Search tips
Search criteria

Results 1-25 (1443455)

Clipboard (0)

Related Articles

1.  Neddylation and CAND1 Independently Stimulate SCF Ubiquitin Ligase Activity in Candida albicans 
Eukaryotic Cell  2012;11(1):42-52.
SCF (Skp1–cullin/Cdc53–F-box protein) ubiquitin ligases bind substrates via the variable F-box protein and, in conjunction with the RING domain protein Rbx1 and the ubiquitin-conjugating enzyme Ubc3/Cdc34, catalyze substrate ubiquitination. The cullin subunit can be modified covalently by conjugation of the ubiquitin-like protein Rub1/NEDD8 (neddylation) or bound noncovalently by the protein CAND1 (cullin-associated, neddylation-dissociated). Expression of the Candida albicans CAND1 gene homolog CaTIP120 in Saccharomyces cerevisiae is toxic only in the presence of CaCdc53, consistent with a specific interaction between CaTip120 and CaCdc53. To genetically analyze this system in C. albicans, we deleted the homologs of RUB1/NEDD8, TIP120/CAND1, and the deneddylase gene JAB1, and we also generated a temperature-sensitive allele of the essential CaCDC53 gene by knock-in site-directed mutagenesis. Deletion of CaRUB1 and CaTIP120 caused morphological, growth, and protein degradation phenotypes consistent with a reduction in SCF ubiquitin ligase activity. Furthermore, the double Carub1−/− Catip120−/− mutant was more defective in SCF activity than either individual deletion mutant. These results indicate that CAND1 stimulates SCF ubiquitin ligase activity and that it does so independently of neddylation. Our data do not support a role for CAND1 in the protection of either the F-box protein or cullin from degradation but are consistent with the suggested role of CAND1 in SCF complex remodeling.
PMCID: PMC3255936  PMID: 22080453
2.  Ectromelia Virus Encodes a Novel Family of F-Box Proteins That Interact with the SCF Complex▿  
Journal of Virology  2008;82(20):9917-9927.
Poxviruses are notorious for encoding multiple proteins that regulate cellular signaling pathways, including the ubiquitin-proteasome system. Bioinformatics indicated that ectromelia virus, the causative agent of lethal mousepox, encoded four proteins, EVM002, EVM005, EVM154, and EVM165, containing putative F-box domains. In contrast to cellular F-box proteins, the ectromelia virus proteins contain C-terminal F-box domains in conjunction with N-terminal ankyrin repeats, a combination that has not been previously reported for cellular proteins. These observations suggested that the ectromelia virus F-box proteins interact with SCF (Skp1, cullin-1, and F-box) ubiquitin ligases. We focused our studies on EVM005, since this protein had only one ortholog in cowpox virus. Using mass spectrometry, we identified cullin-1 as a binding partner for EVM005, and this interaction was confirmed by overexpression of hemagglutinin (HA)-cullin-1. During infection, Flag-EVM005 and HA-cullin-1 colocalized to distinct cellular bodies. Significantly, EVM005 coprecipitated with endogenous Skp1, cullin-1, and Roc1 and associated with conjugated ubiquitin, suggesting that EVM005 interacted with the components of a functional ubiquitin ligase. Interaction of EVM005 with cullin-1 and Skp1 was abolished upon deletion of the F-box, indicating that the F-box played a crucial role in interaction with the SCF complex. Additionally, EVM002 and EVM154 interacted with Skp1 and conjugated ubiquitin, suggesting that ectromelia virus encodes multiple F-box-containing proteins that regulate the SCF complex. Our results indicate that ectromelia virus has evolved multiple proteins that interact with the SCF complex.
PMCID: PMC2566254  PMID: 18684824
3.  Skp1p and the F-Box Protein Rcy1p Form a Non-SCF Complex Involved in Recycling of the SNARE Snc1p in Yeast 
Molecular and Cellular Biology  2001;21(9):3105-3117.
Skp1p–cullin–F-box protein (SCF) complexes are ubiquitin-ligases composed of a core complex including Skp1p, Cdc53p, Hrt1p, the E2 enzyme Cdc34p, and one of multiple F-box proteins which are thought to provide substrate specificity to the complex. Here we show that the F-box protein Rcy1p is required for recycling of the v-SNARE Snc1p in Saccharomyces cerevisiae. Rcy1p localized to areas of polarized growth, and this polarized localization required its CAAX box and an intact actin cytoskeleton. Rcy1p interacted with Skp1p in vivo in an F-box-dependent manner, and both deletion of its F box and loss of Skp1p function impaired recycling. In contrast, cells deficient in Cdc53p, Hrt1p, or Cdc34p did not exhibit recycling defects. Unlike the case for F-box proteins that are known to participate in SCF complexes, degradation of Rcy1p required neither its F box nor functional 26S proteasomes or other SCF core subunits. Importantly, Skp1p was the only major partner that copurified with Rcy1p. Our results thus suggest that a complex composed of Rcy1p and Skp1p but not other SCF components may play a direct role in recycling of internalized proteins.
PMCID: PMC86938  PMID: 11287615
4.  The Abundance of Met30p Limits SCFMet30p Complex Activity and Is Regulated by Methionine Availability 
Molecular and Cellular Biology  2000;20(21):7845-7852.
Ubiquitin-mediated degradation plays a crucial role in many fundamental biological pathways, including the mediation of cellular responses to changes in environmental conditions. A family of ubiquitin ligase complexes, called SCF complexes, found throughout eukaryotes, is involved in a variety of biological pathways. In Saccharomyces cerevisiae, an SCF complex contains a common set of components, namely, Cdc53p, Skp1p, and Hrt1p. Substrate specificity is defined by a variable component called an F-box protein. The F- box is a ∼40-amino-acid motif that allows the F-box protein to bind Skp1p. Each SCF complex recognizes different substrates according to which F-box protein is associated with the complex. In yeasts, three SCF complexes have been demonstrated to associate with the ubiquitin-conjugating enzyme Cdc34p and have ubiquitin ligase activity. F-box proteins are not abundant and are unstable. As part of the SCFMet30p complex, the F-box protein Met30p represses methionine biosynthetic gene expression when availability of l-methionine is high. Here we demonstrate that in vivo SCFMet30p complex activity can be regulated by the abundance of Met30p. Furthermore, we provide evidence that Met30p abundance is regulated by the availability of l-methionine. We propose that the cellular responses mediated by an SCF complex are directly regulated by environmental conditions through the control of F-box protein stability.
PMCID: PMC86396  PMID: 11027256
5.  Role of SKP1-CUL1-F-Box-Protein (SCF) E3 Ubiquitin Ligases in Skin Cancer 
Journal of genetics and genomics = Yi chuan xue bao  2013;40(3):10.1016/j.jgg.2013.02.001.
Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis and degradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainly controlled by the ubiquitin—proteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26S proteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsible for the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such as cancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promoting role of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimate goal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore, altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.
PMCID: PMC3861240  PMID: 23522382
Carcinogenesis; F-box proteins; RING proteins; SCF E3 ligases; Skin; Ubiquitin ligases
6.  Overproduction of Polypeptides Corresponding to the Amino Terminus of the F-Box Proteins Cdc4p and Met30p Inhibits Ubiquitin Ligase Activities of Their SCF Complexes 
Eukaryotic Cell  2003;2(1):123-133.
Ubiquitin ligases direct the transfer of ubiquitin onto substrate proteins and thus target the substrate for proteasome-dependent degradation. SCF complexes are a family of ubiquitin ligases composed of a common core of components and a variable component called an F-box protein that defines substrate specificity. Distinct SCF complexes, defined by a particular F-box protein, target different substrate proteins for degradation. Although a few have been identified to be involved in important biological pathways, such as the cell division cycle and coordinating cellular responses to changes in environmental conditions, the role of the overwhelming majority of F-box proteins is not clear. Creating inhibitors that will block the in vivo activities of specific SCF ubiquitin ligases may provide identification of substrates of these uncharacterized F-box proteins. Using Saccharomyces cerevisiae as a model system, we demonstrate that overproduction of polypeptides corresponding to the amino terminus of the F-box proteins Cdc4p and Met30p results in specific inhibition of their SCF complexes. Analyses of mutant amino-terminal alleles demonstrate that the interaction of these polypeptides with their full-length counterparts is an important step in the inhibitory process. These results suggest a common means to inhibit specific SCF complexes in vivo.
PMCID: PMC141164  PMID: 12582129
7.  SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis. 
Many key activators and inhibitors of cell division are targeted for degradation by a recently described family of E3 ubiquitin protein ligases termed Skp1-Cdc53-F-box protein (SCF) complexes. SCF complexes physically link substrate proteins to the E2 ubiquitin-conjugating enzyme Cdc34, which catalyses substrate ubiquitination, leading to subsequent degradation by the 26S proteasome. SCF complexes contain a variable subunit called an F-box protein that confers substrate specificity on an invariant core complex composed of the subunits Cdc34, Skp1 and Cdc53. Here, we review the substrates and pathways regulated by the yeast F-box proteins Cdc4, Grr1 and Met30. The concepts of SCF ubiquitin ligase function are illustrated by analysis of the degradation pathway for the G1 cyclin Cln2. Through mass spectrometric analysis of Cdc53 associated proteins, we have identified three novel F-box proteins that appear to participate in SCF-like complexes. As many F-box proteins can be found in sequence databases, it appears that a host of cellular pathways will be regulated by SCF-dependent proteolysis.
PMCID: PMC1692661  PMID: 10582239
8.  Assaying Proteasomal Degradation in a Cell-free System in Plants 
The ubiquitin-proteasome pathway for protein degradation has emerged as one of the most important mechanisms for regulation of a wide spectrum of cellular functions in virtually all eukaryotic organisms. Specifically, in plants, the ubiquitin/26S proteasome system (UPS) regulates protein degradation and contributes significantly to development of a wide range of processes, including immune response, development and programmed cell death. Moreover, increasing evidence suggests that numerous plant pathogens, such as Agrobacterium, exploit the host UPS for efficient infection, emphasizing the importance of UPS in plant-pathogen interactions.
The substrate specificity of UPS is achieved by the E3 ubiquitin ligase that acts in concert with the E1 and E2 ligases to recognize and mark specific protein molecules destined for degradation by attaching to them chains of ubiquitin molecules. One class of the E3 ligases is the SCF (Skp1/Cullin/F-box protein) complex, which specifically recognizes the UPS substrates and targets them for ubiquitination via its F-box protein component. To investigate a potential role of UPS in a biological process of interest, it is important to devise a simple and reliable assay for UPS-mediated protein degradation. Here, we describe one such assay using a plant cell-free system. This assay can be adapted for studies of the roles of regulated protein degradation in diverse cellular processes, with a special focus on the F-box protein-substrate interactions.
PMCID: PMC4090386  PMID: 24747194
Biochemistry; Issue 85; Ubiquitin/proteasome system; 26S proteasome; protein degradation; proteasome inhibitor; Western blotting; plant genetic transformation
9.  F-box proteins: more than baits for the SCF? 
Cell Division  2006;1:30.
Regulation of protein stability through the ubiquitin proteasome system is a key mechanism underlying numerous cellular processes. The ubiquitin protein ligases (or E3) are in charge of substrate specificity and therefore play a pivotal role in the pathway. Among the several different E3 enzyme families, the SCF (Skp1-Cullin-F box protein) is one of the largest and best characterized. F-box proteins, in addition to the loosely conserved F-box motif that binds Skp1, often carry typical protein interaction domains and are proposed to recruit the substrate to the SCF complex. Strikingly, genomes analysis revealed the presence of large numbers of F-box proteins topping to nearly 700 predicted in Arabidopsis thaliana.
Recent evidences in various species suggest that some F-box proteins have functions not directly related to the SCF complex raising questions about the actual connection between the large F-box protein family and protein degradation, but also about their origins and evolution.
PMCID: PMC1712225  PMID: 17166256
10.  Small RING finger proteins RBX1 and RBX2 of SCF E3 ubiquitin ligases: the role in cancer and as cancer targets 
Genes & cancer  2010;1(7):700-707.
The SCF (Skp1-Cullins-F box proteins), also known as CRL (Cullin-based RING ligase), is the largest family of E3 ubiquitin ligases that mediate ~20% ubiquitinated protein substrates for 26S proteasome degradation. Through promoting timely degradation of many key regulatory proteins, SCF E3 ligase controls numerous cellular processes; its dysfunction contributes to a number of human diseases, including cancer. The RING component of SCF complex consists of two family members, RBX1 (RING box protein-1), also known as ROC1 (Regulator of Cullins) and RBX2/ROC2 (also known as SAG, Sensitive to Apoptosis Gene), both of which are essential for the catalytic activity of SCF. RBX1 and RBX2 are evolutionarily conserved from yeast to humans and play an essential role during mouse embryonic development. Moreover, RBX1 and RBX2 are both overexpressed in multiple human cancer tissues and required for the growth and survival of cancer cells. In this review, we will discuss the similarities and differences between two RING family members, their regulation of SCF E3 ligase activity, and their role in development, cancer cell survival and skin carcinogenesis, along with a brief discussion of RBX-SCF E3 ligases as the cancer targets and a recently discovered small molecule inhibitor of SCF E3 ligases as a novel class of anticancer drugs.
PMCID: PMC2983490  PMID: 21103004
Anticancer targets; Protein degradation; Neddylation; RING Box proteins; SCF E3 ubiquitin ligases; Ubiquitin-proteasome system
11.  Small RING Finger Proteins RBX1 and RBX2 of SCF E3 Ubiquitin Ligases 
Genes & Cancer  2010;1(7):700-707.
The SCF (Skp1–cullin–F-box proteins), also known as CRL (cullin-based RING ligase), is the largest family of E3 ubiquitin ligases that mediate approximately 20% ubiquitinated protein substrates for 26S proteasome degradation. Through promoting timely degradation of many key regulatory proteins, SCF E3 ligase controls numerous cellular processes; its dysfunction contributes to a number of human diseases, including cancer. The RING component of SCF complex consists of 2 family members, RBX1 (RING box protein 1), also known as ROC1 (regulator of cullins), and RBX2/ROC2 (also known as SAG [sensitive to apoptosis gene]), both of which are essential for the catalytic activity of SCF. RBX1 and RBX2 are evolutionarily conserved from yeast to humans and play an essential role during mouse embryonic development. Moreover, RBX1 and RBX2 are both overexpressed in multiple human cancer tissues and required for the growth and survival of cancer cells. In this review, we will discuss the similarities and differences between 2 RING family members, their regulation of SCF E3 ligase activity, and their role in development, cancer cell survival, and skin carcinogenesis, along with a brief discussion of RBX-SCF E3 ligases as the cancer targets and a recently discovered small molecule inhibitor of SCF E3 ligases as a novel class of anticancer drugs.
PMCID: PMC2983490  PMID: 21103004
anticancer targets; protein degradation; neddylation; RING box proteins; SCF E3 ubiquitin ligases; ubiquitin-proteasome system
12.  Timely Activation of Budding Yeast APCCdh1 Involves Degradation of Its Inhibitor, Acm1, by an Unconventional Proteolytic Mechanism 
PLoS ONE  2014;9(7):e103517.
Regulated proteolysis mediated by the ubiquitin proteasome system is a fundamental and essential feature of the eukaryotic cell division cycle. Most proteins with cell cycle-regulated stability are targeted for degradation by one of two related ubiquitin ligases, the Skp1-cullin-F box protein (SCF) complex or the anaphase-promoting complex (APC). Here we describe an unconventional cell cycle-regulated proteolytic mechanism that acts on the Acm1 protein, an inhibitor of the APC activator Cdh1 in budding yeast. Although Acm1 can be recognized as a substrate by the Cdc20-activated APC (APCCdc20) in anaphase, APCCdc20 is neither necessary nor sufficient for complete Acm1 degradation at the end of mitosis. An APC-independent, but 26S proteasome-dependent, mechanism is sufficient for complete Acm1 clearance from late mitotic and G1 cells. Surprisingly, this mechanism appears distinct from the canonical ubiquitin targeting pathway, exhibiting several features of ubiquitin-independent proteasomal degradation. For example, Acm1 degradation in G1 requires neither lysine residues in Acm1 nor assembly of polyubiquitin chains. Acm1 was stabilized though by conditional inactivation of the ubiquitin activating enzyme Uba1, implying some requirement for the ubiquitin pathway, either direct or indirect. We identified an amino terminal predicted disordered region in Acm1 that contributes to its proteolysis in G1. Although ubiquitin-independent proteasome substrates have been described, Acm1 appears unique in that its sensitivity to this mechanism is strictly cell cycle-regulated via cyclin-dependent kinase (Cdk) phosphorylation. As a result, Acm1 expression is limited to the cell cycle window in which Cdk is active. We provide evidence that failure to eliminate Acm1 impairs activation of APCCdh1 at mitotic exit, justifying its strict regulation by cell cycle-dependent transcription and proteolytic mechanisms. Importantly, our results reveal that strict cell-cycle expression profiles can be established independent of proteolysis mediated by the APC and SCF enzymes.
PMCID: PMC4114781  PMID: 25072887
13.  The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis 
The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.
PMCID: PMC3356048  PMID: 22655255
ubiquitin; cell cycle; differentiation; cancer; ubiquitin ligase; cancer therapy
14.  E3 Ubiquitin Ligases as Cancer Targets and Biomarkers1 
Neoplasia (New York, N.Y.)  2006;8(8):645-654.
E3 ubiquitin ligases are a large family of proteins that are engaged in the regulation of the turnover and activity of many target proteins. Together with ubiquitin-activating enzyme E1 and ubiquitin-conjugating enzyme E2, E3 ubiquitin ligases catalyze the ubiquitination of a variety of biologically significant protein substrates for targeted degradation through the 26S proteasome, as well as for nonproteolytic regulation of their functions or subcellular localizations. E3 ubiquitin ligases, therefore, play an essential role in the regulation of many biologic processes. Increasing amounts of evidence strongly suggest that the abnormal regulation of some E3 ligases is involved in cancer development. Furthermore, some E3 ubiquitin ligases are frequently overexpressed in human cancers, which correlates well with increased chemoresistance and poor clinic prognosis. In this review, E3 ubiquitin ligases (such as murine double minute 2, inhibitor of apoptosis protein, and Skp1-Cullin-F-box protein) will be evaluated as potential cancer drug targets and prognostic biomarkers. Extensive study in this field would lead to a better understanding of the molecular mechanism by which E3 ligases regulate cellular processes and of how their deregulations contribute to carcinogenesis. This would eventually lead to the development of a novel class of anticancer drugs targeting specific E3 ubiquitin ligases, as well as the development of sensitive biomarkers for cancer treatment, diagnosis, and prognosis.
PMCID: PMC1601942  PMID: 16925947
Apoptosis; biomarkers; cancer targets; E3 ubiquitin ligases; protein degradation
15.  Mechanisms of mono- and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine 
Cell Division  2010;5:19.
Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3) and the ubiquitin-conjugating enzyme (E2), where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.
PMCID: PMC2927562  PMID: 20704751
16.  Ubiquitin–Proteasome-dependent Degradation of a Mitofusin, a Critical Regulator of Mitochondrial Fusion 
Molecular Biology of the Cell  2008;19(6):2457-2464.
The mitochondrion is a dynamic membranous network whose morphology is conditioned by the equilibrium between ongoing fusion and fission of mitochondrial membranes. In the budding yeast, Saccharomyces cerevisiae, the transmembrane GTPase Fzo1p controls fusion of mitochondrial outer membranes. Deletion or overexpression of Fzo1p have both been shown to alter the mitochondrial fusion process indicating that maintenance of steady-state levels of Fzo1p are required for efficient mitochondrial fusion. Cellular levels of Fzo1p are regulated through degradation of Fzo1p by the F-box protein Mdm30p. How Mdm30p promotes degradation of Fzo1p is currently unknown. We have now determined that during vegetative growth Mdm30p mediates ubiquitylation of Fzo1p and that degradation of Fzo1p is an ubiquitin-proteasome–dependent process. In vivo, Mdm30p associates through its F-box motif with other core components of Skp1-Cullin-F-box (SCF) ubiquitin ligases. We show that the resulting SCFMdm30p ligase promotes ubiquitylation of Fzo1p at mitochondria and its subsequent degradation by the 26S proteasome. These results provide the first demonstration that a cytosolic ubiquitin ligase targets a critical regulatory molecule at the mitochondrial outer membrane. This study provides a framework for developing an understanding of the function of Mdm30p-mediated Fzo1p degradation in the multistep process of mitochondrial fusion.
PMCID: PMC2397313  PMID: 18353967
17.  The Centrosomal E3 Ubiquitin Ligase FBXO31-SCF Regulates Neuronal Morphogenesis and Migration 
PLoS ONE  2013;8(2):e57530.
Neuronal development requires proper migration, polarization and establishment of axons and dendrites. Growing evidence identifies the ubiquitin proteasome system (UPS) with its numerous components as an important regulator of various aspects of neuronal development. F-box proteins are interchangeable subunits of the Cullin-1 based E3 ubiquitin ligase, but only a few family members have been studied. Here, we report that the centrosomal E3 ligase FBXO31-SCF (Skp1/Cullin-1/F-box protein) regulates neuronal morphogenesis and axonal identity. In addition, we identified the polarity protein Par6c as a novel interaction partner and substrate targeted for proteasomal degradation in the control of axon but not dendrite growth. Finally, we ascribe a role for FBXO31 in dendrite growth and neuronal migration in the developing cerebellar cortex. Taken together, we uncovered the centrosomal E3 ligase FBXO31-SCF as a novel regulator of neuronal development.
PMCID: PMC3585373  PMID: 23469015
18.  Inhibition of NEDD8 Conjugation Pathway by Novel Molecules: Potential Approaches to Anticancer Therapy 
Molecular oncology  2012;6(3):10.1016/j.molonc.2012.01.003.
Cancer cells can survive through the upregulation of cell cycle and the escape from apoptosis induced by numerous cellular stresses. In the normal cells, these biological cascades depend on scheduled proteolytic degradation of regulatory proteins via the ubiquitin-proteasome pathway. Therefore, interruption of regulated proteolytic pathways leads to abnormal cell-proliferation. Ubiquitin ligases called SCF complex (consisting of Skp-1, cullin, and F-box protein) or CRL (cullin-RING ubiquitin ligase) are predominant in a family of E3 ubiquitin ligases that control a final step in ubiquitination of diverse substrates. To a great extent, the ubiquitin ligase activity of the SCF complex requires the conjugation of NEDD8 to cullins, i.e. scaffold proteins. This review is anticipated to review the downregulation system of NEDD8 conjugation by several factors including a chemical compound such as MLN4924 and protein molecules (e.g. COP9 signalosome, inactive mutant of Ubc12, and NUB1/NUB1L). Since the downregulation of NEDD8 conjugation affects cell cycle progression by inhibiting the ligase activity of SCF complexes, such knowledge in the NEDD8 conjugation pathway will contribute to the more magnificent therapies that selectively suppress tumorigenesis.
PMCID: PMC3826113  PMID: 22306028
Ubiquitination; SCF complex; NEDD8; MLN4924; Ubc12; NUB1
19.  Reconstructing the ubiquitin network - cross-talk with other systems and identification of novel functions 
Genome Biology  2009;10(3):R33.
A computational model of the yeast Ubiquitin system highlights interesting biological features including functional interactions between components and interplay with other regulatory mechanisms.
The ubiquitin system (Ub-system) can be defined as the ensemble of components including Ub/ubiquitin-like proteins, their conjugation and deconjugation apparatus, binding partners and the proteasomal system. While several studies have concentrated on structure-function relationships and evolution of individual components of the Ub-system, a study of the system as a whole is largely lacking.
Using numerous genome-scale datasets, we assemble for the first time a comprehensive reconstruction of the budding yeast Ub-system, revealing static and dynamic properties. We devised two novel representations, the rank plot to understand the functional diversification of different components and the clique-specific point-wise mutual-information network to identify significant interactions in the Ub-system.
Using these representations, evidence is provided for the functional diversification of components such as SUMO-dependent Ub-ligases. We also identify novel components of SCF (Skp1-cullin-F-box)-dependent complexes, receptors in the ERAD (endoplasmic reticulum associated degradation) system and a key role for Sus1 in coordinating multiple Ub-related processes in chromatin dynamics. We present evidence for a major impact of the Ub-system on large parts of the proteome via its interaction with the transcription regulatory network. Furthermore, the dynamics of the Ub-network suggests that Ub and SUMO modifications might function cooperatively with transcription control in regulating cell-cycle-stage-specific complexes and in reinforcing periodicities in gene expression. Combined with evolutionary information, the structure of this network helps in understanding the lineage-specific expansion of SCF complexes with a potential role in pathogen response and the origin of the ERAD and ESCRT systems.
PMCID: PMC2691004  PMID: 19331687
20.  An SCF complex containing Fbxl12 mediates DNA damage-induced Ku80 ubiquitylation 
Cell Cycle  2013;12(4):587-595.
The Ku heterodimer, composed of Ku70 and Ku80, is the initiating factor of the nonhomologous end joining (NHEJ) double-strand break (DSB) repair pathway. Ku is also thought to impede the homologous recombination (HR) repair pathway via inhibition of DNA end resection. Using the cell-free Xenopus laevis egg extract system, we had previously discovered that Ku80 becomes polyubiquitylated upon binding to DSBs, leading to its removal from DNA and subsequent proteasomal degradation. Here we show that the Skp1-Cul1-F box (SCF) E3 ubiquitin ligase complex is required for Ku80 ubiquitylation and removal from DNA. A screen for DSB-binding F box proteins revealed that the F box protein Fbxl12 was recruited to DNA in a DSB- and Ku-sensitive manner. Immunodepletion of Fbxl12 prevented Cul1 and Skp1 binding to DSBs and Ku80 ubiquitylation, indicating that Fbxl12 is the F box protein responsible for Ku80 substrate recognition. Unlike typical F box proteins, the F box of Fbxl12 was essential for binding to both Skp1 and its substrate Ku80. Besides Fbxl12, six other chromatin-binding F box proteins were identified in our screen of a subset of Xenopus F box proteins: β-TrCP, Fbh1, Fbxl19, Fbxo24, Fbxo28 and Kdm2b. Our study unveils a novel function for the SCF ubiquitin ligase in regulating the dynamic interaction between DNA repair machineries and DSBs.
PMCID: PMC3594259  PMID: 23324393
Ku80; Ku86; Ku70; SCF; DNA damage; double-strand break; nonhomologous end joining; Fbxl12; Fbl12; ubiquitin
21.  SCF E3 Ubiquitin Ligases as Anticancer Targets 
Current Cancer Drug Targets  2011;11(3):347-356.
The SCF (Skp1, Cullins, F-box proteins) multisubunit E3 ubiquitin ligase, also known as CRL (Cullin-RING ubiquitin Ligase) is the largest E3 ubiquitin ligase family that promotes the ubiquitination of various regulatory proteins for targeted degradation, thus regulating many biological processes, including cell cycle progression, signal transduction, and DNA replication. The efforts to discover small molecule inhibitors of a SCF-type ligase or its components were expedited by the FDA approval of Bortezomib (also known as Velcade or PS-341), the first (and only) class of general proteasome inhibitor, for the treatment of relapsed/refractory multiple myeloma and mantle cell lymphoma. Although Bortezomib has demonstrated a certain degree of cancer cell selectivity with measurable therapeutic index, the drug is, in general, cytotoxic due to its inhibition of overall protein degradation. An alternative and ideal approach is to target a specific E3 ligase, known to be activated in human cancer, for a high level of specificity and selectivity with less associated toxicity, since such inhibitors would selectively stabilize a specific set of cellular proteins regulated by this E3. Here, we review recent advances in validation of SCF E3 ubiquitin ligase as an attractive anti-cancer target and discuss how MLN4924, a small molecule inhibitor of NEDD8-activating enzyme, can be developed as a novel class of anticancer agents by inhibiting SCF E3 ligase via removal of cullin neddylation. Finally, we discuss under future perspective how basic research on SCF biology will direct the drug discovery efforts surrounding this target.
PMCID: PMC3323109  PMID: 21247385
Ubiquitin-proteasome system; SCF E3 ubiquitin ligase; anticancer target; drug discovery; neddylation; cullins; F-box proteins; RING ligases
22.  Virulence Factor NSs of Rift Valley Fever Virus Recruits the F-Box Protein FBXO3 To Degrade Subunit p62 of General Transcription Factor TFIIH 
Journal of Virology  2014;88(6):3464-3473.
The nonstructural protein NSs is the main virulence factor of Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), a serious pathogen of livestock and humans in Africa. RVFV NSs blocks transcriptional upregulation of antiviral type I interferons (IFN) and destroys the general transcription factor TFIIH subunit p62 via the ubiquitin/proteasome pathway. Here, we identified a subunit of E3 ubiquitin ligases, F-box protein FBXO3, as a host cell interactor of NSs. Small interfering RNA (siRNA)-mediated depletion of FBXO3 rescued p62 protein levels in RVFV-infected cells and elevated IFN transcription by 1 order of magnitude. NSs interacts with the full-length FBXO3 protein as well as with a truncated isoform that lacks the C-terminal acidic and poly(R)-rich domains. These isoforms are present in both the nucleus and the cytoplasm. NSs exclusively removes the nuclear pool of full-length FBXO3, likely due to consumption during the degradation process. F-box proteins form the variable substrate recognition subunit of the so-called SCF ubiquitin ligases, which also contain the constant components Skp1, cullin 1 (or cullin 7), and Rbx1. siRNA knockdown of Skp1 also protected p62 from degradation, suggesting involvement in NSs action. However, knockdown of cullin 1, cullin 7, or Rbx1 could not rescue p62 degradation by NSs. Our data show that the enzymatic removal of p62 via the host cell factor FBXO3 is a major mechanism of IFN suppression by RVFV.
IMPORTANCE Rift Valley fever virus is a serious emerging pathogen of animals and humans. Its main virulence factor, NSs, enables unhindered virus replication by suppressing the antiviral innate immune system. We identified the E3 ubiquitin ligase FBXO3 as a novel host cell interactor of NSs. NSs recruits FBXO3 to destroy the general host cell transcription factor TFIIH-p62, resulting in suppression of the transcriptional upregulation of innate immunity.
PMCID: PMC3957945  PMID: 24403578
23.  Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels 
BMC Biochemistry  2006;7:1.
SCF ubiquitin ligases target numerous proteins for ubiquitin dependent proteolysis, including p27 and cyclin E. SCF and other cullin-RING ligases (CRLs) are regulated by the ubiquitin-like protein Nedd8 that covalently modifies the cullin subunit. The removal of Nedd8 is catalyzed by the Jab1/MPN domain metalloenzyme (JAMM) motif within the Csn5 subunit of the Cop9 Signalosome.
Here, we conditionally knock down Csn5 expression in HEK293 human cells using a doxycycline-inducible shRNA system. Cullin levels were not altered in CSN-deficient human cells, but the levels of multiple F-box proteins were decreased. Molecular analysis indicates that this decrease was due to increased Cul1- and proteasome-dependent turnover. Diminished F-box levels resulted in reduced SCF activity, as evidenced by accumulation of two substrates of the F-box protein Fbw7, cyclin E and c-myc, in Csn5-depleted cells.
We propose that deneddylation of Cul1 is required to sustain optimal activity of SCF ubiquitin ligases by repressing 'autoubiquitination' of F-box proteins within SCF complexes, thereby rescuing them from premature degradation.
PMCID: PMC1360668  PMID: 16401342
24.  FBG1 is a promiscuous ubiquitin ligase that sequesters APC2 and causes S-phase arrest 
Cell Cycle  2010;9(22):4506-4517.
During cell proliferation, protein degradation is strictly regulated by the cell cycle and involves two complementary ubiquitin ligase complexes, the SCF (Skp, Cullin, F-box) and APC/C (Anaphase Promoting Complex/Cyclosome) ubiquitin ligases. SCF ligases are constitutively active and generally target only proteins after they have been selected for degradation, usually by phosphorylation. In contrast, APC/C complexes are themselves activated by phosphorylation and their substrates contain a targeting signal known as degron, a consensus amino acid sequence such as a D-Box. SCF complexes degrade proteins during the G1 phase. However, as DNA synthesis begins, the SCF complexes are degraded and APC/C complexes are activated. APC-2, a protein crucial to cell division, initiates anaphase by triggering the degradation of multiple proteins. This study explores an unexpected interaction between APC-2 and SCFFBG1. We found that FBG1 is a promiscuous ubiquitin ligase with many partners. Immunoprecipitation experiments demonstrate that FBG1 and APC2 interact directly. Mutagenesis-based experiments show that this interaction requires a D-Box found within the FBG1 F-box domain. Unexpectedly, we demonstrate that co-expression with FBG1 increases total APC2 levels. However, free APC2 is decreased, inhibiting cell proliferation. Finally, FACS analysis of cell populations expressing different forms of FBG1 demonstrate that this ubiquitin ligase induces S-phase arrest, illustrating the functional consequences of the interaction described. In summary, we have discovered a novel APC2 inhibitory activity of FBG1 independent from its function as ubiquitin ligase, providing the basis for future studies of FBG1 in aging and cancer.
PMCID: PMC3048047  PMID: 21135578
FBG1; Cul1; Cul7; APC2; SCF; glycoprotein; degradation
25.  The F-box protein family 
Genome Biology  2000;1(5):reviews3002.1-reviews3002.7.
F-box proteins were first described as components of ubiquitin ligase complexes, but have more recently been found to be involved in a variety of cellular functions, including in the kinetochore and in translational elongation.
The F-box is a protein motif of approximately 50 amino acids that functions as a site of protein-protein interaction. F-box proteins were first characterized as components of SCF ubiquitin-ligase complexes (named after their main components, Skp I, Cullin, and an F-box protein), in which they bind substrates for ubiquitin-mediated proteolysis. The F-box motif links the F-box protein to other components of the SCF complex by binding the core SCF component Skp I. F-box proteins have more recently been discovered to function in non-SCF protein complexes in a variety of cellular functions. There are 11 F-box proteins in budding yeast, 326 predicted in Caenorhabditis elegans, 22 in Drosophila, and at least 38 in humans. F-box proteins often include additional carboxy-terminal motifs capable of protein-protein interaction; the most common secondary motifs in yeast and human F-box proteins are WD repeats and leucine-rich repeats, both of which have been found to bind phosphorylated substrates to the SCF complex. The majority of F-box proteins have other associated motifs, and the functions of most of these proteins have not yet been defined.
PMCID: PMC138887  PMID: 11178263

Results 1-25 (1443455)