Search tips
Search criteria

Results 1-25 (1297453)

Clipboard (0)

Related Articles

1.  Increased Basal Synaptic Inhibition of Hippocampal Area CA1 Pyramidal Neurons by an Antiepileptic Drug that Enhances IH 
Neuropsychopharmacology  2009;35(2):464-472.
The hyperpolarization-activated cation current (IH) regulates the electrical activity of many excitable cells, but its precise function varies across cell types. The antiepileptic drug lamotrigine (LTG) was recently shown to enhance IH in hippocampal CA1 pyramidal neurons, showing a potential anticonvulsant mechanism, as IH can dampen dendrito-somatic propagation of excitatory postsynaptic potentials in these cells. However, IH is also expressed in many hippocampal interneurons that provide synaptic inhibition to CA1 pyramidal neurons, and thus, IH modulation may indirectly regulate the inhibitory control of principal cells by direct modulation of interneuron activity. Whether IH in hippocampal interneurons is sensitive to modulation by LTG, and the manner by which this may affect the synaptic inhibition of pyramidal cells has not been investigated. In this study, we examined the effects of LTG on IH and spontaneous firing of area CA1 stratum oriens interneurons, as well as on spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons in immature rat brain slices. LTG (100 μM) significantly increased IH in the majority of interneurons, and depolarized interneurons from rest, promoting spontaneous firing. LTG also caused an increase in the frequency of spontaneous (but not miniature) IPSCs in pyramidal neurons without significantly altering amplitudes or rise and decay times. These data indicate that IH in CA1 interneurons can be increased by LTG, similarly to IH in pyramidal neurons, that IH enhancement increases interneuron excitability, and that these effects are associated with increased basal synaptic inhibition of CA1 pyramidal neurons.
PMCID: PMC2795055  PMID: 19776733
anticonvulsant; GABA; interneuron; patch-clamp; epilepsy; H-current
2.  Increased Basal Synaptic Inhibition of Hippocampal Area CA1 Pyramidal Neurons by Antiepileptic Drug that Enhance Ih 
The hyperpolarization-activated cation current IH regulates the electrical activity of many excitable cells, but its precise function varies across cell types. The antiepileptic drug lamotrigine (LTG) recently was shown to enhance IH in hippocampal CA1 pyramidal neurons, revealing a potential anticonvulsant mechanism, as IH can dampen dendrito-somatic propagation of excitatory postsynaptic potentials in these cells. However, IH also is expressed in many hippocampal interneurons that provide synaptic inhibition to CA1 pyramidal neurons, and thus, IH modulation may indirectly regulate inhibitory control of principal cells via direct modulation of interneuron activity. Whether IH in hippocampal interneurons is sensitive to modulation by LTG, and how this may affect synaptic inhibition of pyramidal cells has not been investigated. In this study, we examined the effects of LTG on IH and spontaneous firing of area CA1 s.o. interneurons, and on spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons in immature rat brain slices. LTG (100 µM) significantly increased IH in the majority of interneurons, and depolarized interneurons from rest, promoting spontaneous firing. LTG also caused an increase in the frequency of spontaneous (but not miniature) IPSCs in pyramidal neurons without significantly altering amplitudes or rise and decay times. These data indicate that IH in CA1 interneurons can be increased by LTG, similarly to IH in pyramidal neurons, that IH enhancement increases interneuron excitability, and that these effects are associated with increased basal synaptic inhibition of CA1 pyramidal neurons.
PMCID: PMC2795055  PMID: 19776733
Anticonvulsant; GABA; Interneuron; Patch-clamp; Epilepsy; H-current
3.  Vasopressin Facilitates GABAergic Transmission in Rat Hippocampus via Activation of V1A receptors 
Neuropharmacology  2012;63(7):1218-1226.
Whereas vasopressin has been shown to enhance memory possibly by increasing long-term potentiation and direct excitation of the pyramidal neurons in the hippocampus, the effects of vasopressin on GABAergic transmission in the hippocampus remain to be determined. Here we examined the effects of vasopressin on GABAergic transmission onto CA1 pyramidal neurons and our results demonstrate that bath application of [Arg8]-vasopressin (AVP) dose-dependently increased the frequency of spontaneous IPSCs (sIPSCs) recorded from CA1 pyramidal neurons via activation of V1A receptors. Immunohistological staining and western blot further confirmed that both CA1 pyramidal neurons and interneurons expressed V1A receptors. Bath application of AVP altered neither the frequency nor the amplitude of miniature IPSCs in the presence of tetradotoxin and failed to change significantly the amplitude of evoked IPSCs recorded from CA1 pyramidal neurons. AVP increased the firing frequency of action potentials by depolarizing the GABAergic interneurons in the stratum radiatum of CA1 region. AVP-mediated depolarization of interneurons was mediated by inhibition of a background K+ conductance which was insensitive to extracellular tetraethylammonium, Cs+, 4-aminopyridine, tertiapine-Q and Ba2+. AVP-induced depolarization of interneurons was dependent on Gαq/11 but independent of phospholipase C, intracellular Ca2+ release and protein kinase C. The inhibitory effects of AVP-mediated modulation of GABA release onto CA1 pyramidal neurons were overwhelmed by its strong excitation of CA1 pyramidal neurons in physiological condition but revealed when its direct excitation of the pyramidal neurons was blocked suggesting that AVP-mediated modulation of GABAergic transmission fine-tunes the excitability of CA1 pyramidal neurons.
PMCID: PMC3438289  PMID: 22884625
synaptic transmission; K+ channels; GABA receptor; hippocampus; G-protein; synapse
4.  Membrane Potential-Dependent Modulation of Recurrent Inhibition in Rat Neocortex 
PLoS Biology  2011;9(3):e1001032.
Dynamic balance of excitation and inhibition is crucial for network stability and cortical processing, but it is unclear how this balance is achieved at different membrane potentials (Vm) of cortical neurons, as found during persistent activity or slow Vm oscillation. Here we report that a Vm-dependent modulation of recurrent inhibition between pyramidal cells (PCs) contributes to the excitation-inhibition balance. Whole-cell recording from paired layer-5 PCs in rat somatosensory cortical slices revealed that both the slow and the fast disynaptic IPSPs, presumably mediated by low-threshold spiking and fast spiking interneurons, respectively, were modulated by changes in presynaptic Vm. Somatic depolarization (>5 mV) of the presynaptic PC substantially increased the amplitude and shortened the onset latency of the slow disynaptic IPSPs in neighboring PCs, leading to a narrowed time window for EPSP integration. A similar increase in the amplitude of the fast disynaptic IPSPs in response to presynaptic depolarization was also observed. Further paired recording from PCs and interneurons revealed that PC depolarization increases EPSP amplitude and thus elevates interneuronal firing and inhibition of neighboring PCs, a reflection of the analog mode of excitatory synaptic transmission between PCs and interneurons. Together, these results revealed an immediate Vm-dependent modulation of cortical inhibition, a key strategy through which the cortex dynamically maintains the balance of excitation and inhibition at different states of cortical activity.
Author Summary
Proper functioning of the neocortex requires a balance between excitation and inhibition. This balance can be achieved through the operation of cortical microcircuits interweaved by excitatory and inhibitory neurons. Since the membrane potentials (Vm) of cortical neurons fluctuate at different levels during cortical activities, it is important to know how the balance of excitation and inhibition is dynamically maintained at different Vm. Recurrent inhibition between excitatory pyramidal cells is mediated by two distinct types of inhibitory interneurons. Here, we show that the amount of recurrent inhibition depends on the Vm levels of presynaptic pyramidal cells. Modest depolarization of a pyramidal cell substantially increases, and sometimes turns on, disynaptic inhibition on its neighboring pyramidal cells. We find that this effect is due to an increase in the strength of synaptic connections from the pyramidal cell to inhibitory interneurons and a consequent elevation of interneuronal firing. The depolarization-induced increase in synaptic strength from the pyramidal cell therefore reflects “analog-mode” signaling in cortical excitatory synapses. We thus reveal a profound impact of analog-mode signaling on the operation of cortical microcircuits and provide a new mechanism for dynamic control of the balance of cortical excitation and inhibition.
PMCID: PMC3062529  PMID: 21445327
5.  Inhibitory control of hippocampal inhibitory neurons 
Information processing within neuronal networks is determined by a dynamic partnership between principal neurons and local circuit inhibitory interneurons. The population of GABAergic interneurons is extremely heterogeneous and comprises, in many brain regions, cells with divergent morphological and physiological properties, distinct molecular expression profiles, and highly specialized functions. GABAergic interneurons have been studied extensively during the past two decades, especially in the hippocampus, which is a relatively simple cortical structure. Different types of hippocampal inhibitory interneurons control spike initiation [e.g., axo-axonic and basket cells (BCs)] and synaptic integration (e.g., bistratified and oriens–lacunosum moleculare interneurons) within pyramidal neurons and synchronize local network activity, providing a means for functional segregation of neuronal ensembles and proper routing of hippocampal information. Thus, it is thought that, at least in the hippocampus, GABAergic inhibitory interneurons represent critical regulating elements at all stages of information processing, from synaptic integration and spike generation to large-scale network activity. However, this raises an important question: if inhibitory interneurons are fundamental for network computations, what are the mechanisms that control the activity of the interneurons themselves? Given the essential role of synaptic inhibition in the regulation of neuronal activity, it would be logical to expect that specific inhibitory mechanisms have evolved to control the operation of interneurons. Here, we review the mechanisms of synaptic inhibition of interneurons and discuss their role in the operation of hippocampal inhibitory circuits.
PMCID: PMC3496901  PMID: 23162426
hippocampus; inhibition; interneuron-specific interneuron; GABA; synapse
6.  Non-associative Potentiation of Perisomatic Inhibition Alters the Temporal Coding of Neocortical Layer 5 Pyramidal Neurons 
PLoS Biology  2014;12(7):e1001903.
Long-term potentiation of inhibitory GABAergic transmission controls synaptic integration and action potential generation of specific neocortical neurons.
In the neocortex, the coexistence of temporally locked excitation and inhibition governs complex network activity underlying cognitive functions, and is believed to be altered in several brain diseases. Here we show that this equilibrium can be unlocked by increased activity of layer 5 pyramidal neurons of the mouse neocortex. Somatic depolarization or short bursts of action potentials of layer 5 pyramidal neurons induced a selective long-term potentiation of GABAergic synapses (LTPi) without affecting glutamatergic inputs. Remarkably, LTPi was selective for perisomatic inhibition from parvalbumin basket cells, leaving dendritic inhibition intact. It relied on retrograde signaling of nitric oxide, which persistently altered presynaptic GABA release and diffused to inhibitory synapses impinging on adjacent pyramidal neurons. LTPi reduced the time window of synaptic summation and increased the temporal precision of spike generation. Thus, increases in single cortical pyramidal neuron activity can induce an interneuron-selective GABAergic plasticity effectively altering the computation of temporally coded information.
Author Summary
The proper activity of cortical neurons (the brain cells responsible for memory and consciousness) relies on the precise integration of excitatory and inhibitory inputs. The excitation and inhibition (E/I) ratio has to remain constant both in time and strength to prevent neurological and psychiatric diseases. Fast inhibitory synaptic inputs to cortical pyramidal neurons originate from a rich diversity of GABAergic interneurons that operate a strict division of labor by differentially targeting precise regions of the pyramidal neurons. Here, we show that large pyramidal neurons of neocortical layer 5 can unlock the E/I ratio in response to their own activity. Excitatory activity of pyramidal neurons, in the form of membrane depolarization or trains of action potentials, induces a Ca2+-dependent mobilization of nitric oxide, which diffuses to inhibitory synapses and triggers a persistent enhancement of GABA release. Notably, this potentiation of inhibition is specific for synapses originating from parvalbumin (PV)-expressing interneurons that target mainly the perisomatic region of pyramidal neurons. Long-term potentiation of perisomatic inhibition, in turn, changes the ability of pyramidal neurons to integrate excitatory inputs as well as the temporal properties of their own action potential output. Selective plasticity of perisomatic inhibition can thus play a crucial role in cortical activity, such as sensory processing and integration.
PMCID: PMC4086817  PMID: 25003184
7.  Action Potential Modulation in CA1 Pyramidal Neuron Axons Facilitates OLM Interneuron Activation in Recurrent Inhibitory Microcircuits of Rat Hippocampus 
PLoS ONE  2014;9(11):e113124.
Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outside-out patch recordings from CA1 pyramidal neuron axons revealed a high density of α-dendrotoxin (α-DTX)-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron–O-LM interneuron excitatory postsynaptic currents (EPSCs) showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron–interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits.
PMCID: PMC4237399  PMID: 25409299
8.  Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility 
Neurobiology of disease  2012;0:211-220.
Voltage-gated sodium channels (VGSCs) are essential for the generation and propagation of action potentials in electrically excitable cells. Dominant mutations in SCN1A, which encodes the Nav1.1 VGSC α-subunit, underlie several forms of epilepsy, including Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Electrophysiological analyses of DS and GEFS+ mouse models have led to the hypothesis that SCN1A mutations reduce the excitability of inhibitory cortical and hippocampal interneurons. To more directly examine the relative contribution of inhibitory interneurons and excitatory pyramidal cells to SCN1A-derived epilepsy, we first compared the expression of Nav1.1 in inhibitory parvalbumin (PV) interneurons and excitatory neurons from P22 mice using fluorescent immunohistochemistry. In the hippocampus and neocortex, 69% of Nav1.1 immunoreactive neurons were also positive for PV. In contrast, 13% and 5% of Nav1.1 positive cells in the hippocampus and neocortex, respectively, were found to co-localize with excitatory cells identified by CaMK2α immunoreactivity. Next, we reduced the expression of Scn1a in either a subset of interneurons (mainly PV interneurons) or excitatory cells by crossing mice heterozygous for a floxed Scn1a allele to either the Ppp1r2-Cre or EMX1-Cre transgenic lines, respectively. The inactivation of one Scn1a allele in interneurons of the neocortex and hippocampus was sufficient to reduce thresholds to flurothyl- and hyperthermia-induced seizures, whereas thresholds were unaltered following inactivation in excitatory cells. Reduced interneuron Scn1a expression also resulted in the generation of spontaneous seizures. These findings provide direct evidence for an important role of PV interneurons in the pathogenesis of Scn1a-derived epilepsies.
PMCID: PMC3740063  PMID: 22926190
Epilepsy; SCN1A; ion channels; interneurons; pyramidal neurons
9.  Dendritic inhibition mediated by O-LM and bistratified interneurons in the hippocampus 
In the CA1 region of the hippocampus pyramidal neurons and GABAergic interneurons form local microcircuits. CA1 interneurons are a diverse group consisting of many subtypes, some of which provide compartment-specific inhibition specifically onto pyramidal neuron dendrites. In fact, the majority of inhibitory synapses on pyramidal neurons is found on their dendrites. The specific role of a dendrite-innervating interneuron subtype is primarily determined by its innervation pattern on the distinct dendritic domains of pyramidal neurons. The efficacy of dendritic inhibition in reducing dendritic excitation depends on the relative timing and location of the activated excitatory and inhibitory synapses. In vivo, synaptic properties such as short-term plasticity and neuro-modulation by the basal forebrain, govern the degree of inhibition in distinct dendritic domains in a dynamic, behavior dependent manner, specifically during network oscillation such as the theta rhythm. In this review we focus on two subtypes of dendrite-innervating interneurons: the oriens-lacunosum moleculare (O-LM) interneuron and the bistratified interneuron. Their molecular marker profile, morphology, and function in vivo and in vitro are well studied. We strive to integrate this diverse information from the cellular to the network level, and to provide insight into how the different characteristics of O-LM and bistratified interneurons affect dendritic excitability, network activity, and behavior.
PMCID: PMC4179767  PMID: 25324774
oriens-lacunosum moleculare interneuron; bistratified interneuron; dendritic inhibition; theta oscillation; modulation
10.  Interneuron loss reduces dendritic inhibition and GABA release in hippocampus of aged rats 
Neurobiology of aging  2011;33(2):431.e1-431.e13.
Aging is associated with impairments in learning and memory and a greater incidence of limbic seizures. These changes in the aged brain have been associated with increased excitability of hippocampal pyramidal cells caused by a reduced number of GABAergic interneurons. To better understand these issues, we performed cell counts of GABAergic interneurons and examined GABA efflux and GABAergic inhibition in area CA1 of the hippocampus of young (3-5 mo) and aged (26-30 mo) rats. Aging significantly reduced high K+/Ca2+-evoked GABA, but not glutamate efflux in area CA1. Immunostaining revealed a significant loss of GABAergic interneurons, but not inhibitory boutons in stratum oriens and stratum lacunosum moleculare. Somatostatin-immunoreactive oriens-lacunosum moleculare (O-LM) cells, but not parvalbumin-containing interneurons were selectively lost. O-LM cells project to distal dendrites of CA1 pyramidal cells, providing dendritic inhibition. Accordingly, inhibition of dendritic input to CA1 from entorhinal cortex was selectively reduced. These findings suggest that the age-dependent loss of interneurons impairs dendritic inhibition and dysregulates entorhinal cortical input to CA1, potentially contributing to cognitive impairment and seizures.
PMCID: PMC3110542  PMID: 21277654
Interneuron; aging; hippocampus; CA1; O-LM cells; temporoammonic pathway; GABA; inhibition; somatostatin; parvalbumin; entorhinal cortex; dendritic inhibition
11.  Differential Regulation of the Excitability of Prefrontal Cortical Fast-Spiking Interneurons and Pyramidal Neurons by Serotonin and Fluoxetine 
PLoS ONE  2011;6(2):e16970.
Serotonin exerts a powerful influence on neuronal excitability. In this study, we investigated the effects of serotonin on different neuronal populations in prefrontal cortex (PFC), a major area controlling emotion and cognition. Using whole-cell recordings in PFC slices, we found that bath application of 5-HT dose-dependently increased the firing of FS (fast spiking) interneurons, and decreased the firing of pyramidal neurons. The enhancing effect of 5-HT in FS interneurons was mediated by 5-HT2 receptors, while the reducing effect of 5-HT in pyramidal neurons was mediated by 5-HT1 receptors. Fluoxetine, the selective serotonin reuptake inhibitor, also induced a concentration-dependent increase in the excitability of FS interneurons, but had little effect on pyramidal neurons. In rats with chronic fluoxetine treatment, the excitability of FS interneurons was significantly increased, while pyramidal neurons remained unchanged. Fluoxetine injection largely occluded the enhancing effect of 5-HT in FS interneurons, but did not alter the reducing effect of 5-HT in pyramidal neurons. These data suggest that the excitability of PFC interneurons and pyramidal neurons is regulated by exogenous 5-HT in an opposing manner, and FS interneurons are the major target of Fluoxetine. It provides a framework for understanding the action of 5-HT and antidepressants in altering PFC network activity.
PMCID: PMC3044712  PMID: 21383986
12.  Rac1 and Rac3 GTPases Control Synergistically the Development of Cortical and Hippocampal GABAergic Interneurons 
Cerebral Cortex (New York, NY)  2012;24(5):1247-1258.
The intracellular mechanisms driving postmitotic development of cortical γ-aminobutyric acid (GABA)ergic interneurons are poorly understood. We have addressed the function of Rac GTPases in cortical and hippocampal interneuron development. Developing neurons express both Rac1 and Rac3. Previous work has shown that Rac1 ablation does not affect the development of migrating cortical interneurons. Analysis of mice with double deletion of Rac1 and Rac3 shows that these GTPases are required during postmitotic interneuron development. The number of parvalbumin-positive cells was affected in the hippocampus and cortex of double knockout mice. Rac depletion also influences the maturation of interneurons that reach their destination, with reduction of inhibitory synapses in both hippocampal CA1 and cortical pyramidal cells. The decreased number of cortical migrating interneurons and their altered morphology indicate a role of Rac1 and Rac3 in regulating the motility of cortical interneurons, thus interfering with their final localization. While electrophysiological passive and active properties of pyramidal neurons including membrane capacity, resting potential, and spike amplitude and duration were normal, these cells showed reduced spontaneous inhibitory currents and increased excitability. Our results show that Rac1 and Rac3 contribute synergistically to postmitotic development of specific populations of GABAergic cells, suggesting that these proteins regulate their migration and differentiation.
PMCID: PMC3977619  PMID: 23258346
cortex; GABAergic interneurons; hippocampus; neuronal migration; Rac GTPases
13.  LTS and FS Inhibitory Interneurons, Short-Term Synaptic Plasticity, and Cortical Circuit Dynamics 
PLoS Computational Biology  2011;7(10):e1002248.
Somatostatin-expressing, low threshold-spiking (LTS) cells and fast-spiking (FS) cells are two common subtypes of inhibitory neocortical interneuron. Excitatory synapses from regular-spiking (RS) pyramidal neurons to LTS cells strongly facilitate when activated repetitively, whereas RS-to-FS synapses depress. This suggests that LTS neurons may be especially relevant at high rate regimes and protect cortical circuits against over-excitation and seizures. However, the inhibitory synapses from LTS cells usually depress, which may reduce their effectiveness at high rates. We ask: by which mechanisms and at what firing rates do LTS neurons control the activity of cortical circuits responding to thalamic input, and how is control by LTS neurons different from that of FS neurons? We study rate models of circuits that include RS cells and LTS and FS inhibitory cells with short-term synaptic plasticity. LTS neurons shift the RS firing-rate vs. current curve to the right at high rates and reduce its slope at low rates; the LTS effect is delayed and prolonged. FS neurons always shift the curve to the right and affect RS firing transiently. In an RS-LTS-FS network, FS neurons reach a quiescent state if they receive weak input, LTS neurons are quiescent if RS neurons receive weak input, and both FS and RS populations are active if they both receive large inputs. In general, FS neurons tend to follow the spiking of RS neurons much more closely than LTS neurons. A novel type of facilitation-induced slow oscillations is observed above the LTS firing threshold with a frequency determined by the time scale of recovery from facilitation. To conclude, contrary to earlier proposals, LTS neurons affect the transient and steady state responses of cortical circuits over a range of firing rates, not only during the high rate regime; LTS neurons protect against over-activation about as well as FS neurons.
Author Summary
The brain consists of circuits of neurons that signal to one another via synapses. There are two classes of neurons: excitatory cells, which cause other neurons to become more active, and inhibitory neurons, which cause other neurons to become less active. It is thought that the activity of excitatory neurons is kept in check largely by inhibitory neurons; when such an inhibitory “brake” fails, a seizure can result. Inhibitory neurons of the low-threshold spiking (LTS) subtype can potentially fulfill this braking, or anticonvulsant, role because the synaptic input to these neurons facilitates, i.e., those neurons are active when excitatory neurons are strongly active. Using a computational model we show that, because the synaptic output of LTS neurons onto excitatory neurons depresses (decreases with activity), the ability of LTS neurons to prevent strong cortical activity and seizures is not qualitatively larger than that of inhibitory neurons of another subtype, the fast-spiking (FS) cells. Furthermore, short-term (∼one second) changes in the strength of synapses to and from LTS interneurons allow them to shape the behavior of cortical circuits even at modest rates of activity, and an RS-LTS-FS circuit is capable of producing slow oscillations, on the time scale of these short-term changes.
PMCID: PMC3203067  PMID: 22046121
14.  Interneuron and pyramidal cell interplay during in vitro seizure-like events 
Journal of neurophysiology  2006;95(6):3948-3954.
Excitatory and inhibitory (EI) interactions shape network activity. However, little is known about the EI interactions in pathological conditions such as epilepsy. To investigate EI interactions during seizure-like events (SLE), we performed simultaneous dual and triple whole-cell and extracellular recordings in pyramidal cells and oriens interneurons in rat hippocampal CA1. We describe a novel pattern of interleaving EI activity during spontaneous in vitro SLEs generated by the potassium channel blocker 4-aminopyridine in the presence of decreased magnesium. Interneuron activity was increased during interictal periods. During ictal discharges interneurons entered into long-lasting depolarization block (DB) with suppression of spike generation; simultaneously, pyramidal cells produced spike trains with increased frequency (6–14Hz) and correlation. Following this period of runaway excitation, interneuron post-ictal spiking resumed and pyramidal cells became progressively quiescent. We performed correlation measures of cell-pair interactions using either the spikes alone or the subthreshold postsynaptic interspike signals. EE spike correlation was notably increased during interneuron DB, while subthreshold EE correlation decreased. EI spike correlations increased at the end of SLEs, while II subthreshold correlations increased during DB. Our findings underscore the importance of complex cell-type specific neuronal interactions in the formation of seizure patterns.
PMCID: PMC1469233  PMID: 16554499
hippocampus; epilepsy; inhibition; excitation; correlation
Neuroscience  1998;84(1):71-79.
Whole-cell patch-clamp and extracellular field recordings were obtained from 450-μm-thick brain slices of infant rats (10–13 days postnatal) to determine the actions of corticotropin-releasing hormone on glutamate- and GABA-mediated synaptic transmission in the hippocampus. Synthetic corticotropin-releasing hormone (0.15 μM) reversibly increased the excitability of hippocampal pyramidal cells, as determined by the increase in the amplitude of the CA1 population spikes evoked by stimulation of the Schaffer collateral pathway. This increase in population spike amplitude could be prevented by the corticotropin-releasing hormone receptor antagonist α-helical (9–41)-corticotropin-releasing hormone (10 μM). Whole-cell patch-clamp recordings revealed that, in the presence of blockers of fast excitatory and inhibitory synaptic transmission, corticotropin-releasing hormone caused only a small (1–2 mV) depolarization of the resting membrane potential in CA3 pyramidal cells, and it did not significantly alter the input resistance. However, corticotropin-releasing hormone, in addition to decreasing the slow afterhyperpolarization, caused an increase in the number of action potentials per burst evoked by depolarizing current pulses. Corticotropin-releasing hormone did not significantly change the frequency, amplitude or kinetics of miniature excitatory postsynaptic currents. However, it increased the frequency of the spontaneous excitatory postsynaptic currents in CA3 pyramidal cells, without altering their amplitude and single exponential rise and decay time constants. Corticotropin-releasing hormone did not change the amplitude of the pharmacologically isolated (i.e. recorded in the presence of GABAA receptor antagonist bicuculline) excitatory postsynaptic currents in CA3 and CA1 pyramidal cells evoked by stimulation of the mossy fibers and the Schaffer collaterals, respectively. Current-clamp recordings in bicuculline-containing medium showed that, in the presence of corticotropin-releasing hormone, mossy fiber stimulation leads to large, synchronized, polysynaptically-evoked bursts of action potentials in CA3 pyramidal cells. In addition, the peptide caused a small, reversible decrease in the amplitude of the pharmacologically isolated (i.e. recorded in the presence of glutamate receptor antagonists) evoked inhibitory postsynaptic currents in CA3 pyramidal cells, but it did not significantly alter the frequency, amplitude, rise and decay time constants of spontaneous or miniature inhibitory postsynaptic currents.
These data demonstrate that corticotropin-releasing hormone, an endogenous neuropeptide whose intracerebroventricular infusion results in seizure activity in immature rats, has diverse effects in the hippocampus which may contribute to epileptogenesis. It is proposed that the net effect of corticotropin-releasing hormone is a preferential amplification of those incoming excitatory signals which are strong enough to reach firing threshold in at least a subpopulation of CA3 cells. These findings suggest that the actions of corticotropin-releasing hormone on neuronal excitability in the immature hippocampus may play a role in human developmental epilepsies.
PMCID: PMC3387920  PMID: 9522363
epilepsy; development; GABA; glutamate; excitability; seizure
16.  Synapse-Associated Protein 97 Regulates the Membrane Properties of Fast-Spiking Parvalbumin Interneurons in the Visual Cortex 
The Journal of Neuroscience  2013;33(31):12739-12750.
Fast-spiking parvalbumin (PV)-positive interneurons in layers 2/3 of the visual cortex regulate gain control and tuning of visual processing. Synapse-associated protein 97 (SAP97) belongs to a family of proteins that have been implicated in regulating glutamatergic synaptic transmission at pyramidal-to-pyramidal connections in the nervous system. For PV interneurons in mouse visual cortex, the expression of SAP97 is developmentally regulated, being expressed in almost all juvenile but only a fraction, ∼40%, of adult PV interneurons. Using whole-cell patch-clamping, single-cell RT-PCR to assay endogenous expression of SAP97 and exogenous expression of SAP97, we investigated the functional significance of SAP97 in PV interneurons in layers 2/3 of the visual cortex. PV interneurons expressing SAP97, either endogenously or via exogenous expression, showed distinct membrane properties from those not expressing SAP97. This included an overall decrease in membrane excitability, as indexed by a decrease in membrane resistance and an increase in the stimulus threshold for the first action potential firing. Additionally, SAP97-expressing PV interneurons fired action potentials more frequently and, at moderate stimulus intensities, showed irregular or stuttering firing patterns. Furthermore, SAP97-expressing PV interneurons showed increased glutamatergic input and more extensive dendritic branching when compared with non-expressing PV interneurons. These differences in membrane and synaptic properties would significantly alter how PV interneurons expressing SAP97 compared with those not expressing SAP97 would function in local networks. Thus, our results indicate that the scaffolding protein SAP97 is a critical molecular factor regulating the input–output relationships of cortical PV interneurons.
PMCID: PMC3728686  PMID: 23904610
17.  α2 nicotine receptors function as a molecular switch to continuously excite a subset of interneurons in rat hippocampal circuits 
The European journal of neuroscience  2009;29(8):1588-1603.
Rapid activation of nicotinic acetylcholine receptors (nAChRs) at various anatomical and cellular locations in the hippocampus differentially modulates the operation of hippocampal circuits. However, it is largely unknown how the continued presence of nicotine affects the normal operation of hippocampal circuits. Here, we used single and dual whole-cell recordings to address this question. We found that horizontally oriented interneurons in the stratum oriens/alveus continuously discharged action potentials in the presence of nicotine. In these interneurons, bath application of nicotine produced slow inward currents that were well maintained and inhibited by the non-α7 antagonist dihydro-β-erythroidine. Single-cell reverse transcription-polymerase chain reaction analysis showed that nicotine-responding interneurons were consistently positive for the α2 subunit mRNA. These observations suggest that in the presence of nicotine, a subset of interneurons in the stratum oriens/alveus are continuously excited due to the sustained activation of α2* nAChRs. These interneurons were synaptically connected to pyramidal cells, and nicotine increased inhibitory baseline currents at the synapses and suppressed phasic inhibition at the same synapses. Nicotine-induced inhibitory activity increased background noise and masked small phasic inhibition in pyramidal cells, originating from other interneurons in the stratum radiatum. Thus, the continued presence of nicotine alters the normal operation of hippocampal circuits by gating inhibitory circuits through activating a non-desensitizing α2 nAChR subtype on a distinct population of interneurons.
PMCID: PMC2915898  PMID: 19385992
nicotinic acetylcholine receptors; α2 subunit; stratum oriens/alveus; dual whole-cell recordings; inhibitory postsynaptic currents
18.  Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex  
PLoS Biology  2008;6(9):e222.
Synaptic interactions between neurons of the human cerebral cortex were not directly studied to date. We recorded the first dataset, to our knowledge, on the synaptic effect of identified human pyramidal cells on various types of postsynaptic neurons and reveal complex events triggered by individual action potentials in the human neocortical network. Brain slices were prepared from nonpathological samples of cortex that had to be removed for the surgical treatment of brain areas beneath association cortices of 58 patients aged 18 to 73 y. Simultaneous triple and quadruple whole-cell patch clamp recordings were performed testing mono- and polysynaptic potentials in target neurons following a single action potential fired by layer 2/3 pyramidal cells, and the temporal structure of events and underlying mechanisms were analyzed. In addition to monosynaptic postsynaptic potentials, individual action potentials in presynaptic pyramidal cells initiated long-lasting (37 ± 17 ms) sequences of events in the network lasting an order of magnitude longer than detected previously in other species. These event series were composed of specifically alternating glutamatergic and GABAergic postsynaptic potentials and required selective spike-to-spike coupling from pyramidal cells to GABAergic interneurons producing concomitant inhibitory as well as excitatory feed-forward action of GABA. Single action potentials of human neurons are sufficient to recruit Hebbian-like neuronal assemblies that are proposed to participate in cognitive processes.
Author Summary
We recorded the first connections, to our knowledge, between human nerve cells and reveal that a subset of interactions is so strong that some presynaptic cells are capable of eliciting action potentials in the postsynaptic target neurons. Interestingly, these strong connections selectively link pyramidal cells using the neurotransmitter glutamate to neurons releasing gamma aminobutyric acid (GABA). Moreover, the GABAergic neurons receiving the strong connections include different types: basket cells, which inhibit several target cell populations, and another type called the chandelier cells, which can be excitatory and target pyramidal cells only. Thus, the activation originating from a single pyramidal cell propagates to synchronously working inhibitory and excitatory GABAergic neurons. Inhibition then arrives to various neuron classes, but excitation finds only pyramidal cells, which in turn, can propagate excitation even further in the network of neurons. This chain of events revealed here leads to network activation approximately an order of magnitude longer than detected previously in response to a single action potential in a single neuron. Individual-neuron–activated groups of neurons resemble the so-called functional assemblies that were proposed as building blocks of higher order cognitive representations.
A novel study on connections between human neurons reveals that single spikes in pyramidal cells can activate synchronously timed assemblies through strong connections linking pyramidal cells with inhibitory and excitatory GABAergic neurons.
PMCID: PMC2528052  PMID: 18767905
19.  Feedforward Inhibition Underlies the Propagation of Cholinergically Induced Gamma Oscillations from Hippocampal CA3 to CA1 
The Journal of Neuroscience  2013;33(30):12337-12351.
Gamma frequency (30–80 Hz) oscillations are implicated in memory processing. Such rhythmic activity can be generated intrinsically in the CA3 region of the hippocampus from where it can propagate to the CA1 area. To uncover the synaptic mechanisms underlying the intrahippocampal spread of gamma oscillations, we recorded local field potentials, as well as action potentials and synaptic currents in anatomically identified CA1 and CA3 neurons during carbachol-induced gamma oscillations in mouse hippocampal slices. The firing of the vast majority of CA1 neurons and all CA3 neurons was phase-coupled to the oscillations recorded in the stratum pyramidale of the CA1 region. The predominant synaptic input to CA1 interneurons was excitatory, and their discharge followed the firing of CA3 pyramidal cells at a latency indicative of monosynaptic connections. Correlation analysis of the input–output characteristics of the neurons and local pharmacological block of inhibition both agree with a model in which glutamatergic CA3 input controls the firing of CA1 interneurons, with local pyramidal cell activity having a minimal role. The firing of phase-coupled CA1 pyramidal cells was controlled principally by their inhibitory inputs, which dominated over excitation. Our results indicate that the synchronous firing of CA3 pyramidal cells rhythmically recruits CA1 interneurons and that this feedforward inhibition generates the oscillatory activity in CA1. These findings identify distinct synaptic mechanisms underlying the generation of gamma frequency oscillations in neighboring hippocampal subregions.
PMCID: PMC3721843  PMID: 23884940
20.  Electrophysiological Diversity of Pyramidal-Shaped Neurons at the Granule Cell Layer/Hilus Border of the Rat Dentate Gyrus Recorded In Vitro 
Hippocampus  1995;5(4):287-305.
In the rat dentate gyrus, pyramidal-shaped cells located on the border of the granule cell layer and the hilus are one of the most common types of γ-aminobutyric acid (GABA)-immunoreactive neurons. This study describes their electrophysiological characteristics. Membrane properties, patterns of discharge, and synaptic responses were recorded intracellularly from these cells in hippocampal slices. Each cell was identified as pyramidal-shaped by injecting the marker Neurobiotin intracellularly (n = 17).
In several respects the membrane properties of the sampled cells were similar to “fast-spiking” cells (putative inhibitory interneurons) that have been described in other areas of the hippocampus. For example, input resistance was high (mean 91.3 megohms), the membrane time constant was short (mean 7.7 ms), and there was a large afterhyperpolarization following a single action potential (mean 10.5 mV at resting potential). However, the action potentials of most pyramidal-shaped cells were not as brief (mean 1.2 ms total duration) as those of most previously described fast-spiking cells. Many pyramidal-shaped neurons had strong spike frequency adaptation relative to other fast-spiking cells. Although these latter two characteristics were apparent in the majority of the sampled cells, there were exceptional pyramidal-shaped neurons with fast action potentials and weak adaptation, demonstrating the electrophysiological variability of pyramidal-shaped cells.
Responses to outer molecular layer stimulation were composed primarily of excitatory postsynaptic potentials (EPSPs) rather than inhibitory postsynaptic potentials (IPSPs), and were usually small (EPSPs evoked at threshold were often less than 2 mV), and brief (less than 30 ms). There was variability, because in a few cells EPSPs evoked at threshold were much larger. However, regardless of EPSP amplitude, suprathreshold stimulation (up to 4 times the threshold stimulus strength) rarely evoked more than one action potential in any cell. The results suggest that stimulation of perforant path axons produces limited excitatory synaptic responses in pyramidal-shaped neurons. This may be one of the reasons why they are relatively resistant to prolonged perforant path stimulation.
The pyramidal-shaped neurons located at the base of the granule cell layer have been associated historically with a basket plexus around granule cell somata, and have been called pyramidal “basket” cells. However, basket-like endings were rare and axon collaterals outside the granule cell layer were common. Many axon collaterals were as far from the granule cell layer as the outer molecular layer and the central hilus, and antidromic action potentials could be recorded in some cells in response to weak stimulation of these areas. Taken together with the electrophysiological variability, the results indicate that these cells are physiologically heterogeneous.
PMCID: PMC3298761  PMID: 8589793
interneuron; inhibition; γ-aminobutyric acid (GABA); granule cell; hippocampus
21.  Synapse-Specific Inhibitory Control of Hippocampal Feedback Inhibitory Circuit 
Local circuit and long-range GABAergic projections provide powerful inhibitory control over the operation of hippocampal inhibitory circuits, yet little is known about the input- and target-specific organization of interacting inhibitory networks in relation to their specific functions. Using a combination of two-photon laser scanning photostimulation and whole-cell patch clamp recordings in mice hippocampal slices, we examined the properties of transmission at GABAergic synapses formed onto hippocampal CA1 stratum oriens – lacunosum moleculare (O–LM) interneurons by two major inhibitory inputs: local projection originating from stratum radiatum interneurons and septohippocampal GABAergic terminals. Optical mapping of local inhibitory inputs to O–LM interneurons revealed that vasoactive intestinal polypeptide- and calretinin-positive neurons, with anatomical properties typical of type III interneuron-specific interneurons, provided the major local source of inhibition to O–LM cells. Inhibitory postsynaptic currents evoked by minimal stimulation of this input exhibited small amplitude and significant paired-pulse and multiple-pulse depression during repetitive activity. Moreover, these synapses failed to show any form of long-term synaptic plasticity. In contrast, synapses formed by septohippocampal projection produced higher amplitude and persistent inhibition and exhibited long-term potentiation induced by theta-like activity. These results indicate the input and target-specific segregation in inhibitory control, exerted by two types of GABAergic projections and responsible for distinct dynamics of inhibition in O–LM interneurons. The two inputs are therefore likely to support the differential activity- and brain state-dependent recruitment of hippocampal feedback inhibitory circuits in vivo, crucial for dendritic disinhibition and computations in CA1 pyramidal cells.
PMCID: PMC2972748  PMID: 21060720
GABAergic circuits; medial septum; interneuron-specific interneuron; synapse; plasticity; mouse
22.  Activation of Functional α7-Containing nAChRs in Hippocampal CA1 Pyramidal Neurons by Physiological Levels of Choline in the Presence of PNU-120596 
PLoS ONE  2010;5(11):e13964.
The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596.
Methodology/Principal Findings
An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71%) of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time) was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM) are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1–5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV) the entire pyramidal neuron and occasionally trigger action potentials.
1) The majority of hippocampal CA1 pyramidal neurons express functional α7-containing nAChRs. In the absence of PNU-120596, a positive allosteric modulator of α7 nAChRs, a lack of responsiveness of some hippocampal CA1 pyramidal neurons to focal application of 0.5–1 mM choline does not imply a lack of expression of functional α7-containing nAChRs in these neurons. Rather, it may indicate a lack of detection of α7-containing nAChR-mediated currents by patch-clamp electrophysiology. 2) PNU-120596 can serve as a powerful tool for detection and enhancement of responsiveness of low densities of functional α7-containing nAChRs such as those present in hippocampal CA1 pyramidal neurons. 3) In the presence of PNU-120596, physiological concentrations of choline activate functional CA1 pyramidal α7-containing nAChRs and produce step-like currents that cause repetitive step-like depolarizations, occasionally triggering bursts of action potentials in CA1 pyramidal neurons. Therefore, the results of this study suggest that in the presence of PNU-120596 and possibly other positive allosteric modulators, endogenous choline may persistently activate CA1 pyramidal α7-containing nAChRs, enhance the excitability of CA1 pyramidal neurons and thus act as a potent therapeutic agent with potential neuroprotective and cognition-enhancing properties.
PMCID: PMC2980465  PMID: 21103043
23.  The CA3 “Backprojection” to the Dentate Gyrus 
Progress in brain research  2007;163:627-637.
The hippocampus is typically described in the context of the trisynaptic circuit, a pathway that relays information from the perforant path to the dentate gyrus, dentate to area CA3, and CA3 to area CA1. Associated with this concept is the assumption that most hippocampal information processing occurs along the trisynaptic circuit. However, the entorhinal cortex may not be the only major extrinsic input to consider, and the trisynaptic circuit may not be the only way information is processed in hippocampus. Area CA3 receives input from a variety of sources, and may be as much of an “entry point” to hippocampus as the dentate gyrus. The axon of CA3 pyramidal cells targets diverse cell types, and has commissural projections, which together make it able to send information to much more of the hippocampus than granule cells. Therefore, CA3 pyramidal cells seem better designed to spread information through hippocampus than the granule cells. From this perspective, CA3 may be a point of entry that receives information which needs to be “broadcasted,” whereas the dentate gyrus may be a point of entry that receives information with more selective needs for hippocampal processing.
One aspect of the argument that CA3 pyramidal cells have a widespread projection is based on a part of its axonal arbor that has received relatively little attention, the collaterals that project in the opposite direction to the trisynaptic circuit, “back” to the dentate gyrus. The evidence for this “backprojection” to the dentate gyrus is strong, particularly in area CA3c, the region closest to the dentate gyrus, and in temporal hippocampus. The influence on granule cells is indirect, through hilar mossy cells and GABAergic neurons of the dentate gyrus, and appears to include direct projections in the case of CA3c pyramidal cells of ventral hippocampus. Physiological studies suggest that normally area CA3 does not have a robust excitatory influence on granule cells, but serves instead to inhibit it by activating dentate gyrus GABAergic neurons. Thus, GABAergic inhibition normally controls the backprojection to dentate granule cells, analogous to the way GABAergic inhibition appears to control the perforant path input to granule cells. From this perspective, the dentate gyrus has two robust glutamatergic inputs, entorhinal cortex and CA3, and two “gates,” or inhibitory filters that reduce the efficacy of both inputs, keeping granule cells relatively quiescent. When GABAergic inhibition is reduced experimentally, or under pathological conditions, CA3 pyramidal cells activate granule cells reliably, and do so primarily by disynaptic excitation that is mediated by mossy cells. We suggest that the backprojection has important functions normally that are dynamically regulated by nonprincipal cells of the dentate gyrus. Slightly reduced GABAergic input would lead to increased polysynaptic associative processing between CA3 and the dentate gyrus. Under pathological conditions associated with loss of GABAergic interneurons, the backprojection may support reverberatory excitatory activity between CA3, mossy cells, and granule cells, possibly enhanced by mossy fiber sprouting. In this case, the backprojection could be important to seizure activity originating in hippocampus, and help explain the seizure susceptibility of ventral hippocampus.
PMCID: PMC1986638  PMID: 17765742
24.  Desynchronization of Neocortical Networks by Asynchronous Release of GABA at Autaptic and Synaptic Contacts from Fast-Spiking Interneurons 
PLoS Biology  2010;8(9):e1000492.
An activity-dependent long-lasting asynchronous release of GABA from identified fast-spiking inhibitory neurons in the neocortex can impair the reliability and temporal precision of activity in a cortical network.
Networks of specific inhibitory interneurons regulate principal cell firing in several forms of neocortical activity. Fast-spiking (FS) interneurons are potently self-inhibited by GABAergic autaptic transmission, allowing them to precisely control their own firing dynamics and timing. Here we show that in FS interneurons, high-frequency trains of action potentials can generate a delayed and prolonged GABAergic self-inhibition due to sustained asynchronous release at FS-cell autapses. Asynchronous release of GABA is simultaneously recorded in connected pyramidal (P) neurons. Asynchronous and synchronous autaptic release show differential presynaptic Ca2+ sensitivity, suggesting that they rely on different Ca2+ sensors and/or involve distinct pools of vesicles. In addition, asynchronous release is modulated by the endogenous Ca2+ buffer parvalbumin. Functionally, asynchronous release decreases FS-cell spike reliability and reduces the ability of P neurons to integrate incoming stimuli into precise firing. Since each FS cell contacts many P neurons, asynchronous release from a single interneuron may desynchronize a large portion of the local network and disrupt cortical information processing.
Author Summary
In the cerebral cortex (neocortex) of the brain, fast-spiking (FS) inhibitory cells contact many principal pyramidal (P) neurons on their cell bodies, which allows the FS cells to control the generation of action potentials (neuronal output). FS-cell-mediated rhythmic and synchronous inhibition drives coherent network oscillations of large ensembles of P neurons, indicating that FS interneurons are needed for the precise timing of cortical circuits. Interestingly, FS cells are self-innervated by GABAergic autaptic contacts, whose synchronous activation regulates FS-cell precise firing. Here we report that high-frequency firing in FS interneurons results in a massive (>10-fold), delayed, and prolonged (for seconds) increase in inhibitory events, occurring at both autaptic (FS–FS) and synaptic (FS–P) sites. This increased inhibition is due to asynchronous release of GABA from presynaptic FS cells. Delayed and disorganized asynchronous inhibitory responses significantly affected the input–output properties of both FS and P neurons, suggesting that asynchronous release of GABA might promote network desynchronization. FS interneurons can fire at high frequency (>100 Hz) in vitro and in vivo, and are known for their reliable and precise signaling. Our results show an unprecedented action of these cells, by which their tight temporal control of cortical circuits can be broken when they are driven to fire above certain frequencies.
PMCID: PMC2946936  PMID: 20927409
25.  Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model 
PLoS Computational Biology  2014;10(4):e1003590.
In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such ‘background’ synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5) pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a ‘balanced’ background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales.
Author Summary
In the brains of awake animals, networks are active even when there is no input from the outside world. Neurons embedded within cortical networks experience this intrinsic ongoing firing as ‘background’ synaptic input. While the effect of this background input on the integration properties of neurons has been studied in the cell body region, little is known about how asynchronous background activity affects integration in distal dendrites, which contain nonlinear mechanisms that boost and dampen synaptic input. Our simulations, using a model of a cortical L5 pyramidal cell, show that the nonlinear NMDA receptor conductance activated by distributed background activity could increase the gain of the dendrite, enabling synaptic inputs to be integrated more effectively over the dendritic tree and over longer time intervals than previously thought possible. This mechanism could potentially enable the integrative properties of individual neurons to change as a function of the activity of the network in which they are embedded. Our work suggests that background network activity could play a key role routing and transforming information as it flows through the cortex.
PMCID: PMC3998913  PMID: 24763087

Results 1-25 (1297453)