PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1358335)

Clipboard (0)
None

Related Articles

1.  Increased Basal Synaptic Inhibition of Hippocampal Area CA1 Pyramidal Neurons by an Antiepileptic Drug that Enhances IH 
Neuropsychopharmacology  2009;35(2):464-472.
The hyperpolarization-activated cation current (IH) regulates the electrical activity of many excitable cells, but its precise function varies across cell types. The antiepileptic drug lamotrigine (LTG) was recently shown to enhance IH in hippocampal CA1 pyramidal neurons, showing a potential anticonvulsant mechanism, as IH can dampen dendrito-somatic propagation of excitatory postsynaptic potentials in these cells. However, IH is also expressed in many hippocampal interneurons that provide synaptic inhibition to CA1 pyramidal neurons, and thus, IH modulation may indirectly regulate the inhibitory control of principal cells by direct modulation of interneuron activity. Whether IH in hippocampal interneurons is sensitive to modulation by LTG, and the manner by which this may affect the synaptic inhibition of pyramidal cells has not been investigated. In this study, we examined the effects of LTG on IH and spontaneous firing of area CA1 stratum oriens interneurons, as well as on spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons in immature rat brain slices. LTG (100 μM) significantly increased IH in the majority of interneurons, and depolarized interneurons from rest, promoting spontaneous firing. LTG also caused an increase in the frequency of spontaneous (but not miniature) IPSCs in pyramidal neurons without significantly altering amplitudes or rise and decay times. These data indicate that IH in CA1 interneurons can be increased by LTG, similarly to IH in pyramidal neurons, that IH enhancement increases interneuron excitability, and that these effects are associated with increased basal synaptic inhibition of CA1 pyramidal neurons.
doi:10.1038/npp.2009.150
PMCID: PMC2795055  PMID: 19776733
anticonvulsant; GABA; interneuron; patch-clamp; epilepsy; H-current
2.  Increased Basal Synaptic Inhibition of Hippocampal Area CA1 Pyramidal Neurons by Antiepileptic Drug that Enhance Ih 
The hyperpolarization-activated cation current IH regulates the electrical activity of many excitable cells, but its precise function varies across cell types. The antiepileptic drug lamotrigine (LTG) recently was shown to enhance IH in hippocampal CA1 pyramidal neurons, revealing a potential anticonvulsant mechanism, as IH can dampen dendrito-somatic propagation of excitatory postsynaptic potentials in these cells. However, IH also is expressed in many hippocampal interneurons that provide synaptic inhibition to CA1 pyramidal neurons, and thus, IH modulation may indirectly regulate inhibitory control of principal cells via direct modulation of interneuron activity. Whether IH in hippocampal interneurons is sensitive to modulation by LTG, and how this may affect synaptic inhibition of pyramidal cells has not been investigated. In this study, we examined the effects of LTG on IH and spontaneous firing of area CA1 s.o. interneurons, and on spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons in immature rat brain slices. LTG (100 µM) significantly increased IH in the majority of interneurons, and depolarized interneurons from rest, promoting spontaneous firing. LTG also caused an increase in the frequency of spontaneous (but not miniature) IPSCs in pyramidal neurons without significantly altering amplitudes or rise and decay times. These data indicate that IH in CA1 interneurons can be increased by LTG, similarly to IH in pyramidal neurons, that IH enhancement increases interneuron excitability, and that these effects are associated with increased basal synaptic inhibition of CA1 pyramidal neurons.
doi:10.1038/npp.2009.150
PMCID: PMC2795055  PMID: 19776733
Anticonvulsant; GABA; Interneuron; Patch-clamp; Epilepsy; H-current
3.  Vasopressin Facilitates GABAergic Transmission in Rat Hippocampus via Activation of V1A receptors 
Neuropharmacology  2012;63(7):1218-1226.
Whereas vasopressin has been shown to enhance memory possibly by increasing long-term potentiation and direct excitation of the pyramidal neurons in the hippocampus, the effects of vasopressin on GABAergic transmission in the hippocampus remain to be determined. Here we examined the effects of vasopressin on GABAergic transmission onto CA1 pyramidal neurons and our results demonstrate that bath application of [Arg8]-vasopressin (AVP) dose-dependently increased the frequency of spontaneous IPSCs (sIPSCs) recorded from CA1 pyramidal neurons via activation of V1A receptors. Immunohistological staining and western blot further confirmed that both CA1 pyramidal neurons and interneurons expressed V1A receptors. Bath application of AVP altered neither the frequency nor the amplitude of miniature IPSCs in the presence of tetradotoxin and failed to change significantly the amplitude of evoked IPSCs recorded from CA1 pyramidal neurons. AVP increased the firing frequency of action potentials by depolarizing the GABAergic interneurons in the stratum radiatum of CA1 region. AVP-mediated depolarization of interneurons was mediated by inhibition of a background K+ conductance which was insensitive to extracellular tetraethylammonium, Cs+, 4-aminopyridine, tertiapine-Q and Ba2+. AVP-induced depolarization of interneurons was dependent on Gαq/11 but independent of phospholipase C, intracellular Ca2+ release and protein kinase C. The inhibitory effects of AVP-mediated modulation of GABA release onto CA1 pyramidal neurons were overwhelmed by its strong excitation of CA1 pyramidal neurons in physiological condition but revealed when its direct excitation of the pyramidal neurons was blocked suggesting that AVP-mediated modulation of GABAergic transmission fine-tunes the excitability of CA1 pyramidal neurons.
doi:10.1016/j.neuropharm.2012.07.043
PMCID: PMC3438289  PMID: 22884625
synaptic transmission; K+ channels; GABA receptor; hippocampus; G-protein; synapse
4.  Genetic Background Modulates Impaired Excitability of Inhibitory Neurons in a Mouse Model of Dravet Syndrome 
Neurobiology of disease  2014;73:106-117.
Dominant loss-of-function mutations in voltage-gated sodium channel NaV1.1 cause Dravet Syndrome, an intractable childhood-onset epilepsy. NaV1.1+/− Dravet Syndrome mice in C57BL/6 genetic background exhibit severe seizures, cognitive and social impairments, and premature death. Here we show that Dravet Syndrome mice in pure 129/SvJ genetic background have many fewer seizures and much less premature death than in pure C57BL/6 background. These mice also have a higher threshold for thermally induced seizures, fewer myoclonic seizures, and no cognitive impairment, similar to patients with Genetic Epilepsy with Febrile Seizures Plus. Consistent with this mild phenotype, mutation of NaV1.1 channels has much less physiological effect on neuronal excitability in 129/SvJ mice. In hippocampal slices, the excitability of CA1 Stratum Oriens interneurons is selectively impaired, while the excitability of CA1 pyramidal cells is unaffected. NaV1.1 haploinsufficiency results in increased rheobase and threshold for action potential firing and impaired ability to sustain high-frequency firing. Moreover, deletion of NaV1.1 markedly reduces the amplification and integration of synaptic events, further contributing to reduced excitability of interneurons. Excitability is less impaired in inhibitory neurons of Dravet Syndrome mice in 129/SvJ genetic background. Because specific deletion of NaV1.1 in forebrain GABAergic interneuons is sufficient to cause the symptoms of Dravet Syndrome in mice, our results support the conclusion that the milder phenotype in 129/SvJ mice is caused by lesser impairment of sodium channel function and electrical excitability in their forebrain interneurons. This mild impairment of excitability of interneurons leads to a milder disease phenotype in 129/SvJ mice, similar to Genetic Epilepsy with Febrile Seizures Plus in humans.
doi:10.1016/j.nbd.2014.09.017
PMCID: PMC4254180  PMID: 25281316
Dravet Syndrome; sodium channels; epilepsy; NaV1.1; interneuron; Action potential threshold; Excitatory post synaptic potential amplification
5.  Membrane Potential-Dependent Modulation of Recurrent Inhibition in Rat Neocortex 
PLoS Biology  2011;9(3):e1001032.
Dynamic balance of excitation and inhibition is crucial for network stability and cortical processing, but it is unclear how this balance is achieved at different membrane potentials (Vm) of cortical neurons, as found during persistent activity or slow Vm oscillation. Here we report that a Vm-dependent modulation of recurrent inhibition between pyramidal cells (PCs) contributes to the excitation-inhibition balance. Whole-cell recording from paired layer-5 PCs in rat somatosensory cortical slices revealed that both the slow and the fast disynaptic IPSPs, presumably mediated by low-threshold spiking and fast spiking interneurons, respectively, were modulated by changes in presynaptic Vm. Somatic depolarization (>5 mV) of the presynaptic PC substantially increased the amplitude and shortened the onset latency of the slow disynaptic IPSPs in neighboring PCs, leading to a narrowed time window for EPSP integration. A similar increase in the amplitude of the fast disynaptic IPSPs in response to presynaptic depolarization was also observed. Further paired recording from PCs and interneurons revealed that PC depolarization increases EPSP amplitude and thus elevates interneuronal firing and inhibition of neighboring PCs, a reflection of the analog mode of excitatory synaptic transmission between PCs and interneurons. Together, these results revealed an immediate Vm-dependent modulation of cortical inhibition, a key strategy through which the cortex dynamically maintains the balance of excitation and inhibition at different states of cortical activity.
Author Summary
Proper functioning of the neocortex requires a balance between excitation and inhibition. This balance can be achieved through the operation of cortical microcircuits interweaved by excitatory and inhibitory neurons. Since the membrane potentials (Vm) of cortical neurons fluctuate at different levels during cortical activities, it is important to know how the balance of excitation and inhibition is dynamically maintained at different Vm. Recurrent inhibition between excitatory pyramidal cells is mediated by two distinct types of inhibitory interneurons. Here, we show that the amount of recurrent inhibition depends on the Vm levels of presynaptic pyramidal cells. Modest depolarization of a pyramidal cell substantially increases, and sometimes turns on, disynaptic inhibition on its neighboring pyramidal cells. We find that this effect is due to an increase in the strength of synaptic connections from the pyramidal cell to inhibitory interneurons and a consequent elevation of interneuronal firing. The depolarization-induced increase in synaptic strength from the pyramidal cell therefore reflects “analog-mode” signaling in cortical excitatory synapses. We thus reveal a profound impact of analog-mode signaling on the operation of cortical microcircuits and provide a new mechanism for dynamic control of the balance of cortical excitation and inhibition.
doi:10.1371/journal.pbio.1001032
PMCID: PMC3062529  PMID: 21445327
6.  Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility 
Neurobiology of disease  2012;0:211-220.
Voltage-gated sodium channels (VGSCs) are essential for the generation and propagation of action potentials in electrically excitable cells. Dominant mutations in SCN1A, which encodes the Nav1.1 VGSC α-subunit, underlie several forms of epilepsy, including Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Electrophysiological analyses of DS and GEFS+ mouse models have led to the hypothesis that SCN1A mutations reduce the excitability of inhibitory cortical and hippocampal interneurons. To more directly examine the relative contribution of inhibitory interneurons and excitatory pyramidal cells to SCN1A-derived epilepsy, we first compared the expression of Nav1.1 in inhibitory parvalbumin (PV) interneurons and excitatory neurons from P22 mice using fluorescent immunohistochemistry. In the hippocampus and neocortex, 69% of Nav1.1 immunoreactive neurons were also positive for PV. In contrast, 13% and 5% of Nav1.1 positive cells in the hippocampus and neocortex, respectively, were found to co-localize with excitatory cells identified by CaMK2α immunoreactivity. Next, we reduced the expression of Scn1a in either a subset of interneurons (mainly PV interneurons) or excitatory cells by crossing mice heterozygous for a floxed Scn1a allele to either the Ppp1r2-Cre or EMX1-Cre transgenic lines, respectively. The inactivation of one Scn1a allele in interneurons of the neocortex and hippocampus was sufficient to reduce thresholds to flurothyl- and hyperthermia-induced seizures, whereas thresholds were unaltered following inactivation in excitatory cells. Reduced interneuron Scn1a expression also resulted in the generation of spontaneous seizures. These findings provide direct evidence for an important role of PV interneurons in the pathogenesis of Scn1a-derived epilepsies.
doi:10.1016/j.nbd.2012.08.012
PMCID: PMC3740063  PMID: 22926190
Epilepsy; SCN1A; ion channels; interneurons; pyramidal neurons
7.  Dendritic inhibition mediated by O-LM and bistratified interneurons in the hippocampus 
In the CA1 region of the hippocampus pyramidal neurons and GABAergic interneurons form local microcircuits. CA1 interneurons are a diverse group consisting of many subtypes, some of which provide compartment-specific inhibition specifically onto pyramidal neuron dendrites. In fact, the majority of inhibitory synapses on pyramidal neurons is found on their dendrites. The specific role of a dendrite-innervating interneuron subtype is primarily determined by its innervation pattern on the distinct dendritic domains of pyramidal neurons. The efficacy of dendritic inhibition in reducing dendritic excitation depends on the relative timing and location of the activated excitatory and inhibitory synapses. In vivo, synaptic properties such as short-term plasticity and neuro-modulation by the basal forebrain, govern the degree of inhibition in distinct dendritic domains in a dynamic, behavior dependent manner, specifically during network oscillation such as the theta rhythm. In this review we focus on two subtypes of dendrite-innervating interneurons: the oriens-lacunosum moleculare (O-LM) interneuron and the bistratified interneuron. Their molecular marker profile, morphology, and function in vivo and in vitro are well studied. We strive to integrate this diverse information from the cellular to the network level, and to provide insight into how the different characteristics of O-LM and bistratified interneurons affect dendritic excitability, network activity, and behavior.
doi:10.3389/fnsyn.2014.00023
PMCID: PMC4179767  PMID: 25324774
oriens-lacunosum moleculare interneuron; bistratified interneuron; dendritic inhibition; theta oscillation; modulation
8.  Non-associative Potentiation of Perisomatic Inhibition Alters the Temporal Coding of Neocortical Layer 5 Pyramidal Neurons 
PLoS Biology  2014;12(7):e1001903.
Long-term potentiation of inhibitory GABAergic transmission controls synaptic integration and action potential generation of specific neocortical neurons.
In the neocortex, the coexistence of temporally locked excitation and inhibition governs complex network activity underlying cognitive functions, and is believed to be altered in several brain diseases. Here we show that this equilibrium can be unlocked by increased activity of layer 5 pyramidal neurons of the mouse neocortex. Somatic depolarization or short bursts of action potentials of layer 5 pyramidal neurons induced a selective long-term potentiation of GABAergic synapses (LTPi) without affecting glutamatergic inputs. Remarkably, LTPi was selective for perisomatic inhibition from parvalbumin basket cells, leaving dendritic inhibition intact. It relied on retrograde signaling of nitric oxide, which persistently altered presynaptic GABA release and diffused to inhibitory synapses impinging on adjacent pyramidal neurons. LTPi reduced the time window of synaptic summation and increased the temporal precision of spike generation. Thus, increases in single cortical pyramidal neuron activity can induce an interneuron-selective GABAergic plasticity effectively altering the computation of temporally coded information.
Author Summary
The proper activity of cortical neurons (the brain cells responsible for memory and consciousness) relies on the precise integration of excitatory and inhibitory inputs. The excitation and inhibition (E/I) ratio has to remain constant both in time and strength to prevent neurological and psychiatric diseases. Fast inhibitory synaptic inputs to cortical pyramidal neurons originate from a rich diversity of GABAergic interneurons that operate a strict division of labor by differentially targeting precise regions of the pyramidal neurons. Here, we show that large pyramidal neurons of neocortical layer 5 can unlock the E/I ratio in response to their own activity. Excitatory activity of pyramidal neurons, in the form of membrane depolarization or trains of action potentials, induces a Ca2+-dependent mobilization of nitric oxide, which diffuses to inhibitory synapses and triggers a persistent enhancement of GABA release. Notably, this potentiation of inhibition is specific for synapses originating from parvalbumin (PV)-expressing interneurons that target mainly the perisomatic region of pyramidal neurons. Long-term potentiation of perisomatic inhibition, in turn, changes the ability of pyramidal neurons to integrate excitatory inputs as well as the temporal properties of their own action potential output. Selective plasticity of perisomatic inhibition can thus play a crucial role in cortical activity, such as sensory processing and integration.
doi:10.1371/journal.pbio.1001903
PMCID: PMC4086817  PMID: 25003184
9.  Inhibitory control of hippocampal inhibitory neurons 
Information processing within neuronal networks is determined by a dynamic partnership between principal neurons and local circuit inhibitory interneurons. The population of GABAergic interneurons is extremely heterogeneous and comprises, in many brain regions, cells with divergent morphological and physiological properties, distinct molecular expression profiles, and highly specialized functions. GABAergic interneurons have been studied extensively during the past two decades, especially in the hippocampus, which is a relatively simple cortical structure. Different types of hippocampal inhibitory interneurons control spike initiation [e.g., axo-axonic and basket cells (BCs)] and synaptic integration (e.g., bistratified and oriens–lacunosum moleculare interneurons) within pyramidal neurons and synchronize local network activity, providing a means for functional segregation of neuronal ensembles and proper routing of hippocampal information. Thus, it is thought that, at least in the hippocampus, GABAergic inhibitory interneurons represent critical regulating elements at all stages of information processing, from synaptic integration and spike generation to large-scale network activity. However, this raises an important question: if inhibitory interneurons are fundamental for network computations, what are the mechanisms that control the activity of the interneurons themselves? Given the essential role of synaptic inhibition in the regulation of neuronal activity, it would be logical to expect that specific inhibitory mechanisms have evolved to control the operation of interneurons. Here, we review the mechanisms of synaptic inhibition of interneurons and discuss their role in the operation of hippocampal inhibitory circuits.
doi:10.3389/fnins.2012.00165
PMCID: PMC3496901  PMID: 23162426
hippocampus; inhibition; interneuron-specific interneuron; GABA; synapse
10.  Differential modulation of repetitive firing and synchronous network activity in neocortical interneurons by inhibition of A-type K+ channels and Ih 
GABAergic interneurons provide the main source of inhibition in the neocortex and are important in regulating neocortical network activity. In the presence 4-aminopyridine (4-AP), CNQX, and D-APV, large amplitude GABAA-receptor mediated depolarizing responses were observed in the neocortex. GABAergic networks are comprised of several types of interneurons, each with its own protein expression pattern, firing properties, and inhibitory role in network activity. Voltage-gated ion channels, especially A-type K+ channels, differentially regulate passive membrane properties, action potential (AP) waveform, and repetitive firing properties in interneurons depending on their composition and localization. HCN channels are known modulators of pyramidal cell intrinsic excitability and excitatory network activity. Little information is available regarding how HCN channels functionally modulate excitability of individual interneurons and inhibitory networks. In this study, we examined the effect of 4-AP on intrinsic excitability of fast-spiking basket cells (FS-BCs) and Martinotti cells (MCs). 4-AP increased the duration of APs in both FS-BCs and MCs. The repetitive firing properties of MCs were differentially affected compared to FS-BCs. We also examined the effect of Ih inhibition on synchronous GABAergic depolarizations and synaptic integration of depolarizing IPSPs. ZD 7288 enhanced the amplitude and area of evoked GABAergic responses in both cell types. Similarly, the frequency and area of spontaneous GABAergic depolarizations in both FS-BCs and MCs were increased in presence of ZD 7288. Synaptic integration of IPSPs in MCs was significantly enhanced, but remained unaltered in FS-BCs. These results indicate that 4-AP differentially alters the firing properties of interneurons, suggesting MCs and FS-BCs may have unique roles in GABAergic network synchronization. Enhancement of GABAergic network synchronization by ZD 7288 suggests that HCN channels attenuate inhibitory network activity.
doi:10.3389/fncel.2015.00089
PMCID: PMC4364302  PMID: 25852481
HCN channels; A-type K+ channels; 4-AP; synchronization; Ih; neocortex; GABAergic interneurons; Martinotti cells; basket cells
11.  Action Potential Modulation in CA1 Pyramidal Neuron Axons Facilitates OLM Interneuron Activation in Recurrent Inhibitory Microcircuits of Rat Hippocampus 
PLoS ONE  2014;9(11):e113124.
Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outside-out patch recordings from CA1 pyramidal neuron axons revealed a high density of α-dendrotoxin (α-DTX)-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron–O-LM interneuron excitatory postsynaptic currents (EPSCs) showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron–interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits.
doi:10.1371/journal.pone.0113124
PMCID: PMC4237399  PMID: 25409299
12.  Interneuron loss reduces dendritic inhibition and GABA release in hippocampus of aged rats 
Neurobiology of aging  2011;33(2):431.e1-431.e13.
Aging is associated with impairments in learning and memory and a greater incidence of limbic seizures. These changes in the aged brain have been associated with increased excitability of hippocampal pyramidal cells caused by a reduced number of GABAergic interneurons. To better understand these issues, we performed cell counts of GABAergic interneurons and examined GABA efflux and GABAergic inhibition in area CA1 of the hippocampus of young (3-5 mo) and aged (26-30 mo) rats. Aging significantly reduced high K+/Ca2+-evoked GABA, but not glutamate efflux in area CA1. Immunostaining revealed a significant loss of GABAergic interneurons, but not inhibitory boutons in stratum oriens and stratum lacunosum moleculare. Somatostatin-immunoreactive oriens-lacunosum moleculare (O-LM) cells, but not parvalbumin-containing interneurons were selectively lost. O-LM cells project to distal dendrites of CA1 pyramidal cells, providing dendritic inhibition. Accordingly, inhibition of dendritic input to CA1 from entorhinal cortex was selectively reduced. These findings suggest that the age-dependent loss of interneurons impairs dendritic inhibition and dysregulates entorhinal cortical input to CA1, potentially contributing to cognitive impairment and seizures.
doi:10.1016/j.neurobiolaging.2010.12.014
PMCID: PMC3110542  PMID: 21277654
Interneuron; aging; hippocampus; CA1; O-LM cells; temporoammonic pathway; GABA; inhibition; somatostatin; parvalbumin; entorhinal cortex; dendritic inhibition
13.  Differential Regulation of the Excitability of Prefrontal Cortical Fast-Spiking Interneurons and Pyramidal Neurons by Serotonin and Fluoxetine 
PLoS ONE  2011;6(2):e16970.
Serotonin exerts a powerful influence on neuronal excitability. In this study, we investigated the effects of serotonin on different neuronal populations in prefrontal cortex (PFC), a major area controlling emotion and cognition. Using whole-cell recordings in PFC slices, we found that bath application of 5-HT dose-dependently increased the firing of FS (fast spiking) interneurons, and decreased the firing of pyramidal neurons. The enhancing effect of 5-HT in FS interneurons was mediated by 5-HT2 receptors, while the reducing effect of 5-HT in pyramidal neurons was mediated by 5-HT1 receptors. Fluoxetine, the selective serotonin reuptake inhibitor, also induced a concentration-dependent increase in the excitability of FS interneurons, but had little effect on pyramidal neurons. In rats with chronic fluoxetine treatment, the excitability of FS interneurons was significantly increased, while pyramidal neurons remained unchanged. Fluoxetine injection largely occluded the enhancing effect of 5-HT in FS interneurons, but did not alter the reducing effect of 5-HT in pyramidal neurons. These data suggest that the excitability of PFC interneurons and pyramidal neurons is regulated by exogenous 5-HT in an opposing manner, and FS interneurons are the major target of Fluoxetine. It provides a framework for understanding the action of 5-HT and antidepressants in altering PFC network activity.
doi:10.1371/journal.pone.0016970
PMCID: PMC3044712  PMID: 21383986
14.  Rac1 and Rac3 GTPases Control Synergistically the Development of Cortical and Hippocampal GABAergic Interneurons 
Cerebral Cortex (New York, NY)  2012;24(5):1247-1258.
The intracellular mechanisms driving postmitotic development of cortical γ-aminobutyric acid (GABA)ergic interneurons are poorly understood. We have addressed the function of Rac GTPases in cortical and hippocampal interneuron development. Developing neurons express both Rac1 and Rac3. Previous work has shown that Rac1 ablation does not affect the development of migrating cortical interneurons. Analysis of mice with double deletion of Rac1 and Rac3 shows that these GTPases are required during postmitotic interneuron development. The number of parvalbumin-positive cells was affected in the hippocampus and cortex of double knockout mice. Rac depletion also influences the maturation of interneurons that reach their destination, with reduction of inhibitory synapses in both hippocampal CA1 and cortical pyramidal cells. The decreased number of cortical migrating interneurons and their altered morphology indicate a role of Rac1 and Rac3 in regulating the motility of cortical interneurons, thus interfering with their final localization. While electrophysiological passive and active properties of pyramidal neurons including membrane capacity, resting potential, and spike amplitude and duration were normal, these cells showed reduced spontaneous inhibitory currents and increased excitability. Our results show that Rac1 and Rac3 contribute synergistically to postmitotic development of specific populations of GABAergic cells, suggesting that these proteins regulate their migration and differentiation.
doi:10.1093/cercor/bhs402
PMCID: PMC3977619  PMID: 23258346
cortex; GABAergic interneurons; hippocampus; neuronal migration; Rac GTPases
15.  Unit Activity of Hippocampal Interneurons before Spontaneous Seizures in an Animal Model of Temporal Lobe Epilepsy 
The Journal of Neuroscience  2015;35(16):6600-6618.
Mechanisms of seizure initiation are unclear. To evaluate the possible roles of inhibitory neurons, unit recordings were obtained in the dentate gyrus, CA3, CA1, and subiculum of epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Most interneurons in the dentate gyrus, CA1, and subiculum increased their firing rate before seizures, and did so with significant consistency from seizure to seizure. Identification of CA1 interneuron subtypes based on firing characteristics during theta and sharp waves suggested that a parvalbumin-positive basket cell and putative bistratified cells, but not oriens lacunosum moleculare cells, were activated preictally. Preictal changes occurred much earlier than those described by most previous in vitro studies. Preictal activation of interneurons began earliest (>4 min before seizure onset), increased most, was most prevalent in the subiculum, and was minimal in CA3. Preictal inactivation of interneurons was most common in CA1 (27% of interneurons) and included a putative ivy cell and parvalbumin-positive basket cell. Increased or decreased preictal activity correlated with whether interneurons fired faster or slower, respectively, during theta activity. Theta waves were more likely to occur before seizure onset, and increased preictal firing of subicular interneurons correlated with theta activity. Preictal changes by other hippocampal interneurons were largely independent of theta waves. Within seconds of seizure onset, many interneurons displayed a brief pause in firing and a later, longer drop that was associated with reduced action potential amplitude. These findings suggest that many interneurons inactivate during seizures, most increase their activity preictally, but some fail to do so at the critical time before seizure onset.
doi:10.1523/JNEUROSCI.4786-14.2015
PMCID: PMC4405565  PMID: 25904809
CA1; CA3; dentate gyrus; local field potential; subiculum; theta
16.  Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations 
Hippocampal theta is a 4–12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens–lacunosum-moleculare (OLM) interneurons and bistratified cells (BiCs), make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+) basket and axo-axonic cells (BC/AACs), PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored how the number of OLM-BiC connections and connection strength affected local theta power. We found that our models operate in regimes that could be distinguished by whether OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the resulting power of network theta oscillations. Overall, our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta power.
doi:10.3389/fnsys.2015.00110
PMCID: PMC4528165  PMID: 26300744
mathematical model; inhibitory networks; theta rhythm; interneuron; computational model; hippocampus; microcircuit
17.  Induction of Anti-Hebbian LTP in CA1 Stratum Oriens Interneurons: Interactions between Group I Metabotropic Glutamate Receptors and M1 Muscarinic Receptors 
The Journal of Neuroscience  2015;35(40):13542-13554.
An anti-Hebbian form of LTP is observed at excitatory synapses made with some hippocampal interneurons. LTP induction is facilitated when postsynaptic interneurons are hyperpolarized, presumably because Ca2+ entry through Ca2+-permeable glutamate receptors is enhanced. The contribution of modulatory transmitters to anti-Hebbian LTP induction remains to be established. Activation of group I metabotropic receptors (mGluRs) is required for anti-Hebbian LTP induction in interneurons with cell bodies in the CA1 stratum oriens. This region receives a strong cholinergic innervation from the septum, and muscarinic acetylcholine receptors (mAChRs) share some signaling pathways and cooperate with mGluRs in the control of neuronal excitability.
We therefore examined possible interactions between group I mGluRs and mAChRs in anti-Hebbian LTP at synapses which excite oriens interneurons in rat brain slices. We found that blockade of either group I mGluRs or M1 mAChRs prevented the induction of anti-Hebbian LTP by pairing presynaptic activity with postsynaptic hyperpolarization. Blocking either receptor also suppressed long-term effects of activation of the other G-protein coupled receptor on interneuron membrane potential. However, no crossed blockade was detected for mGluR or mAchR effects on interneuron after-burst potentials or on the frequency of miniature EPSPs. Paired recordings between pyramidal neurons and oriens interneurons were obtained to determine whether LTP could be induced without concurrent stimulation of cholinergic axons. Exogenous activation of mAChRs led to LTP, with changes in EPSP amplitude distributions consistent with a presynaptic locus of expression. LTP, however, required noninvasive presynaptic and postsynaptic recordings.
SIGNIFICANCE STATEMENT In the hippocampus, a form of NMDA receptor-independent long-term potentiation (LTP) occurs at excitatory synapses made on some inhibitory neurons. This is preferentially induced when postsynaptic interneurons are hyperpolarized, depends on Ca2+ entry through Ca2+-permeable AMPA receptors, and has been labeled anti-Hebbian LTP. Here we show that this form of LTP also depends on activation of both group I mGluR and M1 mAChRs. We demonstrate that these G-protein coupled receptors (GPCRs) interact, because the blockade of one receptor suppresses long-term effects of activation of the other GPCR on both LTP and interneuron membrane potential. This LTP was also detected in paired recordings, although only when both presynaptic and postsynaptic recordings did not perturb the intracellular medium. Changes in EPSP amplitude distributions in dual recordings were consistent with a presynaptic locus of expression.
doi:10.1523/JNEUROSCI.0956-15.2015
PMCID: PMC4595614  PMID: 26446209
hippocampus; interneuron; LTP; metabotropic glutamate receptors; muscarinic receptors
18.  Excitation/Inhibition Imbalance and Impaired Synaptic Inhibition in Hippocampal Area CA3 of Mecp2 Knockout Mice 
Hippocampus  2014;25(2):159-168.
Rett syndrome (RTT) is a neurodevelopment disorder associated with intellectual disabilities and caused by loss-of-function mutations in the gene encoding the transcriptional regulator Methyl-CpG-binding Protein-2 (MeCP2). Neuronal dysfunction and changes in cortical excitability occur in RTT individuals and Mecp2-deficient mice, including hippocampal network hyperactivity and higher frequency of spontaneous multi-unit spikes in the CA3 cell body layer. Here, we describe impaired synaptic inhibition and an excitation/inhibition (E/I) imbalance in area CA3 of acute slices from symptomatic Mecp2 knockout male mice (referred to as Mecp2-/y). The amplitude of TTX-resistant miniature inhibitory postsynaptic currents (mIPSC) was smaller in CA3 pyramidal neurons of Mecp2-/y slices than in wildtype controls, while the amplitude of miniature excitatory postsynaptic currents (mEPSC) was significantly larger in Mecp2-/y neurons. Consistently, quantitative confocal immunohistochemistry revealed significantly lower intensity of the alpha-1 subunit of GABAARs in the CA3 cell body layer of Mecp2-/y mice, while GluA1 puncta intensities were significantly higher in the CA3 dendritic layers of Mecp2-/y mice. In addition, the input/output (I/O) relationship of evoked IPSCs had a shallower slope in CA3 pyramidal neurons Mecp2-/y neurons. Consistent with the absence of neuronal degeneration in RTT and MeCP2-based mouse models, the density of parvalbumin- and somatostatin-expressing interneurons in area CA3 was not affected in Mecp2-/y mice. Furthermore, the intrinsic membrane properties of several interneuron subtypes in area CA3 were not affected by Mecp2 loss. However, mEPSCs are smaller and less frequent in CA3 fast-spiking basket cells of Mecp2-/y mice, suggesting an impaired glutamatergic drive in this interneuron population. These results demonstrate that a loss-of-function mutation in Mecp2 causes impaired E/I balance onto CA3 pyramidal neurons, leading to a hyperactive hippocampal network, likely contributing to limbic seizures in Mecp2-/y mice and RTT individuals.
doi:10.1002/hipo.22360
PMCID: PMC4300269  PMID: 25209930
19.  Interneuron and pyramidal cell interplay during in vitro seizure-like events 
Journal of neurophysiology  2006;95(6):3948-3954.
Excitatory and inhibitory (EI) interactions shape network activity. However, little is known about the EI interactions in pathological conditions such as epilepsy. To investigate EI interactions during seizure-like events (SLE), we performed simultaneous dual and triple whole-cell and extracellular recordings in pyramidal cells and oriens interneurons in rat hippocampal CA1. We describe a novel pattern of interleaving EI activity during spontaneous in vitro SLEs generated by the potassium channel blocker 4-aminopyridine in the presence of decreased magnesium. Interneuron activity was increased during interictal periods. During ictal discharges interneurons entered into long-lasting depolarization block (DB) with suppression of spike generation; simultaneously, pyramidal cells produced spike trains with increased frequency (6–14Hz) and correlation. Following this period of runaway excitation, interneuron post-ictal spiking resumed and pyramidal cells became progressively quiescent. We performed correlation measures of cell-pair interactions using either the spikes alone or the subthreshold postsynaptic interspike signals. EE spike correlation was notably increased during interneuron DB, while subthreshold EE correlation decreased. EI spike correlations increased at the end of SLEs, while II subthreshold correlations increased during DB. Our findings underscore the importance of complex cell-type specific neuronal interactions in the formation of seizure patterns.
doi:10.1152/jn.01378.2005
PMCID: PMC1469233  PMID: 16554499
hippocampus; epilepsy; inhibition; excitation; correlation
20.  Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons 
eLife  null;4:e07919.
Inhibitory interneurons target precise membrane regions on pyramidal cells, but differences in their functional effects on somata, dendrites and spines remain unclear. We analyzed inhibitory synaptic events induced by cortical, fast-spiking (FS) basket cells which innervate dendritic shafts and spines as well as pyramidal cell somata. Serial electron micrograph (EMg) reconstructions showed that somatic synapses were larger than dendritic contacts. Simulations with precise anatomical and physiological data reveal functional differences between different innervation styles. FS cell soma-targeting synapses initiate a strong, global inhibition, those on shafts inhibit more restricted dendritic zones, while synapses on spines may mediate a strictly local veto. Thus, FS cell synapses of different sizes and sites provide functionally diverse forms of pyramidal cell inhibition.
DOI: http://dx.doi.org/10.7554/eLife.07919.001
eLife digest
The brain contains millions of cells called neurons that communicate with one another as part of complex circuits. To send information around these circuits, neurons ‘fire’ electrical signals along their length. These trigger the release of chemicals across a structure—known as the synapse—that forms a connection with a neighboring cell. Different types of neurons affect their neighbors in different ways. For example, signals from a pyramidal cell make it more likely that the next cell in the circuit will fire, whereas a signal sent by an inhibitory interneuron has the opposite effect. Pyramidal cells and interneurons make up the circuits in the brain's outer layer—the cortex.
Despite their opposing roles, these cells share the same basic structure. Each consists of a cable-like axon that can efficiently transmit electrical signals, and a cell body that contains the nucleus. The cell body bears numerous short branches called dendrites, which are in turn covered in bump-like protrusions called spines. Synapses typically form between the end of one cell's axon and a dendrite on another cell. However, synapses can also form between the end of an axon and an individual dendritic spine, or the end of an axon and a cell body.
Models of inhibitory synapses—connections from interneurons that inhibit pyramidal cells—tend to assume that these three types of connection are equivalent. However, Kubota et al. have now combined electron microscopy with electrode recordings of the activity of pairs of connected cells to show that the size and ability of inhibitory synapses to inhibit signaling varies depending on their location. Specifically, inhibitory synapses that form with the cell bodies of pyramidal cells are larger and inhibit signaling more strongly than those that form with dendrites, which are in turn larger and more inhibitory than those on dendritic spines.
Thus, depending on the point at which an interneuron contacts a pyramidal cell, it can inhibit signaling throughout the entire cell body, or only across a dendrite, or even just within a single dendritic spine. Incorporating this information into computer models of the brain will improve how accurately they simulate how the brain works. It will also help when modeling disorders in which inhibitory networks are disrupted, such as schizophrenia and depression.
DOI: http://dx.doi.org/10.7554/eLife.07919.002
doi:10.7554/eLife.07919
PMCID: PMC4518632  PMID: 26142457
inhibitory synapse; FS basket cell; pyramidal cell; IPSC; spine; synaptic conductance; rat
21.  THE PRO-CONVULSANT ACTIONS OF CORTICOTROPIN-RELEASING HORMONE IN THE HIPPOCAMPUS OF INFANT RATS 
Neuroscience  1998;84(1):71-79.
Whole-cell patch-clamp and extracellular field recordings were obtained from 450-μm-thick brain slices of infant rats (10–13 days postnatal) to determine the actions of corticotropin-releasing hormone on glutamate- and GABA-mediated synaptic transmission in the hippocampus. Synthetic corticotropin-releasing hormone (0.15 μM) reversibly increased the excitability of hippocampal pyramidal cells, as determined by the increase in the amplitude of the CA1 population spikes evoked by stimulation of the Schaffer collateral pathway. This increase in population spike amplitude could be prevented by the corticotropin-releasing hormone receptor antagonist α-helical (9–41)-corticotropin-releasing hormone (10 μM). Whole-cell patch-clamp recordings revealed that, in the presence of blockers of fast excitatory and inhibitory synaptic transmission, corticotropin-releasing hormone caused only a small (1–2 mV) depolarization of the resting membrane potential in CA3 pyramidal cells, and it did not significantly alter the input resistance. However, corticotropin-releasing hormone, in addition to decreasing the slow afterhyperpolarization, caused an increase in the number of action potentials per burst evoked by depolarizing current pulses. Corticotropin-releasing hormone did not significantly change the frequency, amplitude or kinetics of miniature excitatory postsynaptic currents. However, it increased the frequency of the spontaneous excitatory postsynaptic currents in CA3 pyramidal cells, without altering their amplitude and single exponential rise and decay time constants. Corticotropin-releasing hormone did not change the amplitude of the pharmacologically isolated (i.e. recorded in the presence of GABAA receptor antagonist bicuculline) excitatory postsynaptic currents in CA3 and CA1 pyramidal cells evoked by stimulation of the mossy fibers and the Schaffer collaterals, respectively. Current-clamp recordings in bicuculline-containing medium showed that, in the presence of corticotropin-releasing hormone, mossy fiber stimulation leads to large, synchronized, polysynaptically-evoked bursts of action potentials in CA3 pyramidal cells. In addition, the peptide caused a small, reversible decrease in the amplitude of the pharmacologically isolated (i.e. recorded in the presence of glutamate receptor antagonists) evoked inhibitory postsynaptic currents in CA3 pyramidal cells, but it did not significantly alter the frequency, amplitude, rise and decay time constants of spontaneous or miniature inhibitory postsynaptic currents.
These data demonstrate that corticotropin-releasing hormone, an endogenous neuropeptide whose intracerebroventricular infusion results in seizure activity in immature rats, has diverse effects in the hippocampus which may contribute to epileptogenesis. It is proposed that the net effect of corticotropin-releasing hormone is a preferential amplification of those incoming excitatory signals which are strong enough to reach firing threshold in at least a subpopulation of CA3 cells. These findings suggest that the actions of corticotropin-releasing hormone on neuronal excitability in the immature hippocampus may play a role in human developmental epilepsies.
PMCID: PMC3387920  PMID: 9522363
epilepsy; development; GABA; glutamate; excitability; seizure
22.  LTS and FS Inhibitory Interneurons, Short-Term Synaptic Plasticity, and Cortical Circuit Dynamics 
PLoS Computational Biology  2011;7(10):e1002248.
Somatostatin-expressing, low threshold-spiking (LTS) cells and fast-spiking (FS) cells are two common subtypes of inhibitory neocortical interneuron. Excitatory synapses from regular-spiking (RS) pyramidal neurons to LTS cells strongly facilitate when activated repetitively, whereas RS-to-FS synapses depress. This suggests that LTS neurons may be especially relevant at high rate regimes and protect cortical circuits against over-excitation and seizures. However, the inhibitory synapses from LTS cells usually depress, which may reduce their effectiveness at high rates. We ask: by which mechanisms and at what firing rates do LTS neurons control the activity of cortical circuits responding to thalamic input, and how is control by LTS neurons different from that of FS neurons? We study rate models of circuits that include RS cells and LTS and FS inhibitory cells with short-term synaptic plasticity. LTS neurons shift the RS firing-rate vs. current curve to the right at high rates and reduce its slope at low rates; the LTS effect is delayed and prolonged. FS neurons always shift the curve to the right and affect RS firing transiently. In an RS-LTS-FS network, FS neurons reach a quiescent state if they receive weak input, LTS neurons are quiescent if RS neurons receive weak input, and both FS and RS populations are active if they both receive large inputs. In general, FS neurons tend to follow the spiking of RS neurons much more closely than LTS neurons. A novel type of facilitation-induced slow oscillations is observed above the LTS firing threshold with a frequency determined by the time scale of recovery from facilitation. To conclude, contrary to earlier proposals, LTS neurons affect the transient and steady state responses of cortical circuits over a range of firing rates, not only during the high rate regime; LTS neurons protect against over-activation about as well as FS neurons.
Author Summary
The brain consists of circuits of neurons that signal to one another via synapses. There are two classes of neurons: excitatory cells, which cause other neurons to become more active, and inhibitory neurons, which cause other neurons to become less active. It is thought that the activity of excitatory neurons is kept in check largely by inhibitory neurons; when such an inhibitory “brake” fails, a seizure can result. Inhibitory neurons of the low-threshold spiking (LTS) subtype can potentially fulfill this braking, or anticonvulsant, role because the synaptic input to these neurons facilitates, i.e., those neurons are active when excitatory neurons are strongly active. Using a computational model we show that, because the synaptic output of LTS neurons onto excitatory neurons depresses (decreases with activity), the ability of LTS neurons to prevent strong cortical activity and seizures is not qualitatively larger than that of inhibitory neurons of another subtype, the fast-spiking (FS) cells. Furthermore, short-term (∼one second) changes in the strength of synapses to and from LTS interneurons allow them to shape the behavior of cortical circuits even at modest rates of activity, and an RS-LTS-FS circuit is capable of producing slow oscillations, on the time scale of these short-term changes.
doi:10.1371/journal.pcbi.1002248
PMCID: PMC3203067  PMID: 22046121
23.  Synapse-Associated Protein 97 Regulates the Membrane Properties of Fast-Spiking Parvalbumin Interneurons in the Visual Cortex 
The Journal of Neuroscience  2013;33(31):12739-12750.
Fast-spiking parvalbumin (PV)-positive interneurons in layers 2/3 of the visual cortex regulate gain control and tuning of visual processing. Synapse-associated protein 97 (SAP97) belongs to a family of proteins that have been implicated in regulating glutamatergic synaptic transmission at pyramidal-to-pyramidal connections in the nervous system. For PV interneurons in mouse visual cortex, the expression of SAP97 is developmentally regulated, being expressed in almost all juvenile but only a fraction, ∼40%, of adult PV interneurons. Using whole-cell patch-clamping, single-cell RT-PCR to assay endogenous expression of SAP97 and exogenous expression of SAP97, we investigated the functional significance of SAP97 in PV interneurons in layers 2/3 of the visual cortex. PV interneurons expressing SAP97, either endogenously or via exogenous expression, showed distinct membrane properties from those not expressing SAP97. This included an overall decrease in membrane excitability, as indexed by a decrease in membrane resistance and an increase in the stimulus threshold for the first action potential firing. Additionally, SAP97-expressing PV interneurons fired action potentials more frequently and, at moderate stimulus intensities, showed irregular or stuttering firing patterns. Furthermore, SAP97-expressing PV interneurons showed increased glutamatergic input and more extensive dendritic branching when compared with non-expressing PV interneurons. These differences in membrane and synaptic properties would significantly alter how PV interneurons expressing SAP97 compared with those not expressing SAP97 would function in local networks. Thus, our results indicate that the scaffolding protein SAP97 is a critical molecular factor regulating the input–output relationships of cortical PV interneurons.
doi:10.1523/JNEUROSCI.0040-13.2013
PMCID: PMC3728686  PMID: 23904610
24.  α2 nicotine receptors function as a molecular switch to continuously excite a subset of interneurons in rat hippocampal circuits 
The European journal of neuroscience  2009;29(8):1588-1603.
Rapid activation of nicotinic acetylcholine receptors (nAChRs) at various anatomical and cellular locations in the hippocampus differentially modulates the operation of hippocampal circuits. However, it is largely unknown how the continued presence of nicotine affects the normal operation of hippocampal circuits. Here, we used single and dual whole-cell recordings to address this question. We found that horizontally oriented interneurons in the stratum oriens/alveus continuously discharged action potentials in the presence of nicotine. In these interneurons, bath application of nicotine produced slow inward currents that were well maintained and inhibited by the non-α7 antagonist dihydro-β-erythroidine. Single-cell reverse transcription-polymerase chain reaction analysis showed that nicotine-responding interneurons were consistently positive for the α2 subunit mRNA. These observations suggest that in the presence of nicotine, a subset of interneurons in the stratum oriens/alveus are continuously excited due to the sustained activation of α2* nAChRs. These interneurons were synaptically connected to pyramidal cells, and nicotine increased inhibitory baseline currents at the synapses and suppressed phasic inhibition at the same synapses. Nicotine-induced inhibitory activity increased background noise and masked small phasic inhibition in pyramidal cells, originating from other interneurons in the stratum radiatum. Thus, the continued presence of nicotine alters the normal operation of hippocampal circuits by gating inhibitory circuits through activating a non-desensitizing α2 nAChR subtype on a distinct population of interneurons.
doi:10.1111/j.1460-9568.2009.06706.x
PMCID: PMC2915898  PMID: 19385992
nicotinic acetylcholine receptors; α2 subunit; stratum oriens/alveus; dual whole-cell recordings; inhibitory postsynaptic currents
25.  Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex  
PLoS Biology  2008;6(9):e222.
Synaptic interactions between neurons of the human cerebral cortex were not directly studied to date. We recorded the first dataset, to our knowledge, on the synaptic effect of identified human pyramidal cells on various types of postsynaptic neurons and reveal complex events triggered by individual action potentials in the human neocortical network. Brain slices were prepared from nonpathological samples of cortex that had to be removed for the surgical treatment of brain areas beneath association cortices of 58 patients aged 18 to 73 y. Simultaneous triple and quadruple whole-cell patch clamp recordings were performed testing mono- and polysynaptic potentials in target neurons following a single action potential fired by layer 2/3 pyramidal cells, and the temporal structure of events and underlying mechanisms were analyzed. In addition to monosynaptic postsynaptic potentials, individual action potentials in presynaptic pyramidal cells initiated long-lasting (37 ± 17 ms) sequences of events in the network lasting an order of magnitude longer than detected previously in other species. These event series were composed of specifically alternating glutamatergic and GABAergic postsynaptic potentials and required selective spike-to-spike coupling from pyramidal cells to GABAergic interneurons producing concomitant inhibitory as well as excitatory feed-forward action of GABA. Single action potentials of human neurons are sufficient to recruit Hebbian-like neuronal assemblies that are proposed to participate in cognitive processes.
Author Summary
We recorded the first connections, to our knowledge, between human nerve cells and reveal that a subset of interactions is so strong that some presynaptic cells are capable of eliciting action potentials in the postsynaptic target neurons. Interestingly, these strong connections selectively link pyramidal cells using the neurotransmitter glutamate to neurons releasing gamma aminobutyric acid (GABA). Moreover, the GABAergic neurons receiving the strong connections include different types: basket cells, which inhibit several target cell populations, and another type called the chandelier cells, which can be excitatory and target pyramidal cells only. Thus, the activation originating from a single pyramidal cell propagates to synchronously working inhibitory and excitatory GABAergic neurons. Inhibition then arrives to various neuron classes, but excitation finds only pyramidal cells, which in turn, can propagate excitation even further in the network of neurons. This chain of events revealed here leads to network activation approximately an order of magnitude longer than detected previously in response to a single action potential in a single neuron. Individual-neuron–activated groups of neurons resemble the so-called functional assemblies that were proposed as building blocks of higher order cognitive representations.
A novel study on connections between human neurons reveals that single spikes in pyramidal cells can activate synchronously timed assemblies through strong connections linking pyramidal cells with inhibitory and excitatory GABAergic neurons.
doi:10.1371/journal.pbio.0060222
PMCID: PMC2528052  PMID: 18767905

Results 1-25 (1358335)