PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (931928)

Clipboard (0)
None

Related Articles

1.  Nakiterpiosin Targets Tubulin and Triggers Mitotic Catastrophe in Human Cancer Cells 
Molecular cancer therapeutics  2010;9(12):10.1158/1535-7163.MCT-10-0305.
Agents that interfere with mitotic progression by perturbing microtubule dynamics are commonly used for cancer chemotherapy. Here, we identify nakiterpiosin as a novel anti-mitotic drug that targets microtubules. Nakiterpiosin induces mitotic arrest and triggers mitotic catastrophe in human cancer cells by impairing bipolar spindle assembly. At higher concentration, it alters the interphase microtubule network and suppresses microtubule dynamics. In the presence of nakiterpiosin, microtubules are no longer arranged in a centrosomal array and centrosome-mediated microtubule regrowth after cold depolymerization is inhibited. However, centrosome organization, the ultrastructure of Golgi stacks and protein secretion are not affected, suggesting that the drug has minimal toxicity towards other cellular functions. Nakiterpiosin interacts directly with tubulin, inhibits microtubule polymerization in vitro, and decreases polymer mass in cells. Furthermore, it enhances tubulin acetylation and reduces viability of paclitaxel-resistant cancer cells. In conclusion, nakiterpiosin exerts anti-proliferative activity by perturbing microtubule dynamics during mitosis, which activates the spindle assembly checkpoint and triggers cell death. These findings suggest the potential use of nakiterpiosin as a chemotherapeutic agent.
doi:10.1158/1535-7163.MCT-10-0305
PMCID: PMC3829381  PMID: 21139045
nakiterpiosin; microtubule; anti-mitotic; cancer; paclitaxel resistance
2.  The Roles of β-Tubulin Mutations and Isotype Expression in Acquired Drug Resistance 
Cancer Informatics  2007;3:159-181.
The antitumor drug paclitaxel stabilizes microtubules and reduces their dynamicity, promoting mitotic arrest and eventually apoptosis. Upon assembly of the α/β-tubulin heterodimer, GTP becomes bound to both the α and β-tubulin monomers. During microtubule assembly, the GTP bound to β-tubulin is hydrolyzed to GDP, eventually reaching steady-state equilibrium between free tubulin dimers and those polymerized into microtubules. Tubulin-binding drugs such as paclitaxel interact with β-tubulin, resulting in the disruption of this equilibrium. In spite of several crystal structures of tubulin, there is little biochemical insight into the mechanism by which anti-tubulin drugs target microtubules and alter their normal behavior. The mechanism of drug action is further complicated, as the description of altered β-tubulin isotype expression and/or mutations in tubulin genes may lead to drug resistance as has been described in the literature. Because of the relationship between β-tubulin isotype expression and mutations within β-tubulin, both leading to resistance, we examined the properties of altered residues within the taxane, colchicine and Vinca binding sites. The amount of data now available, allows us to investigate common patterns that lead to microtubule disruption and may provide a guide to the rational design of novel compounds that can inhibit microtubule dynamics for specific tubulin isotypes or, indeed resistant cell lines. Because of the vast amount of data published to date, we will only provide a broad overview of the mutational results and how these correlate with differences between tubulin isotypes. We also note that clinical studies describe a number of predictive factors for the response to anti-tubulin drugs and attempt to develop an understanding of the features within tubulin that may help explain how they may affect both microtubule assembly and stability.
PMCID: PMC2675838  PMID: 19455242
Tubulin; Microtubule; Isotype; Paclitaxel; Cancer; Resistance; Mutant
3.  NMK-TD-100, a Novel Microtubule Modulating Agent, Blocks Mitosis and Induces Apoptosis in HeLa Cells by Binding to Tubulin 
PLoS ONE  2013;8(10):e76286.
Thiadiazoles are one of the most widely utilized agents in medicinal chemistry, having a wide range of pharmacologic activity. Microtubules (MTs) have always remained a sought-after target in rapidly proliferating cancer cells. We screened for the growth inhibitory effect of synthetic 5-(3-indolyl)-2-substituted-1,3,4-thiadiazoles on cancer cells and identified NMK-TD-100, as the most potent agent. Cell viability experiments using human cervical carcinoma cell line (HeLa cells) indicated that the IC50 value was 1.42±0.11 µM for NMK-TD-100 for 48 h treatment. In further study, we examined the mode of interaction of NMK-TD-100 with tubulin and unraveled the cellular mechanism responsible for its anti-tumor activity. NMK-TD-100 induced arrest in mitotic phase of cell cycle, caused decline in mitochondrial membrane potential and induced apoptosis in HeLa cells. Immunofluorescence studies using an anti-α-tubulin antibody showed a significant depolymerization of the interphase microtubule network and spindle microtubule in HeLa cells in a concentration-dependent manner. However, the cytotoxicity of NMK-TD-100 towards human peripheral blood mononuclear cells (PBMC) was lower compared to that in cancer cells. Polymerization of tissue purified tubulin into microtubules was inhibited by NMK-TD-100 with an IC50 value of 17.5±0.35 µM. The binding of NMK-TD-100 with tubulin was studied using NMK-TD-100 fluorescence enhancement and intrinsic tryptophan fluorescence of tubulin. The stoichiometry of NMK-TD-100 binding to tubulin is 1:1 (molar ratio) with a dissociation constant of ~1 µM. Fluorescence spectroscopic and molecular modeling data showed that NMK-TD-100 binds to tubulin at a site which is very near to the colchicine binding site. The binding of NMK-TD-100 to tubulin was estimated to be ~10 times faster than that of colchicine. The results indicated that NMK-TD-100 exerted anti-proliferative activity by disrupting microtubule functions through tubulin binding and provided insights into its potential of being a chemotherapeutic agent.
doi:10.1371/journal.pone.0076286
PMCID: PMC3792137  PMID: 24116100
4.  Microtubules as a Critical Target for Arsenic Toxicity in Lung Cells in Vitro and in Vivo 
To understand mechanisms for arsenic toxicity in the lung, we examined effects of sodium m-arsenite (As3+) on microtubule (MT) assembly in vitro (0–40 µM), in cultured rat lung fibroblasts (RFL6, 0–20 µM for 24 h) and in the rat animal model (intratracheal instillation of 2.02 mg As/kg body weight, once a week for 5 weeks). As3+ induced a dose-dependent disassembly of cellular MTs and enhancement of the free tubulin pool, initiating an autoregulation of tubulin synthesis manifest as inhibition of steady-state mRNA levels of βI-tubulin in dosed lung cells and tissues. Spindle MT injuries by As3+ were concomitant with chromosomal disorientations. As3+ reduced the binding to tubulin of [3H]N-ethylmaleimide (NEM), an -SH group reagent, resulting in inhibition of MT polymerization in vitro with bovine brain tubulins which was abolished by addition of dithiothreitol (DTT) suggesting As3+ action upon tubulin through -SH groups. In response to As3+, cells elevated cellular thiols such as metallothionein. Taxol, a tubulin polymerization agent, antagonized both As3+ and NEM induced MT depolymerization. MT–associated proteins (MAPs) essential for the MT stability were markedly suppressed in As3+-treated cells. Thus, tubulin sulfhydryls and MAPs are major molecular targets for As3+ damage to the lung triggering MT disassembly cascades.
doi:10.3390/ijerph9020474
PMCID: PMC3315258  PMID: 22470304
trivalent arsenic (As3+); microtubules (MTs); tubulin; tubulin mRNA; tubulinsulfhydryl groups (-SH); microtubule-associated proteins (MAPs); chromosomal disorientations; metallothionein; taxol
5.  Dynamics of microtubule depolymerization in monocytes 
The Journal of Cell Biology  1986;102(6):2023-2032.
Human monocytes, which contain few interphase microtubules (35.+/- 7.7), were used to study the dynamics of microtubule depolymerization. Steady-state microtubule assembly was abruptly blocked with either high concentrations of nocodazole (10 micrograms/ml) or exposure to cold temperature (3 degrees C). At various times after inhibition of assembly, cells were processed for anti-tubulin immunofluorescence microscopy. Stained cells were observed with an intensified video camera attached to the fluorescence microscope. A tracing of the entire length of each individual microtubule was made from the image on the television monitor by focusing up and down through the cell. The tracings were then digitized into a computer. All microtubules were seen to originate from the centrosome, with an average length in control cells of 7.1 +/- 2.7 microns (n = 957 microtubules). During depolymerization, the total microtubule polymer and the number of microtubules per cell decreased rapidly. In contrast, there was a slow decrease in the average length of the persisting microtubules. The half- time for both the loss of total microtubule polymer and microtubule number per cell was approximately 40 s for nocodazole-treated cells. The rate-limiting step in the depolymerization process was the rate of initiation of disassembly. Once initiated, depolymerization appeared catastrophic. Further kinetic analysis revealed two classes of microtubules: 70% of the microtubule population was very labile and initiated depolymerization at a rate approximately 23 times faster than a minor population of persistent microtubules. Cold treatment yielded qualitatively similar characteristics of depolymerization, but the initiation rates were slower. In both cases there was a significant asynchrony and heterogeneity in the initiation of depolymerization among the population of microtubules.
PMCID: PMC2114271  PMID: 3519619
6.  Dominant-Lethal α-Tubulin Mutants Defective in Microtubule Depolymerization in YeastV⃞ 
Molecular Biology of the Cell  2001;12(12):3973-3986.
The dynamic instability of microtubules has long been understood to depend on the hydrolysis of GTP bound to β-tubulin, an event stimulated by polymerization and necessary for depolymerization. Crystallographic studies of tubulin show that GTP is bound by β-tubulin at the longitudinal dimer-dimer interface and contacts particular α-tubulin residues in the next dimer along the protofilament. This structural arrangement suggests that these contacts could account for assembly-stimulated GTP hydrolysis. As a test of this hypothesis, we examined, in yeast cells, the effect of mutating the α-tubulin residues predicted, on structural grounds, to be involved in GTPase activation. Mutation of these residues to alanine (i.e., D252A and E255A) created poisonous α-tubulins that caused lethality even as minor components of the α-tubulin pool. When the mutant α-tubulins were expressed from the galactose-inducible promoter of GAL1, cells rapidly acquired aberrant microtubule structures. Cytoplasmic microtubules were largely bundled, spindle assembly was inhibited, preexisting spindles failed to completely elongate, and occasional, stable microtubules were observed unattached to spindle pole bodies. Time-lapse microscopy showed that microtubule dynamics had ceased. Microtubules containing the mutant proteins did not depolymerize, even in the presence of nocodazole. These data support the view that α-tubulin is a GTPase-activating protein that acts, during microtubule polymerization, to stimulate GTP hydrolysis in β-tubulin and thereby account for the dynamic instability of microtubules.
PMCID: PMC60769  PMID: 11739794
7.  Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules 
The Journal of Cell Biology  1987;105(3):1283-1296.
The microtubule-nucleating activity of centrosomes was analyzed in fibroblastic (Vero) and in epithelial cells (PtK2, Madin-Darby canine kidney [MDCK]) by double-immunofluorescence labeling with anti- centrosome and antitubulin antibodies. Most of the microtubules emanated from the centrosomes in Vero cells, whereas the microtubule network of MDCK cells appeared to be noncentrosome nucleated and randomly organized. The pattern of microtubule organization in PtK2 cells was intermediate to the patterns observed in the typical fibroblastic and epithelial cells. The two centriole cylinders were tightly associated and located close to the nucleus in Vero and PtK2 cells. In MDCK cells, however, they were clearly separated and electron microscopy revealed that they nucleated only a few microtubules. The stability of centrosomal and noncentrosomal microtubules was examined by treatment of these different cell lines with various concentrations of nocodazole. 1.6 microM nocodazole induced an almost complete depolymerization of microtubules in Vero cells; some centrosome nucleated microtubules remained in PtK2 cells, while many noncentrosomal microtubules resisted that treatment in MDCK cells. Centrosomal and noncentrosomal microtubules regrew in MDCK cells with similar kinetics after release from complete disassembly by high concentrations of nocodazole (33 microM). During regrowth, centrosomal microtubules became resistant to 1.6 microM nocodazole before the noncentrosomal ones, although the latter eventually predominate. We suggest that in MDCK cells, microtubules grow and shrink as proposed by the dynamic instability model but the presence of factors prevents them from complete depolymerization. This creates seeds for reelongation that compete with nucleation off the centrosome. By using specific antibodies, we have shown that the abundant subset of nocodazole- resistant microtubules in MDCK cells contained detyrosinated alpha- tubulin (glu tubulin). On the other hand, the first microtubules to regrow after nocodazole removal contained only tyrosinated tubulin. Glu- tubulin became detectable only after 30 min of microtubule regrowth. This strongly supports the hypothesis that alpha-tubulin detyrosination occurs primarily on "long lived" microtubules and is not the cause of the stabilization process. This is also supported by the increased amount of glu-tubulin that we found in taxol-treated cells.
PMCID: PMC2114822  PMID: 2888771
8.  Arsenic Trioxide as a Vascular Disrupting Agent: Synergistic Effect with Irinotecan on Tumor Growth Delay in a CT26 Allograft Model1 
Translational Oncology  2013;6(1):83-91.
The mechanism of action of arsenic trioxide (ATO) has been shown to be complex, influencing numerous signal transduction pathways and resulting in a vast range of cellular effects. Among these mechanisms of action, ATO has been shown to cause acute vascular shutdown and massive tumor necrosis in a murine solid tumor model like vascular disrupting agent (VDA). However, relatively little is understood about this VDA-like property and its potential utility in developing clinical regimens. We focused on this VDA-like action of ATO. On the basis of the endothelial cell cytotoxicity assay and tubulin polymerization assay, we observed that higher concentrations and longer treatment with ATO reduced the level of α- and β-tubulin and inhibited the polymerization of tubulin. The antitumor action and quantitative tumor perfusion studies were carried out with locally advanced murine CT26 colon carcinoma grown in female BALB/c mice. A single injection of ATO intraperitoneally displayed central necrosis of the tumor tissue by 24 hours. T1-weighted dynamic contrast-enhanced magnetic resonance image revealed a significant decrease in tumor enhancement in the ATO-treated group. Similar to other VDAs, ATO treatment alone did not delay the progression of tumor growth; however, ATO treatment after injection of other cytotoxic agent (irinotecan) showed significant additive antitumor effect compared to control and irinotecan alone therapy. In summary, our data demonstrated that ATO acts as a VDA by means of microtubule depolymerization. It exhibits significant vascular shutdown activity in CT26 allograft model and enhances antitumor activity when used in combination with another cytotoxic chemotherapeutic agent.
PMCID: PMC3573657  PMID: 23418620
9.  Single Molecule Imaging Reveals Differences in Microtubule Track Selection Between Kinesin Motors 
PLoS Biology  2009;7(10):e1000216.
Molecular motors differentially recognize and move cargo along discrete microtubule subpopulations in cells, resulting in preferential transport and targeting of subcellular cargoes.
Cells generate diverse microtubule populations by polymerization of a common α/β-tubulin building block. How microtubule associated proteins translate microtubule heterogeneity into specific cellular functions is not clear. We evaluated the ability of kinesin motors involved in vesicle transport to read microtubule heterogeneity by using single molecule imaging in live cells. We show that individual Kinesin-1 motors move preferentially on a subset of microtubules in COS cells, identified as the stable microtubules marked by post-translational modifications. In contrast, individual Kinesin-2 (KIF17) and Kinesin-3 (KIF1A) motors do not select subsets of microtubules. Surprisingly, KIF17 and KIF1A motors that overtake the plus ends of growing microtubules do not fall off but rather track with the growing tip. Selection of microtubule tracks restricts Kinesin-1 transport of VSVG vesicles to stable microtubules in COS cells whereas KIF17 transport of Kv1.5 vesicles is not restricted to specific microtubules in HL-1 myocytes. These results indicate that kinesin families can be distinguished by their ability to recognize microtubule heterogeneity. Furthermore, this property enables kinesin motors to segregate membrane trafficking events between stable and dynamic microtubule populations.
Author Summary
Eukaryotic cells assemble a variety of cytoskeletal structures from a set of highly conserved building blocks. For example, all microtubules are generated by the polymerization of a common α/β-tubulin subunit, yet cells can contain diverse, discrete populations of microtubule structures such as axonemes, spindles, and radial arrays. This diversity must be read and translated by cellular components in order to carry out population-specific functions. We use single-molecule imaging to study how molecular motors navigate the heterogeneous microtubule populations present in interphase cells. We show that different kinesin motors select different subpopulations of microtubules for transport. This selectivity, based solely on the motor-microtubule interface, may enable kinesin motors to segregate transport events to distinct microtubule populations and thus to target cargoes to specific subcellular destinations.
doi:10.1371/journal.pbio.1000216
PMCID: PMC2749942  PMID: 19823565
10.  Tubulin transport in neurons 
The Journal of Cell Biology  1996;133(6):1355-1366.
A question of broad importance in cellular neurobiology has been, how is microtubule cytoskeleton of the axon organized? It is of particular interest because of the history of conflicting results concerning the form in which tubulin is transported in the axon. While many studies indicate a stationary nature of axonal microtubules, a recent series of experiments reports that microtubules are recruited into axons of neurons grown in the presence of a microtubule-inhibitor, vinblastine (Baas, P.W., and F.J. Ahmad. 1993.J. Cell Biol. 120:1427-1437: Ahmad F.J., and P.W. Baas. 1995. J. Cell Sci, 108:2761-2769; Sharp, D.J., W. Yu, and P.W. Baas. 1995. J. Cell Biol, 130:93-103; Yu, W., and P.W. Baas. 1995. J. Neurosci. 15:6827-6833.). Since vinblastine stabilizes bulk microtubule-dynamics in vitro, it was concluded that preformed microtubules moved into newly grown axons. By visualizing the polymerization of injected fluorescent tubulin, we show that substantial microtubule polymerization occurs in neurons grown at reported vinblastine concentrations. Vinblastine inhibits, in a concentration-dependent manner, both neurite outgrowth and microtubule assembly. More importantly, the neuron growth conditions of low vinblastine concentration allowed us to visualize the footprints of the tubulin wave as it polymerized and depolymerized during its slow axonal transport. In contrast, depolymerization resistant fluorescent microtubules did not move when injected in neurons. We show that tubulin subunits, not microtubules, are the primary form of tubulin transport in neurons.
PMCID: PMC2120892  PMID: 8682870
11.  An Antitubulin Agent BCFMT Inhibits Proliferation of Cancer Cells and Induces Cell Death by Inhibiting Microtubule Dynamics 
PLoS ONE  2012;7(8):e44311.
Using cell based screening assay, we identified a novel anti-tubulin agent (Z)-5-((5-(4-bromo-3-chlorophenyl)furan-2-yl)methylene)-2-thioxothiazolidin-4-one (BCFMT) that inhibited proliferation of human cervical carcinoma (HeLa) (IC50, 7.2±1.8 µM), human breast adenocarcinoma (MCF-7) (IC50, 10.0±0.5 µM), highly metastatic breast adenocarcinoma (MDA-MB-231) (IC50, 6.0±1 µM), cisplatin-resistant human ovarian carcinoma (A2780-cis) (IC50, 5.8±0.3 µM) and multi-drug resistant mouse mammary tumor (EMT6/AR1) (IC50, 6.5±1µM) cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM), BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably) state by 135% and reduced the dynamicity (dimer exchange per unit time) of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3±1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (Ki) of 5.2±1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2) at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug resistance cells by suppressing microtubule dynamics and indicated that the compound may have chemotherapeutic potential.
doi:10.1371/journal.pone.0044311
PMCID: PMC3432122  PMID: 22952952
12.  Spindle assembly requires complete disassembly of spindle remnants from the previous cell cycle 
Molecular Biology of the Cell  2012;23(2):258-267.
Incomplete spindle disassembly causes lethality in budding yeast. We propose that spindle disassembly is required to reinitiate the spindle cycle during the subsequent mitosis by regenerating the nuclear pool of assembly-competent tubulin.
Incomplete mitotic spindle disassembly causes lethality in budding yeast. To determine why spindle disassembly is required for cell viability, we used live-cell microscopy to analyze a double mutant strain containing a conditional mutant and a deletion mutant compromised for the kinesin-8 and anaphase-promoting complex-driven spindle-disassembly pathways (td-kip3 and doc1Δ, respectively). Under nonpermissive conditions, spindles in td-kip3 doc1Δ cells could break apart but could not disassemble completely. These cells could exit mitosis and undergo cell division. However, the daughter cells could not assemble functional, bipolar spindles in the ensuing mitosis. During the formation of these dysfunctional spindles, centrosome duplication and separation, as well as recruitment of key midzone-stabilizing proteins all appeared normal, but microtubule polymerization was nevertheless impaired and these spindles often collapsed. Introduction of free tubulin through episomal expression of α- and β-tubulin or introduction of a brief pulse of the microtubule-depolymerizing drug nocodazole allowed spindle assembly in these td-kip3 doc1Δ mutants. Therefore we propose that spindle disassembly is essential for regeneration of the intracellular pool of assembly-competent tubulin required for efficient spindle assembly during subsequent mitoses of daughter cells.
doi:10.1091/mbc.E11-08-0701
PMCID: PMC3258171  PMID: 22090343
13.  Microinjection of fluorescent tubulin into dividing sea urchin cells 
The Journal of Cell Biology  1983;97(4):1249-1254.
To follow the dynamics of microtubule (MT) assembly and disassembly during mitosis in living cells, tubulin has been covalently modified with the fluorochrome 5-(4,6-dichlorotriazin-2-yl)aminofluorescein and microinjected into fertilized eggs of the sea urchin Lytechinus variegatus. The changing distribution of the fluorescent protein probe is visualized in a fluorescence microscope coupled to an image intensification video system. Cells that have been injected with fluorescent tubulin show fluorescent linear polymers that assemble very rapidly and radiate from the spindle poles, coincident with the position of the astral fibers. No fluorescent polymer is apparent in other areas of the cytoplasm. When fluorescent tubulin is injected near the completion of anaphase, little incorporation of fluorescent tubulin into polymer is apparent, suggesting that new polymerization does not occur past a critical point in anaphase. These results demonstrate that MT polymerization is very rapid in vivo and that the assembly is both temporally and spatially regulated within the injected cells. Furthermore, the microinjected tubulin is stable within the sea urchin cytoplasm for at least 1 h since it can be reutilized in successive daughter cell spindles. Control experiments indicate that the observed fluorescence is dependent on MT assembly. The fluorescence is greatly diminished upon treatment of the cells with cold or colchicine agents known to cause the depolymerization of assembled MT. In addition, cells injected with fluorescent bovine serum albumin or assembly-incompetent fluorescent tubulin do not exhibit fluorescence localized in the spindle but rather appear diffusely fluorescent throughout the cytoplasm.
PMCID: PMC2112626  PMID: 6684663
14.  Interactive Domains in the Molecular Chaperone Human αB Crystallin Modulate Microtubule Assembly and Disassembly 
PLoS ONE  2007;2(6):e498.
Background
Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.
Methodology
Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human αB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human αB crystallin.
Principal Findings
The interactive sequence 113FISREFHR120 exposed on the surface of αB crystallin decreased microtubule assembly by ∼45%. In contrast, the interactive sequences, 131LTITSSLSSDGV142 and 156ERTIPITRE164, corresponding to the β8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by ∼34–45%. The αB crystallin peptides, 113FISREFHR120 and 156ERTIPITRE164, inhibited microtubule disassembly by ∼26–36%, and the peptides 113FISREFHR120 and 131LTITSSLSSDGV142 decreased the thermal aggregation of tubulin by ∼42–44%. The 131LTITSSLSSDGV142 and 156ERTIPITRE164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulin↔microtubule dynamics. Mutagenesis of these interactive sequences in wt human αB crystallin confirmed the effects of the αB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by αB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at αB crystallin to tubulin molar ratios between 1∶4 and 2∶1, while molar ratios >2∶1 inhibited microtubule assembly.
Conclusions and Significance
Interactive sequences on the surface of human αB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of αB crystallin to tubulin. These are the first experimental results in support of the functional importance of the dynamic subunit model of small heat shock proteins.
doi:10.1371/journal.pone.0000498
PMCID: PMC1876262  PMID: 17551579
15.  Cancer Cells Acquire Mitotic Drug Resistance Properties Through Beta I-Tubulin Mutations and Alterations in the Expression of Beta-Tubulin Isotypes 
PLoS ONE  2010;5(9):e12564.
Background
Anti-mitotic compounds (microtubule de-stabilizers) such as vincristine and vinblastine have been shown clinically successful in treating various cancers. However, development of drug-resistance cells limits their efficacies in clinical situations. Therefore, experiments were performed to determine possible drug resistance mechanisms related to the application of anti-mitotic cancer therapy.
Principal Findings
A KB-derived microtubule de-stabilizer-resistant KB-L30 cancer cell line was generated for this study. KB-L30 cells showed cross-resistance to various microtubule de-stabilizers including BPR0L075, vincristine and colchicine through multiple-drug resistant (MDR)-independent mechanisms. Surprisingly, KB-L30 cells showed hyper-sensitivity to the microtubule-stabilizer, paclitaxel. Results of the RT-PCR analysis revealed that expression of both class II and III β-tubulin was down-regulated in KB-L30 cells as compared to its parental KB cancer cells. In addition, DNA sequencing analysis revealed six novel mutation sites present in exon four of the βI-tubulin gene. Computational modeling indicated that a direct relationship exists between βI-tubulin mutations and alteration in the microtubule assembly and dynamic instability in KB-L30 cells and this predicted model was supported by an increased microtubule assembly and reduced microtubule dynamic instability in KB-L30 cells, as shown by Western blot analysis.
Conclusions and Significance
Our study demonstrated that these novel mutations in exon four of the βI-tubulin induced resistance to microtubule de-stabilizers and hyper-sensitivity to microtubule stabilizer through an alteration in the microtubule assembly and dynamics in cancer cells. Importantly, the current study reveals that cancer cells may acquire drug resistance ability to anti-mitotic compounds through multiple changes in the microtubule networks. This study further provided molecular information in drug selection for patients with specific tubulin mutations.
doi:10.1371/journal.pone.0012564
PMCID: PMC2933234  PMID: 20838440
16.  Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization 
Toxicology and applied pharmacology  2008;230(2):235-246.
Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of α-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of α-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. γ-tubulin staining showed that cells treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70.
doi:10.1016/j.taap.2008.02.030
PMCID: PMC2504415  PMID: 18485433
17.  Dynactin Subunit p150Glued Is a Neuron-Specific Anti-Catastrophe Factor 
PLoS Biology  2013;11(7):e1001611.
The dynein partner dynactin not only binds to microtubules, but is found to potently influence microtubule dynamics in neurons.
Regulation of microtubule dynamics in neurons is critical, as defects in the microtubule-based transport of axonal organelles lead to neurodegenerative disease. The microtubule motor cytoplasmic dynein and its partner complex dynactin drive retrograde transport from the distal axon. We have recently shown that the p150Glued subunit of dynactin promotes the initiation of dynein-driven cargo motility from the microtubule plus-end. Because plus end-localized microtubule-associated proteins like p150Glued may also modulate the dynamics of microtubules, we hypothesized that p150Glued might promote cargo initiation by stabilizing the microtubule track. Here, we demonstrate in vitro using assembly assays and TIRF microscopy, and in primary neurons using live-cell imaging, that p150Glued is a potent anti-catastrophe factor for microtubules. p150Glued alters microtubule dynamics by binding both to microtubules and to tubulin dimers; both the N-terminal CAP-Gly and basic domains of p150Glued are required in tandem for this activity. p150Glued is alternatively spliced in vivo, with the full-length isoform including these two domains expressed primarily in neurons. Accordingly, we find that RNAi of p150Glued in nonpolarized cells does not alter microtubule dynamics, while depletion of p150Glued in neurons leads to a dramatic increase in microtubule catastrophe. Strikingly, a mutation in p150Glued causal for the lethal neurodegenerative disorder Perry syndrome abrogates this anti-catastrophe activity. Thus, we find that dynactin has multiple functions in neurons, both activating dynein-mediated retrograde axonal transport and enhancing microtubule stability through a novel anti-catastrophe mechanism regulated by tissue-specific isoform expression; disruption of either or both of these functions may contribute to neurodegenerative disease.
Author Summary
Microtubules are polymers of tubulin that undergo successive cycles of growth and shrinkage so that the cell can maintain a stable yet adaptable cytoskeleton. In neurons, the microtubule motor protein dynein and its partner complex dynactin drive retrograde transport along microtubules from the distal axon towards the cell body. In addition to binding to dynein, the p150Glued subunit of dynactin independently binds directly to microtubules. We hypothesized that by binding to microtubules, p150Glued might also alter microtubule dynamics. We demonstrate using biochemistry and microscopy in vitro and in cells that p150Glued stabilizes microtubules by inhibiting the transition from growth to shrinkage. We show that specific domains of p150Glued encoded by neuronally enriched splice-forms are necessary for this activity. Although depletion of p150Glued in nonpolarized cells does not alter microtubule dynamics, depletion of endogenous p150Glued in neurons leads to dramatic microtubule instability. Strikingly, a mutation in p150Glued known to cause the neurodegenerative disorder Perry syndrome abolishes this activity. In summary, we identified a previously unappreciated function of dynactin in direct regulation of the microtubule cytoskeleton. This activity may enhance generic microtubule stability in the cell, but could be especially important in specific areas of the cell where dynactin and dynein are loaded onto microtubules.
doi:10.1371/journal.pbio.1001611
PMCID: PMC3712912  PMID: 23874158
18.  Cryo-EM Studies of Microtubule Structural Intermediates and Kinetochore–Microtubule Interactions 
Methods in cell biology  2010;95:129-156.
The existence of structural intermediates in the processes of microtubule assembly and disassembly, and their relationship with the nucleotide state of tubulin, have been the subject of significant study and recent controversy. The first part of this chapter describes experiments and methods designed to characterize, using cryo-electron microscopy (cryo-EM) and image analysis, the structure of stabilized tubulin assemblies that we propose mimic the growth and shortening states at microtubule ends. We further put forward the idea that these intermediates have important biological functions, especially during cellular processes where the dynamic character of microtubules is essential. One such process is the attachment of spindle microtubules to kinetochores in eukaryotic cell division. The second part of this chapter is consequently dedicated to studies of the yeast Dam1 kinetochore complex and its interaction with microtubules. This complex is essential for accurate chromosome segregation and is an important target of the Aurora B spindle check-point kinase. The Dam1 complex self-assembles in a microtubule-dependent manner into rings and spirals. The rings are able to track microtubule-depolymerizing ends against a load and in a highly processive manner, an essential property for their function in vivo. We describe the experimental in vitro protocols to produce biologically relevant self-assembled structures of Dam1 around microtubules and their structural characterization by cryo-EM.
doi:10.1016/S0091-679X(10)95008-5
PMCID: PMC4167756  PMID: 20466133
19.  A β-Tubulin Mutation Selectively Uncouples Nuclear Division and Cytokinesis in Tetrahymena thermophila 
Eukaryotic Cell  2004;3(5):1217-1226.
The ciliated protozoan Tetrahymena thermophila contains two distinct nuclei within a single cell—the mitotic micronucleus and the amitotic macronucleus. Although microtubules are required for proper division of both nuclei, macronuclear chromosomes lack centromeres and the role of microtubules in macronuclear division has not been established. Here we describe nuclear division defects in cells expressing a mutant β-tubulin allele that confers hypersensitivity to the microtubule-stabilizing drug paclitaxel. Macronuclear division is profoundly affected by the btu1-1 (K350M) mutation, producing cells with widely variable DNA contents, including cells that lack macronuclei entirely. Protein expressed by the btu1-1 allele is dominant over wild-type protein expressed by the BTU2 locus. Normal macronuclear division is restored when the btu1-1 allele is inactivated by targeted disruption or expressed as a truncated protein. Immunofluorescence studies reveal elongated microtubular structures that surround macronuclei that fail to migrate to the cleavage furrows. In contrast, other cytoplasmic microtubule-dependent processes, such as cytokinesis, cortical patterning, and oral apparatus assembly, appear to be unaffected in the mutant. Micronuclear division is also perturbed in the K350M mutant, producing nuclei with elongated early-anaphase spindle configurations that persist well after the initiation of cytokinesis. The K350M mutation affects tubulin dynamics, as the macronuclear division defect is exacerbated by three treatments that promote microtubule polymerization: (i) elevated temperatures, (ii) sublethal concentrations of paclitaxel, and (iii) high concentrations of dimethyl sulfoxide. Inhibition of phosphatidylinositol 3-kinase (PI 3-kinase) with 3-methyladenine or wortmannin also induces amacronucleate cell formation in a btu1-1-dependent manner. Conversely, the myosin light chain kinase inhibitor ML-7 has no effect on nuclear division in the btu1-1 mutant strain. These findings provide new insights into microtubule dynamics and link the evolutionarily conserved PI 3-kinase signaling pathway to nuclear migration and/or division in Tetrahymena.
doi:10.1128/EC.3.5.1217-1226.2004
PMCID: PMC522614  PMID: 15470250
20.  The Free Energy Profile of Tubulin Straight-Bent Conformational Changes, with Implications for Microtubule Assembly and Drug Discovery 
PLoS Computational Biology  2014;10(2):e1003464.
αβ-tubulin dimers need to convert between a ‘bent’ conformation observed for free dimers in solution and a ‘straight’ conformation required for incorporation into the microtubule lattice. Here, we investigate the free energy landscape of αβ-tubulin using molecular dynamics simulations, emphasizing implications for models of assembly, and modulation of the conformational landscape by colchicine, a tubulin-binding drug that inhibits microtubule polymerization. Specifically, we performed molecular dynamics, potential-of-mean force simulations to obtain the free energy profile for unpolymerized GDP-bound tubulin as a function of the ∼12° intradimer rotation differentiating the straight and bent conformers. Our results predict that the unassembled GDP-tubulin heterodimer exists in a continuum of conformations ranging between straight and bent, but, in agreement with existing structural data, suggests that an intermediate bent state has a lower free energy (by ∼1 kcal/mol) and thus dominates in solution. In agreement with predictions of the lattice model of microtubule assembly, lateral binding of two αβ-tubulins strongly shifts the conformational equilibrium towards the straight state, which is then ∼1 kcal/mol lower in free energy than the bent state. Finally, calculations of colchicine binding to a single αβ-tubulin dimer strongly shifts the equilibrium toward the bent states, and disfavors the straight state to the extent that it is no longer thermodynamically populated.
Author Summary
Microtubules are composed of αβ-tubulins that play an instrumental role in regulating intracellular trafficking and formation of the mitotic spindle during mitosis and cell division. Structural studies have shown that tubulin exists in a “straight” conformation compatible with that in the microtubule lattice and a “bent” conformation thought to represent the unassembled state. There is current debate as to whether the straight-to-bent conformational change in tubulin is the cause or consequence of tubulin's assembly into the microtubule lattice. Here, we use free-energy molecular dynamics simulations to qualitatively understand the conformational landscape of tubulin in the unassembled state and upon lateral binding. We predict that soluble tubulin exists primarily in a bent conformation; our simulation results show that tubulin primarily adopts an intermediately bent conformation in agreement with structural data. We also show that lateral binding of two tubulins shifts the equilibrium in favor of the “straight” state, supporting the hypothesis that the straight-to-bent conformational change is the consequence of tubulin's incorporation into the microtubule lattice via lateral interactions. We also show that colchicine binding shifts the population of tubulin in favor of a bent state, further implicating our work in drug discovery.
doi:10.1371/journal.pcbi.1003464
PMCID: PMC3916224  PMID: 24516374
21.  Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules 
The Journal of Cell Biology  1987;105(1):251-264.
Tyrosinated (Tyr) and detyrosinated (Glu) alpha-tubulin, species interconverted by posttranslational modification, are largely segregated in separate populations of microtubules in interphase cultured cells. We sought to understand how distinct Tyr and Glu microtubules are generated in vivo, by examining time-dependent alterations in Tyr and Glu tubulin levels (by immunoblots probed with antibodies specific for each species) and distributions (by immunofluorescence) after microtubule regrowth and stabilization. When microtubules were allowed to regrow after complete depolymerization by microtubule antagonists, Glu microtubules reappeared with a delay of approximately 25 min after the complete array of Tyr microtubules had regrown. In these experiments, Tyr tubulin immunofluorescence first appeared as an aster of distinct microtubules, while Glu tubulin staining first appeared as a grainy pattern that was not altered by detergent extraction, suggesting that Glu microtubules were created by detyrosination of Tyr microtubules. Treatments with taxol, azide, or vinblastine, to stabilize polymeric tubulin, all resulted in time- dependent increases in polymeric Glu tubulin levels, further supporting the hypothesis of postpolymerization detyrosination. Analysis of monomer and polymer fractions during microtubule regrowth and in microtubule stabilization experiments were also consistent with postpolymerization detyrosination; in each case, Glu polymer levels increased in the absence of detectable Glu monomer. The low level of Glu monomer in untreated or nocodazole-treated cells (we estimate that Glu tubulin comprises less than 2% of the monomer pool) also suggested that Glu tubulin entering the monomer pool is efficiently retyrosinated. Taken together these results demonstrate that microtubules are polymerized from Tyr tubulin and are then rapidly converted to Glu microtubules. When Glu microtubules depolymerize, the resulting Glu monomer is retyrosinated. This cycle generates structurally, and perhaps functionally, distinct microtubules.
PMCID: PMC2114889  PMID: 2886509
22.  Microtubule S-glutathionylation as a potential approach for antimitotic agents 
BMC Cancer  2012;12:245.
Background
Microtubules have been one of the most effective targets for the development of anticancer agents. Cancer cells treated by these agents are characterized by cell arrest at G2/M phase. Microtubule-targeting drugs are, therefore, referred to as antimitotic agents. However, the clinical application of the current antimitotic drugs is hampered by emerging drug resistance which is the major cause of cancer treatment failure. The clinical success of antimitotic drugs and emerging drug resistance has prompted a search for new antimitotic agents, especially those with novel mechanisms of action. The aim of this study was to determine whether microtubules can be S-glutathionylated in cancer cells and whether the glutathionylation will lead to microtubule dysfunction and cell growth inhibition. The study will determine whether microtubule S-glutathionylation can be a novel approach for antimitotic agents.
Methods
2-Acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylcarbonylamino)phenyl carbamoylsulfanyl]propionic acid (2-AAPA) was used as a tool to induce microtubule S-glutathionylation. UACC-62 cells, a human melanoma cell line, were used as a cancer cell model. A pull-down assay with glutathione S-transferase (GST)-agarose beads followed by Western blot analysis was employed to confirm microtubule S-glutathionylation. Immunofluorescence microscopy using a mouse monoclonal anti-α-tubulin-FITC was used to study the effect of the S-glutathionylation on microtubule function; mainly polymerization and depolymerization. Flow cytometry was employed to examine the effect of the S-glutathionylation on cell cycle distribution and apoptosis. Cell morphological change was followed through the use of a Zeiss AXIO Observer A1 microscope. Cancer cell growth inhibition by 2-AAPA was investigated with ten human cancer cell lines.
Results
Our investigation demonstrated that cell morphology was changed and microtubules were S-glutathionylated in the presence of 2-AAPA in UACC-62 cells. Accordingly, microtubules were found depolymerized and cells were arrested at G2/M phase. The affected cells were found to undergo apoptosis. Cancer growth inhibition experiments demonstrated that the concentrations of 2-AAPA required to produce the effects on microtubules were compatible to the concentrations producing cancer cell growth inhibition.
Conclusions
The data from this investigation confirms that microtubule S-glutathionylation leads to microtubule dysfunction and cell growth inhibition and can be a novel approach for developing antimitotic agents.
doi:10.1186/1471-2407-12-245
PMCID: PMC3534152  PMID: 22703118
23.  GDP-tubulin incorporation into growing microtubules modulates polymer stability 
The Journal of Biological Chemistry  2010;285(23):17507-17513.
Microtubule growth proceeds through endwise addition of nucleotide bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends, followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, whereas microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties and this may reveal a novel form of microtubule “structural plasticity”.
doi:10.1074/jbc.M109.099515
PMCID: PMC2878515  PMID: 20371874
Animals; Biochemistry; methods; Centrosome; metabolism; Cryoelectron Microscopy; methods; Dimerization; Filtration; Guanosine Diphosphate; chemistry; Guanosine Triphosphate; chemistry; Humans; Hydrolysis; Microtubules; chemistry; metabolism; Nucleotides; chemistry; Polymers; chemistry; Tubulin; chemistry; Tubulin Modulators; chemistry; Cytoskeleton; Microtubules; Nucleotide; Protein; Self-assembly; Tubulin; GTP Hydrolysis; GTP-Tubulin; Microtubule Dynamics
24.  The Microtubule-Associated Protein ASPM Regulates Spindle Assembly and Meiotic Progression in Mouse Oocytes 
PLoS ONE  2012;7(11):e49303.
The microtubule-associated protein ASPM (abnormal spindle-like microcephaly-associated) plays an important role in spindle organization and cell division in mitosis and meiosis in lower animals, but its function in mouse oocyte meiosis has not been investigated. In this study, we characterized the localization and expression dynamics of ASPM during mouse oocyte meiotic maturation and analyzed the effects of the downregulation of ASPM expression on meiotic spindle assembly and meiotic progression. Immunofluorescence analysis showed that ASPM localized to the entire spindle at metaphase I (MI) and metaphase II (MII), colocalizing with the spindle microtubule protein acetylated tubulin (Ac-tubulin). In taxol-treated oocytes, ASPM colocalized with Ac-tubulin on the excessively polymerized microtubule fibers of enlarged spindles and the numerous asters in the cytoplasm. Nocodazole treatment induced the gradual disassembly of microtubule fibers, during which ASPM remained colocalized with the dynamic Ac-tubulin. The downregulation of ASPM expression by a gene-specific morpholino resulted in an abnormal meiotic spindle and inhibited meiotic progression; most of the treated oocytes were blocked in the MI stage with elongated meiotic spindles. Furthermore, coimmunoprecipitation combined with mass spectrometry and western blot analysis revealed that ASPM interacted with calmodulin in MI oocytes and that these proteins colocalized at the spindle. Our results provide strong evidence that ASPM plays a critical role in meiotic spindle assembly and meiotic progression in mouse oocytes.
doi:10.1371/journal.pone.0049303
PMCID: PMC3496685  PMID: 23152892
25.  Specific In Vivo Labeling of Tyrosinated α-Tubulin and Measurement of Microtubule Dynamics Using a GFP Tagged, Cytoplasmically Expressed Recombinant Antibody 
PLoS ONE  2013;8(3):e59812.
GFP-tagged proteins are used extensively as biosensors for protein localization and function, but the GFP moiety can interfere with protein properties. An alternative is to indirectly label proteins using intracellular recombinant antibodies (scFvs), but most antibody fragments are insoluble in the reducing environment of the cytosol. From a synthetic hyperstable human scFv library we isolated an anti-tubulin scFv, 2G4, which is soluble in mammalian cells when expressed as a GFP-fusion protein. Here we report the use of this GFP-tagged scFv to label microtubules in fixed and living cells. We found that 2G4-GFP localized uniformly along microtubules and did not disrupt binding of EB1, a protein that binds microtubule ends and serves as a platform for binding by a complex of proteins regulating MT polymerization. TOGp and CLIP-170 also bound microtubule ends in cells expressing 2G4-GFP. Microtubule dynamic instability, measured by tracking 2G4-GFP labeled microtubules, was nearly identical to that measured in cells expressing GFP-α-tubulin. Fluorescence recovery after photobleaching demonstrated that 2G4-GFP turns over rapidly on microtubules, similar to the turnover rates of fluorescently tagged microtubule-associated proteins. These data indicate that 2G4-GFP binds relatively weakly to microtubules, and this conclusion was confirmed in vitro. Purified 2G4 partially co-pelleted with microtubules, but a significant fraction remained in the soluble fraction, while a second anti-tubulin scFv, 2F12, was almost completely co-pelleted with microtubules. In cells, 2G4-GFP localized to most microtubules, but did not co-localize with those composed of detyrosinated α-tubulin, a post-translational modification associated with non-dynamic, more stable microtubules. Immunoblots probing bacterially expressed tubulins confirmed that 2G4 recognized α-tubulin and required tubulin’s C-terminal tyrosine residue for binding. Thus, a recombinant antibody with weak affinity for its substrate can be used as a specific intracellular biosensor that can differentiate between unmodified and post-translationally modified forms of a protein.
doi:10.1371/journal.pone.0059812
PMCID: PMC3610906  PMID: 23555790

Results 1-25 (931928)