's physical, chemical, and biological properties are a function of organic matter content and quality. Adding organic matter to soil influences diverse and important biological activities. The diversity and number of free-living and plant-parasitic nematodes are altered by rotational crops, cover crops, green manures, and other sources of organic matter. Soil management programs should include the use of the proper organic materials to improve soil chemical, physical, and biological parameters and to suppress plant-parasitic nematodes and soilborne pathogens. It is critical to monitor the effects of organic matter additions on activities of major and minor plant-parasitic nematodes in the production system. This paper presents a general review of information in the literature on the effects of crop rotation, cover crops, and green manures on nematodes and their damage to economic crops.
PMCID: PMC2620584  PMID: 19265946
cover crops; crop rotation; green manure; nematode control
13.  Organic and Inorganic Nitrogen Amendments to Soil as Nematode Suppressants 
Journal of Nematology  1986;18(2):129-134.
Inorganic fertilizers containing ammoniacal nitrogen or formulations releasing this form of N in the soil are most effective for suppressing nematode populations. Anhydrous ammonia has been shown to reduce soil populations of Tylenchorhynchus claytoni, Helicotylenchus dihystera, and Heterodera glycines. The rates required to obtain significant suppression of nematode populations are generally in excess of 150 kg N/ha. Urea also suppresses several nematode species, including Meloidogyne spp., when applied at rates above 300 kg N/ha. Additional available carbon must be provided with urea to permit soil microorganisms to metabolize excess N and avoid phytotoxic effects. There is a direct relation between the amount of "protein" N in organic amendments and their effectiveness as nematode population suppressants. Most nematicidal amendments are oil cakes, or animal excrements containing 2-7% (w:w) N; these materials are effective at rates of 4-10 t/ha. Organic soil amendments containing mucopolysaccharides (e.g., mycelial wastes, chitinous matter) are also effective nematode suppressants.
PMCID: PMC2618534  PMID: 19294153
amendments; biological control; fertilizers; microbial ecology; nonchemical control; pest management; waste management
14.  Effect of Crotalaria juncea Amendment on Nematode Communities in Soil with Different Agricultural Histories 
Journal of Nematology  2003;35(3):294-301.
Effect of sunn hemp (Crotalaria juncea) hay amendment on nematode community structure in the soil surrounding roots of yellow squash (Cucurbita pepo) infected with root-knot nematodes was examined in two greenhouse experiments. Soils were from field plots treated long-term (LT) with yard-waste compost or no yard-waste compost in LT experiment, and from a short-term (ST) agricultural site in ST experiment. Soils collected were either amended or not amended with C. juncea hay. Nematode communities were examined 2 months after squash was inoculated with Meloidogyne incognita. Amendment increased (P < 0.05) omnivorous nematodes in both experiments but increased only bacterivorous nematodes in ST experiment (P < 0.05), where the soil had relatively low organic matter (<2%). This effect of C. juncea amendment did not occur in LT experiment, in which bacterivores were already abundant. Fungivorous nematodes were not increased by C. juncea amendment in either experiment, but predatory nematodes were increased when present. Although most nematode faunal indices, including enrichment index, structure index, and channel index, were not affected by C. juncea amendment, structure index values were affected by previous soil organic matter content. Results illustrate the importance of considering soil history (organic matter, nutrient level, free-living nematode number) in anticipating changes following amendment with C. juncea hay.
PMCID: PMC2620648  PMID: 19262764
community structure indices; Cucurbita pepo; Meloidogyne incognita; organic amendments; squash; sunn hemp
15.  Effect of Castor and Velvetbean Organic Amendments on Meloidogyne arenaria in Greenhouse Experiments 
Journal of Nematology  1998;30(4S):624-631.
Effectiveness of castor (Ricinus communis) and velvetbean (Mucuna deeringiana) amendments was tested for suppression of the root-knot nematode (Meloidogyne arenaria) and growth of okra (Hibiscus esculentus) in three greenhouse experiments. Regression analysis was used to relate nematode population data or plant growth responses to various rates (0, 1, 2, 4, or 8 g/560 cm³ soil pot) of each amendment in separate experiments. In general, plant growth parameters responded positively to the amendment rate until a level of about 4 g to 5 g of velvetbean or castor amendment/pot. Similar trends were observed for nematode galls, egg masses, and second-stage juveniles extracted from root systems. In most circumstances, quadratic equations best expressed the relationships between plant or nematode parameters and rates of velvetbean or castor amendment, leading to the assumption that a best rate of the amendment for plant growth or nematode suppression can be predicted. In a third experiment, in which both amendments were compared directly, velvetbean amendment was more efficient than castor in suppressing nematodes as well as in improving plant growth.
PMCID: PMC2620327  PMID: 19274257
Hibiscus esculentus; Meloidogyne arenaria; Mucuna deeringiana; nematode; nematode management; okra; Ricinus communis; root-knot nematode
16.  Populations of Pratylenchus penetrans Relative to Decomposing Nitrogenous Soil Amendments 
Journal of Nematology  1971;3(1):43-49.
Populations of Pratylenchus penetrans decreased in soil following addition of 70 and 700 ppm N in the form of nitrate, nitrite, organic nitrogen, or ammonium compounds. Nitrate was less effective than other nitrogen carriers. Population reduction is principally attributed to ammonification during decomposition. This hypothesis is supported by chromatographic analyses of soil atmospheres, survival of nematodes in pure CO₂ and N₂, inverse relationship of CO₂, content in amended soils to nematode populations, and direct relationship of NH₃-N content of amended soils to nematode populations.
PMCID: PMC2619841  PMID: 19322339
Nitrogen amendments; Soil amendments; Decomposition; Pratylenchus populations; Ammonia; CO₂; N₂
17.  Reflections on Plant and Soil Nematode Ecology: Past, Present and Future 
Journal of Nematology  2012;44(2):115-126.
The purpose of this review is to highlight key developments in nematode ecology from its beginnings to where it stands today as a discipline within nematology. Emerging areas of research appear to be driven by crop production constraints, environmental health concerns, and advances in technology. In contrast to past ecological studies which mainly focused on management of plant-parasitic nematodes, current studies reflect differential sensitivity of nematode faunae. These differences, identified in both aquatic and terrestrial environments include response to stressors, environmental conditions, and management practices. Methodological advances will continue to influence the role nematodes have in addressing the nature of interactions between organisms, and of organisms with their environments. In particular, the C. elegans genetic model, nematode faunal analysis and nematode metagenetic analysis can be used by ecologists generally and not restricted to nematologists.
PMCID: PMC3578467  PMID: 23482864
ecology; future; history; interaction; management; molecular biology; nematology; plant; soil
18.  Problems and Strategies Associated with Long-term Use of Nematode Resistant Cultivars 
Journal of Nematology  1992;24(2):228-233.
Plant-parasitic nematodes are obligate parasites, and planting cultivars that are highly resistant to these organisms places extensive selection pressure on the target species and affects nontarget nematodes as well. Problems encountered with long-term planting of cultivars resistant to nematodes include shifts in nematode races or species and the occurrence of multiple species of nematodes within the same field. These problems can be alleviated to some extent when crop management is used to lessen the selection pressure for change on the nematode populations. Race shifts within populations and possibly shifts between nematode species can be delayed by rotating susceptible cultivars and nonhost crops with resistant cultivars. Nematicides in conjunction with resistant cultivars may be used to limit damage by multiple species of nematodes. Some cultivars have resistance to multiple species of nematodes, but greatly increased research effort is needed in this area. More intensive plant breeding effort will be required to make nematode resistant cultivars competitive in quality and yield with more productive, susceptible cultivars.
PMCID: PMC2619269  PMID: 19282988
Globodera tabacum solanacearum; Heterodera glycines; management; Meloidogyne arenaria; M. incognita; nematode; resistance; rotation
19.  Detection and Description of Soils with Specific Nematode Suppressiveness 
Journal of Nematology  2005;37(1):121-132.
Soils with specific suppressiveness to plant-parasitic nematodes are of interest to define the mechanisms that regulate population density. Suppressive soils prevent nematodes from establishing and from causing disease, and they diminish disease severity after initial nematode damage in continuous culturing of a host. A range of non-specific and specific soil treatments, followed by infestation with a target nematode, have been employed to identify nematode-suppressive soils. Biocidal treatments, soil transfer tests, and baiting approaches together with observations of the plant-parasitic nematode in the root zone of susceptible host plants have improved the understanding of nematode-suppressive soils. Techniques to demonstrate specific soil suppressiveness against plant-parasitic nematodes are compared in this review. The overlap of studies on soil suppressiveness with recent advances in soil health and quality is briefly discussed. The emphasis is on methods (or criteria) used to detect and identify soils that maintain specific soil suppressiveness to plant-parasitic nematodes. While biocidal treatments can detect general and specific soil suppressiveness, soil transfer studies, by definition, apply only to specific soil suppressiveness. Finally, potential strategies to exploit suppressive soils are presented.
PMCID: PMC2620936  PMID: 19262851
biological control; cyst nematodes; cyst nematode-suppressive soil; density dependence; heat treatments; Heteordera avenae; H. glycines; H. schachtii
20.  Plant and Soil Nematodes: Societal Impact and Focus for the Future. 
Journal of Nematology  1994;26(2):127-137.
Plant and soil nematodes significandy impact our lives. Therefore, we must understand and manage these complex organisms so that we may continue to develop and sustain our food production systems, our natural resources, our environment, and our quality of life. This publication looks specifically at soil and plant nematology. First, the societal impact of nematodes and benefits of nematology research are briefly presented. Next, the opportunities facing nematology in the next decade are outlined, as well as the resources needed to address these priorities. The safety and sustainability of U.S. food and fiber production depends on public and administrative understanding of the importance of nematodes, the drastic effects of nematodes on many agricultural and horticultural crops, and the current research priorities of nematology.
PMCID: PMC2619488  PMID: 19279875
alternative management tactics; behavior; benefit to society; beneficial nematodes; biochemistry; biological control; constraints in nematology; control; crop rotation; cultural practice; ecology; education; environment; extension; diagnostics; funding; genetics; host-parasite interaction; information transfer; molecular genetics; nematicide; nematode; nematology; nematode management; nutrient cycling; pesticide; plant parasites; research goals; research priorities; resistance; resource; science of nematology; society; spread; sustainable agriculture; systematics
21.  Meloidogyne incognita Infested Soil Amended With Chicken Litter 
Journal of Nematology  1996;28(3):369-378.
The effects of chicken litter on Meloidogyne incognita in cotton, Gossypium hirsutum cv. DPL50 were determined in field microplots. Litters (manure and pine-shaving bedding) from a research facility and a commercial broiler house were used. Treatments consisted of 0.25%, 0.5%, and 1% litter by dry weight of soil for each kind of litter. Three control treatments consisted of soil not amended with litter, with and without nematodes, and one treatment to which mineral fertilizer was added at a nitrogen rate equivalent to that of the 0.5% litter rate, with nematodes. Microplots were inoculated at planting with 900 eggs/100 cm³ soil in 1993 and 1,000 eggs/100 cm³ soil in 1994. At 92 and 184 days after planting, nematode population densities decreased linearly with increasing rates of litter. Nematode numbers at midseason were larger in plots treated with mineral fertilizer than in plots treated with a rate of litter equivalent to the 0.5% rate. Fungal and bacterial population densities fluctuated throughout the growing season. Bacterial numbers had a positive linear relationship, with increasing rates of litter only in October 1993; however, significant positive relationships were observed throughout the 1994 growing season. In 1994, nematode population density at 92 days after planting decreased linearly with increasing bacterial numbers 30 days after planting. No other significant relationships between nematode densities and microbial densities were observed. Fungi and bacteria isolated from the litter and litter-amended soil were identified. Fungal genera isolated included Acremonium, Aspergillus, Eurotium, Paecilomyces, Petriella, and Scopulariopsis, whereas bacteria genera included Arthrobacter, Bacillus, and Pseudomonus.
PMCID: PMC2619697  PMID: 19277155
bacteria; chicken litter; control; cotton; fungi; Gossypium hirsutum; management; manure; Meloidogyne incognita; organic amendment; root-knot nematode
22.  A Pest Management Approach to the Control of Pratylenchus thornei on Wheat in Mexico 
Journal of Nematology  1974;6(3):107-1165.
The lesion nematode, Pratylenchus thornei, was clearly demonstrated as a parasite of wheat. It reduced plant stands and stunted plants in the field under the environmental conditions found in Sonora, Mexico. Other soil organisms also may have contributed to the problem. The nematode is widely distributed throughout the wheat-growing region, and may be a problem each growing season. Nematicides controlled the nematode and increased yields, but they were not economical. No resistance was found in existing commercial wheat cultivars. A pest management approach using variety selection, nitrogen fertilizer, planting in cool soil (15 C) and a crop rotation avoiding wheat after wheat was the most practical solution to this problem on a commercial scale.
PMCID: PMC2620058  PMID: 19308110
lesion nematode; resistance; crop rotation; chemical control; fertilizer; temperature; nematicides
23.  Chemical-Mediated Toxicity of N-Viro Soil to Heterodera glycines and Meloidogyne incognita 
Journal of Nematology  2004;36(3):297-302.
N-Viro Soil (NVS) is an alkaline-stabilized municipal biosolid that has been shown to lower population densities and reduce egg hatch of Heterodera glycines and other plant-parasitic nematodes; but the mechanism(s) of nematode suppression of this soil amendment are unknown. This study sought to identify NVS-mediated changes in soil chemical properties and their impact upon H. glycines and Meloidogyne incognita mortality. N-Viro Soil was applied to sand in laboratory assays at 0.5%, 1.0%, 2.0%, and 3.0% dry w/w with a nonamended treatment as a control. Nematode mortality and changes in sand-assay chemical properties were determined 24 hours after incubation. Calculated lethal concentration (LC90) values were 1.4% w/w NVS for second-stage juveniles of both nematode species and 2.6 and >3.0% w/w NVS for eggs of M. incognita and H. glycines, respectively. Increasing rates of NVS were strongly correlated (r² = 0.84) with higher sand solution pH levels. Sand solution pH levels and, to a lesser extent, the production of ammonia appeared to be the inorganic chemical-mediated factors responsible for killing plant-parasitic nematodes following amendment with NVS.
PMCID: PMC2620783  PMID: 19262820
amendment; ammonia; biosolid; Heterodera glycines; Meloidogyne incognita; nematodes; pH
24.  Effect of Tillage and Crop Residue Management on Nematode Densities on Corn 
Journal of Nematology  1994;26(4S):669-674.
Effects of winter cover crop management on nematode densities associated with a subsequent corn (Zea mays) crop were examined in five sites in north Florida. Two sites had received winter cover crops of lupine (Lupinus angustifolius), and one site each had rye (Secale cereale), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). In each site, five different management regimes were compared: 1) conventional tillage after the cover crop was removed for forage; 2) conventional tillage with the cover crop retained as green manure; 3) no-till with the cover crop mowed and used as a mulch; 4) no-till with the cover crop removed as forage; and 5) fallow. Sites were sampled at corn planting and harvest for estimates of initial (Pi) and final (Pf) nematode population densities, respectively. Whether the cover crop was removed as forage or retained as green manure or mulch had no effect (P > 0.10) on population densities of any plant-parasitic nematode before or after corn at any site. Differences between conventional-till and no-till treatments were significant (P ≤ 0.10) only in one experiment for Paratrichodorus minor and two experiments for Pratylenchus spp. Compared with other treatments, fallow reduced (P ≤ 0.05) Pi of P. minor in two of three cases and Pf of Meloidogyne incognita in one of five sites, but enhanced soil Pf of Pratylenchus spp. in three of five sites. Tillage practices and management of cover crop residues had little consistent effect on nematodes, and these practices should be considered based on agronomic benefits rather than for nematode management.
PMCID: PMC2619568  PMID: 19279946
corn; Criconemella spp.; cover crop; cropping system; green manure; Meloidogyne incognita; nematode; organic amendment; Paratrichodorus minor; Pratylenchus spp.; sustainable agriculture; tillage; Zea mays
25.  Effects of Planting Date, Small Grain Crop Destruction, Fallow, and Soil Temperature on the Management of Meloidogyne incognita 
Journal of Nematology  1990;22(3):348-355.
The effects of planting date, rye (Secale cereale cv. Wren Abruzzi) and wheat (Triticura aestivum cv. Coker 797), crop destruction, fallow, and soil temperature on managing Meloidogyne incognita race 1 were determined in a 2-year study. More M. incognita juveniles (J2) and egg-producing adults were found in roots of rye planted 1 October than in roots of rye planted 1 November and wheat planted 1 November and 1 December. Numbers of M. incognita adults with and without egg masses were near or below detectable levels in roots of rye planted 1 November and wheat planted 1 November and 1 December. Meloidogyne incognita survived the mild winters in southern Georgia as J2 and eggs. The destruction of rye and wheat as a trap crop 1 March suppressed numbers of J2 in the soil temporarily but did not provide long-term benefits for susceptible crops that followed. In warmer areas where rye and wheat are grown in winter, reproduction of M. incognita may be avoided by delaying planting dates until soil temperature declines below the nematode penetration threshold (18 C), but no long-term benefits should be expected. The temperature threshold may be an important consideration in managing M. incognita population densities in areas having lower winter soil temperatures than southern Georgia.
PMCID: PMC2619057  PMID: 19287731
fallow; Meloidogyne incognita; root-knot nematode; rye; Secale cereale; trap crop; Triticum aestivum; wheat

Results 1-25 (477712)