PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (556542)

Clipboard (0)
None

Related Articles

1.  Bioassays to Monitor Taspase1 Function for the Identification of Pharmacogenetic Inhibitors 
PLoS ONE  2011;6(5):e18253.
Background
Threonine Aspartase 1 (Taspase1) mediates cleavage of the mixed lineage leukemia (MLL) protein and leukemia provoking MLL-fusions. In contrast to other proteases, the understanding of Taspase1's (patho)biological relevance and function is limited, since neither small molecule inhibitors nor cell based functional assays for Taspase1 are currently available.
Methodology/Findings
Efficient cell-based assays to probe Taspase1 function in vivo are presented here. These are composed of glutathione S-transferase, autofluorescent protein variants, Taspase1 cleavage sites and rational combinations of nuclear import and export signals. The biosensors localize predominantly to the cytoplasm, whereas expression of biologically active Taspase1 but not of inactive Taspase1 mutants or of the protease Caspase3 triggers their proteolytic cleavage and nuclear accumulation. Compared to in vitro assays using recombinant components the in vivo assay was highly efficient. Employing an optimized nuclear translocation algorithm, the triple-color assay could be adapted to a high-throughput microscopy platform (Z'factor = 0.63). Automated high-content data analysis was used to screen a focused compound library, selected by an in silico pharmacophor screening approach, as well as a collection of fungal extracts. Screening identified two compounds, N-[2-[(4-amino-6-oxo-3H-pyrimidin-2-yl)sulfanyl]ethyl]benzenesulfonamide and 2-benzyltriazole-4,5-dicarboxylic acid, which partially inhibited Taspase1 cleavage in living cells. Additionally, the assay was exploited to probe endogenous Taspase1 in solid tumor cell models and to identify an improved consensus sequence for efficient Taspase1 cleavage. This allowed the in silico identification of novel putative Taspase1 targets. Those include the FERM Domain-Containing Protein 4B, the Tyrosine-Protein Phosphatase Zeta, and DNA Polymerase Zeta. Cleavage site recognition and proteolytic processing of these substrates were verified in the context of the biosensor.
Conclusions
The assay not only allows to genetically probe Taspase1 structure function in vivo, but is also applicable for high-content screening to identify Taspase1 inhibitors. Such tools will provide novel insights into Taspase1's function and its potential therapeutic relevance.
doi:10.1371/journal.pone.0018253
PMCID: PMC3102056  PMID: 21647428
2.  Mutations Influencing the Assimilation of Nitrogen by Yersinia pestis1 
Infection and Immunity  1971;3(4):580-588.
Cells of 20 isolates of Yersinia (Pasteurella) pestis exhibited an unusual nutritional requirement which could be fulfilled by glycine or l-threonine. Meiotrophic mutants which required neither of these amino acids (Gly/Thr+) were isolated from cultures of all 20 strains at a frequency of 10−7. Wild-type and Gly/Thr+ cells of 14 strains failed to utilize l-amino acids or urea (0.01 m) as primary sources of nitrogen and grew slowly in the presence of low concentrations of NH4+ (≦ 5 mm). Cells of six strains (termed N+) utilized certain l-amino acids and urea (0.01 m) as primary sources of nitrogen and grew rapidly in the presence of ≦ 5 mm NH4+. N+ but not N− organisms cultivated with NH4+ (0.01 m) as a primary source of nitrogen excreted a complete spectrum of naturally occurring amino acids; under this condition of growth the aspartase and particulate nicotinamide adenine dinucleotide phosphate transhydrogenase activities of N+ and N− cells were repressed. N+ meiotrophs arose at a frequency of 10−6 in cultures of all 14 N− isolates, and urease-positive meiotrophs could be selected at a frequency of 10−7 from N+ but not N− cells of all 20 strains on a medium containing urea (0.01 m) as a primary source of nitrogen. These findings illustrate a reversible loss of genetic potential which has occurred during the evolution of Y. pestis as an obligate parasite and suggest that this organism is unable to efficiently remove dispensable deoxyribonucleic acid from its chromosome.
Images
PMCID: PMC416200  PMID: 16558021
3.  Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartase activity. 
Journal of Bacteriology  1977;129(3):1440-1447.
Most strains of Bacillus subtilis, dervied from the 168 (Marburg) strain, grow slowly on aspartate as sole carbon source. We isolated a mutant (aspH) that grows rapidly on aspartate because it produces aspartase constitutively. Thus, aspartase is needed for rapid growth on aspartate, whereas aspartate-alpha-ketoglutarate aminotransferase is not needed, as was demonstrated by a mutant lacking that enzyme activity. By two--and three-factor crosses using PBSl transduction, the aspH mutation was located between the aroD and the lys markers of the genetic map. Although sodium ions do not affect growth on glucose or L-malate, they specifically stimulate growth on aspartate in both the parent and the aspH mutant strains. Enzyme activities of crude aspartase and fumarase and of purified aspartase do not increase in the presence of sodium. These results show that stimulation by sodium involves some reaction other than the enzymes catabolizing aspartate. The ease of purification from the aspH strain and the stability of aspartase suggest that the B. subtilis enzyme is particularly useful for aspartate determinations.
PMCID: PMC235121  PMID: 403177
4.  G1/S transcriptional networks modulated by the HOX11/TLX1 oncogene of T-cell acute lymphoblastic leukemia 
Oncogene  2005;24(36):5561-5575.
The HOX11/TLX1 homeobox gene is aberrantly expressed in a subset of T-cell acute lymphoblastic leukemia (T-ALL). Here we employed oligonucleotide microarrays to compare the expression profiles of the K3P and Sil leukemic cell lines originating from patients with HOX11+ T-ALL to that of Jurkat cells which originated from a distinct subtype of T-ALL (TAL1+). To distinguish potential HOX11 target genes from those characteristic of the stage of HOX11 leukemic arrest, we also performed gene expression analysis on Jurkat cells genetically-engineered to express exogenous HOX11. The resulting HOX11 gene expression signature, which was validated for representative signaling pathways by transient transfection of reporter constructs, was characterized by elevated expression of transcriptional programs involved in cell proliferation, including those regulated by E2F, c-Myc and CREB. We subsequently showed that ectopic HOX11 expression resulted in hyperphosphorylation of the retinoblastoma protein (Rb) which correlated with inhibition of the major Rb serine/threonine phosphatase PP1. HOX11 also inhibited PP2A serine/threonine phosphatase activity concomitant with stimulation of the AKT/PKB signaling cascade. These results suggest that transcriptional deregulation of G1/S growth-control genes, mediated in large part through blockade of PP1/PP2A phosphatase activity, plays an important role in HOX11 pathobiology.
doi:10.1038/sj.onc.1208727
PMCID: PMC2408753  PMID: 15897879
T-cell acute lymphoblastic leukemia; HOX11 oncogene; oligonucleotide microarrays; G1/S transcriptional networks
5.  Properties of Alanine Dehydrogenase and Aspartase from Propionibacterium freudenreichii subsp. shermanii 
During lactate fermentation by Propionibacterium freudenreichii subsp. shermanii ATCC 9614, the only amino acid metabolized was aspartate. After lactate exhaustion, alanine was one of the two amino acids to be metabolized. For every 3 mol of alanine metabolized, 2 mol of propionate, 1 mol each of acetate and CO2, and 3 mol of ammonia were formed. The specific activity of alanine dehydrogenase was 0.08 U/mg of protein during lactate fermentation, and it increased to 0.9 U/mg of protein after lactate exhaustion. Alanine dehydrogenase and aspartase, key enzymes in the metabolism of alanine and aspartate, respectively, were partially purified, and some of their properties were studied. Alanine dehydrogenase had a pH optimum of 9.2 to 9.6 and high Km values for both NAD+ (1 to 4 mM) and alanine (7 to 20 mM). Activity was inhibited by low concentrations of pyruvate and NADH. The pH optimum of aspartase decreased from ∼7.5 to ∼6.4 when the MgCl2 and aspartate concentrations were decreased. Plots of aspartate concentration versus activity showed either hyperbolic or sigmoidal kinetics (interaction coefficient, up to a value of 3.1), depending on pH and MgCl2 concentration. MgCl2 was either an activator or an inhibitor, depending on pH and its concentration. Aspartase activity was inhibited by low concentrations of fumarate. The properties of alanine dehydrogenase and aspartase are consistent with the finding that aspartate is metabolized during lactate fermentation, while alanine is only fermented after lactate exhaustion and then at a slow rate.
PMCID: PMC204019  PMID: 16347414
6.  Aspartase-hyperproducing mutants of Escherichia coli B. 
When a wild-type strain of Escherichia coli B was cultured on a medium containing L-aspartic acid as the sole carbon source (Asp-C medium), aspartase formation was higher than that observed in minimal medium. Addition of glucose to Asp-C medium decreased aspartase formation. When also cultured in a medium containing L-aspartic acid as the sole nitrogen source (Asp-N medium), E. coli B showed a low level of aspartase formation and an elongated doubling time. To obtain aspartase-hyperproducing strains, we enriched cells growing faster than cells of the wild-type strain in Asp-N medium by continuous cultivation of mutagenized cells. After plate selection, the doubling times of these mutants were measured. Thereafter, fast-growing mutants were tested for aspartase formation. One of these mutants, strain EAPc7, had a higher level of aspartase formation than did the wild-type strain in medium containing L-aspartic acid as the carbon source, however; addition of glucose to this medium decreased aspartase formation. The other mutant, strain EAPc244, had a higher level of aspartase activity than did the wild-type strain in both media. Therefore, aspartase formation in mutant EAPc244 was released from catabolite repression. In strain EAPc244 the other catabolite-repressible enzymes, beta-galactosidase, tryptophanase, and the three tricarboxylic acid cycle enzymes, were also released from catabolite repression. Both mutants had sevenfold the aspartase formation of the wild-type strain in a medium which contained fumaric acid as the main carbon source and which has been used for industrial production of E. coli B aspartase. However, strain EAPc244 had 2.5-fold the fumarase activity of strain EAPc7.(ABSTRACT TRUNCATED AT 250 WORDS)
PMCID: PMC241688  PMID: 6393873
7.  GABA Neurons in the Ventral Tegmental Area Responding to Peripheral Sensory Input 
PLoS ONE  2012;7(12):e51507.
Dopamine (DA) neurons in the ventral tegmental area (VTA) not only participate in reward processing, but also respond to aversive stimuli. Although GABA neurons in this area are actively involved in regulating the firing of DA neurons, few data exist concerning the responses of these neurons to aversive sensory input. In this study, by employing extracellular single-unit recording and spectral analysis techniques in paralyzed and ventilated rats, we found that the firing pattern in 44% (47 of 106) of GABA cells in the VTA was sensitive to the sensory input produced by the ventilation, showing a significant ventilation-associated oscillation in the power spectra. Detailed studies revealed that most ventilation-sensitive GABA neurons (38 of 47) were excited by the stimuli, whereas most ventilation-sensitive DA neurons (11 of 14) were inhibited. When the animals were under anesthesia or the sensory pathways were transected, the ventilation-associated oscillation failed to appear. Systemic administration of non-competitive N-methyl-D-aspartase (NMDA) receptor antagonist MK-801 completely disrupted the association between the firing of GABA neurons and the ventilation. Interestingly, local MK-801 injection into the VTA dramatically enhanced the sensitivity of GABA neurons to the ventilation. Our data demonstrate that both GABA and DA neurons in the VTA can be significantly modulated by sensory input produced by the ventilation, which may indicate potential functional roles of VTA in processing sensation-related input.
doi:10.1371/journal.pone.0051507
PMCID: PMC3519727  PMID: 23251560
8.  Optical Imaging of Disseminated Leukemia Models in Mice with Near-Infrared Probe Conjugated to a Monoclonal Antibody 
PLoS ONE  2012;7(1):e30690.
Background
The assessment of anticancer agents to treat leukemia needs to have animal models closer to the human pathology such as implantation in immunodeficient mice of leukemic cells from patient samples. A sensitive and early detection of tumor cells in these orthotopic models is a prerequisite for monitoring engraftment of leukemic cells and their dissemination in mice. Therefore, we developed a fluorescent antibody based strategy to detect leukemic foci in mice bearing patient-derived leukemic cells using fluorescence reflectance imaging (FRI) to determine when to start treatments with novel antitumor agents.
Methods
Two mAbs against the CD44 human myeloid marker or the CD45 human leukocyte marker were labeled with Alexa Fluor 750 and administered to leukemia-bearing mice after having verified the immunoreactivity in vitro. Bioluminescent leukemic cells (HL60-Luc) were used to compare the colocalization of the fluorescent mAb with these cells. The impact of the labeled antibodies on disease progression was further determined. Finally, the fluorescent hCD45 mAb was tested in mice engrafted with human leukemic cells.
Results
The probe labeling did not modify the immunoreactivity of the mAbs. There was a satisfactory correlation between bioluminescence imaging (BLI) and FRI and low doses of mAb were sufficient to detect leukemic foci. However, anti-hCD44 mAb had a strong impact on the tumor proliferation contrary to anti-hCD45 mAb. The use of anti-hCD45 mAb allowed the detection of leukemic patient cells engrafted onto NOD/SCID mice.
Conclusions
A mAb labeled with a near infrared fluorochrome is useful to detect leukemic foci in disseminated models provided that its potential impact on tumor proliferation has been thoroughly documented.
doi:10.1371/journal.pone.0030690
PMCID: PMC3267751  PMID: 22303450
9.  Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration 
Journal of Clinical Investigation  2000;106(4):511-521.
Emerging data suggest that VEGF receptors are expressed by endothelial cells as well as hematopoietic stem cells. Therefore, we hypothesized that functional VEGF receptors may also be expressed in malignant counterparts of hematopoietic stem cells such as leukemias. We demonstrate that certain leukemias not only produce VEGF but also express functional VEGFR-2 in vivo and in vitro, resulting in the generation of an autocrine loop that may support leukemic cell survival and proliferation. Approximately 50% of freshly isolated leukemias expressed mRNA and protein for VEGFR-2. VEGF165 induced phosphorylation of VEGFR-2 and increased proliferation of leukemic cells, demonstrating these receptors were functional. VEGF165 also induced the expression of MMP-9 by leukemic cells and promoted their migration through reconstituted basement membrane. The neutralizing mAb IMC-1C11, specific to human VEGFR-2, inhibited leukemic cell survival in vitro and blocked VEGF165-mediated proliferation of leukemic cells and VEGF-induced leukemic cell migration. Xenotransplantation of primary leukemias and leukemic cell lines into immunocompromised nonobese diabetic mice resulted in significant elevation of human, but not murine, VEGF in plasma and death of inoculated mice within 3 weeks. Injection of IMC-1C11 inhibited proliferation of xenotransplanted human leukemias and significantly increased the survival of inoculated mice. Interruption of signaling by VEGFRs, particularly VEGFR-2, may provide a novel strategy for inhibiting leukemic cell proliferation.
PMCID: PMC380247  PMID: 10953026
10.  Matrix Metalloproteinase-2 and -9 Secreted by Leukemic Cells Increase the Permeability of Blood-Brain Barrier by Disrupting Tight Junction Proteins 
PLoS ONE  2011;6(8):e20599.
Central nervous system (CNS) involvement remains an important cause of morbidity and mortality in acute leukemia, the mechanisms of leukemic cell infiltration into the CNS have not yet been elucidated. The blood-brain barrier (BBB) makes CNS become a refugee to leukemic cells and serves as a resource of cells that seed extraneural sites. How can the leukemic cells disrupt this barrier and invasive the CNS, even if many of the currently available chemotherapies can not cross the BBB? Tight junction in endothelial cells occupies a central role in the function of the BBB. Except the well known role of degrading extracellular matrix in metastasis of cancer cells, here we show matrix metalloproteinase (MMP)-2 and -9, secreted by leukemic cells, mediate the BBB opening by disrupting tight junction proteins in the CNS leukemia. We demonstrated that leukemic cells impaired tight junction proteins ZO-1, claudin-5 and occludin resulting in increased permeability of the BBB. However, these alterations reduced when MMP-2 and -9 activities were inhibited by RNA interference strategy or by MMP inhibitor GM6001 in an in vitro BBB model. We also found that the disruption of the BBB in company with the down-regulation of ZO-1, claudin-5 and occludin and the up-regulation of MMP-2 and -9 in mouse brain tissues with leukemic cell infiltration by confocal imaging and the assay of in situ gelatin zymography. Besides, GM6001 protected all mice against CNS leukemia. Our findings suggest that the degradation of tight junction proteins ZO-1, claudin-5 and occludin by MMP-2 and -9 secreted by leukemic cells constitutes an important mechanism in the BBB breakdown which contributes to the invasion of leukemic cells to the CNS in acute leukemia.
doi:10.1371/journal.pone.0020599
PMCID: PMC3157343  PMID: 21857898
11.  Overproduction of threonine by Saccharomyces cerevisiae mutants resistant to hydroxynorvaline. 
In this work, we isolated and characterized mutants that overproduce threonine from Saccharomyces cerevisiae. The mutants were selected for resistance to the threonine analog alpha-amino-beta-hydroxynorvalerate (hydroxynorvaline), and, of these, the ones able to excrete threonine to the medium were chosen. The mutant strains produce between 15 and 30 times more threonine than the wild type does, and, to a lesser degree, they also accumulate isoleucine. Genetic and biochemical studies have revealed that the threonine overproduction is, in all cases studied, associated with the presence in the strain of a HOM3 allele coding for a mutant aspartate kinase that is totally or partially insensitive to feedback inhibition by threonine. This enzyme seems, therefore, to be crucial in the regulation of threonine biosynthesis in S. cerevisiae. The results obtained suggest that this strategy could be efficiently applied to the isolation of threonine-overproducing strains of yeasts other than S. cerevisiae, even those used industrially.
PMCID: PMC195657  PMID: 1622238
12.  A Novel Mechanism for Resistance to the Antimetabolite N-Phosphonoacetyl-l-Aspartate by Helicobacter pylori 
Journal of Bacteriology  1998;180(21):5574-5579.
The mechanism of resistance to N-phosphonoacetyl-l-aspartate (PALA), a potent inhibitor of aspartate carbamoyltransferase (which catalyzes the first committed step of de novo pyrimidine biosynthesis), in Helicobacter pylori was investigated. At a 1 mM concentration, PALA had no effects on the growth and viability of H. pylori. The inhibitor was taken up by H. pylori cells and the transport was saturable, with a Km of 14.8 mM and a Vmax of 19.1 nmol min−1 μl of cell water−1. By 31P nuclear magnetic resonance (NMR) spectroscopy, both PALA and phosphonoacetate were shown to have been metabolized in all isolates of H. pylori studied. A main metabolic end product was identified as inorganic phosphate, suggesting the presence of an enzyme activity which cleaved the carbon-phosphorus (C-P) bonds. The kinetics of phosphonate group cleavage was saturable, and there was no evidence for substrate inhibition at higher concentrations of either compound. C-P bond cleavage activity was temperature dependent, and the activity was lost in the presence of the metal chelator EDTA. Other cleavages of PALA were observed by 1H NMR spectroscopy, with succinate and malate released as main products. These metabolic products were also formed when N-acetyl-l-aspartate was incubated with H. pylori lysates, suggesting the action of an aspartase. Studies of the cellular location of these enzymes revealed that the C-P bond cleavage activity was localized in the soluble fraction and that the aspartase activity appeared in the membrane-associated fraction. The results suggested that the two H. pylori enzymes transformed the inhibitor into noncytotoxic products, thus providing the bacterium with a mechanism of resistance to PALA toxicity which appears to be unique.
PMCID: PMC107614  PMID: 9791105
13.  Cloning and nucleotide sequence of the aspartase gene of Escherichia coli W. 
Nucleic Acids Research  1985;13(6):2063-2074.
The aspA gene of Escherichia coli W which encodes aspartase was cloned into the plasmid vector pBR322. The nucleotide sequences of aspA and its flanking regions were determined. The aspA gene encodes a protein with a molecular weight of 52,224 consisted of 477 amino acid residues. The amino acid sequence of the protein predicted from the nucleotide sequence was consistent with those of the NH2- and COOH-terminal regions and also with the amino acid composition of the purified aspartase determined previously. Potential promoter and terminator sequences for aspA were also found in the determined sequence.
PMCID: PMC341135  PMID: 2987841
14.  Role of STAT3 in Transformation and Drug Resistance in CML 
Chronic myeloid leukemia (CML) is initially driven by the bcr–abl fusion oncoprotein. The identification of bcr–abl led to the discovery and rapid translation into the clinic of bcr–abl kinase inhibitors. Although, bcr–abl inhibitors are efficacious, experimental evidence indicates that targeting bcr–abl is not sufficient for elimination of minimal residual disease found within the bone marrow (BM). Experimental evidence indicates that the failure to eliminate the leukemic stem cell contributes to persistent minimal residual disease. Thus curative strategies will likely need to focus on strategies where bcr–abl inhibitors are given in combination with agents that specifically target the leukemic stem cell or the leukemic stem cell niche. One potential target to be exploited is the Janus kinase (JAK)/signal transducers and activators of transcription 3 (STAT3) pathway. Recently using STAT3 conditional knock-out mice it was shown that STAT3 is critical for initiating the disease. Interestingly, in the absence of treatment, STAT3 was not shown to be required for maintenance of the disease, suggesting that STAT3 is required only in the tumor initiating stem cell population (Hoelbl et al., 2010). In the context of the BM microenvironment, STAT3 is activated in a bcr–abl independent manner by the cytokine milieu. Activation of JAK/STAT3 was shown to contribute to cell survival even in the event of complete inhibition of bcr–abl activity within the BM compartment. Taken together, these studies suggest that JAK/STAT3 is an attractive therapeutic target for developing strategies for targeting the JAK–STAT3 pathway in combination with bcr–abl kinase inhibitors and may represent a viable strategy for eliminating or reducing minimal residual disease located in the BM in CML.
doi:10.3389/fonc.2012.00030
PMCID: PMC3355894  PMID: 22649784
STAT3; bone marrow microenvironment; drug resistance; transformation; chronic myeloid leukemia
15.  Immunopurification of Pathological Prion Protein Aggregates 
PLoS ONE  2009;4(11):e7816.
Background
Prion diseases are fatal neurodegenerative disorders that can arise sporadically, be genetically inherited or acquired through infection. The key event in these diseases is misfolding of the cellular prion protein (PrPC) into a pathogenic isoform that is rich in β-sheet structure. This conformational change may result in the formation of PrPSc, the prion isoform of PrP, which propagates itself by imprinting its aberrant conformation onto PrPC molecules. A great deal of effort has been devoted to developing protocols for purifying PrPSc for structural studies, and testing its biological properties. Most procedures rely on protease digestion, allowing efficient purification of PrP27-30, the protease-resistant core of PrPSc. However, protease treatment cannot be used to isolate abnormal forms of PrP lacking conventional protease resistance, such as those found in several genetic and atypical sporadic cases.
Principal Findings
We developed a method for purifying pathological PrP molecules based on sequential centrifugation and immunoprecipitation with a monoclonal antibody selective for aggregated PrP. With this procedure we purified full-length PrPSc and mutant PrP aggregates at electrophoretic homogeneity. PrPSc purified from prion-infected mice was able to seed misfolding of PrPC in a protein misfolding cyclic amplification reaction, and mutant PrP aggregates from transgenic mice were toxic to cultured neurons.
Significance
The immunopurification protocol described here isolates biologically active forms of aggregated PrP. These preparations may be useful for investigating the structural and chemico-physical properties of infectious and neurotoxic PrP aggregates.
doi:10.1371/journal.pone.0007816
PMCID: PMC2773113  PMID: 19915706
16.  El Niño Impact on Mollusk Biomineralization–Implications for Trace Element Proxy Reconstructions and the Paleo-Archeological Record 
PLoS ONE  2013;8(2):e54274.
Marine macroinvertebrates are ideal sentinel organisms to monitor rapid environmental changes associated with climatic phenomena. These organisms build up protective exoskeletons incrementally by biologically-controlled mineralization, which is deeply rooted in long-term evolutionary processes. Recent studies relating potential rapid environmental fluctuations to climate change, such as ocean acidification, suggest modifications on carbonate biominerals of marine invertebrates. However, the influence of known, and recurrent, climatic events on these biological processes during active mineralization is still insufficiently understood. Analysis of Peruvian cockles from the 1982–83 large magnitude El Niño event shows significant alterations of the chemico-structure of carbonate biominerals. Here, we show that bivalves modify the main biomineralization mechanism during the event to continue shell secretion. As a result, magnesium content increases to stabilize amorphous calcium carbonate (ACC), inducing a rise in Mg/Ca unrelated to the associated increase in sea-surface temperature. Analysis of variations in Sr/Ca also suggests that this proxy should not be used in these bivalves to detect the temperature anomaly, while Ba/Ca peaks are recorded in shells in response to an increase in productivity, or dissolved barium in seawater, after the event. Presented data contribute to a better understanding of the effects of abrupt climate change on shell biomineralization, while also offering an alternative view of bivalve elemental proxy reconstructions. Furthermore, biomineralization changes in mollusk shells can be used as a novel potential proxy to provide a more nuanced historical record of El Niño and similar rapid environmental change events.
doi:10.1371/journal.pone.0054274
PMCID: PMC3566134  PMID: 23405078
17.  Rapid and Simple Kinetics Screening Assay for Electrophilic Dermal Sensitizers using Nitrobenzenethiol 
Chemical research in toxicology  2010;23(5):918-925.
The need for alternatives to animal based skin sensitization testing has spurred research on the use of in-vitro, in silico and in chemico methods. Glutathione and other select peptides have been used to determine the reactivity of electrophilic allergens to nucleophiles, but these methods are inadequate to accurately measure rapid kinetics observed with many chemical sensitizers. A kinetic spectrophotometric assay involving the reactivity of electrophilic sensitizers to nitrobenzenethiol was evaluated. Stopped flow techniques and conventional UV spectrophotometric measurements enabled determination of reaction rates with half-lives ranging from 0.4 ms (benzoquinone) to 46.2 s (ethyl acrylate). Rate constants were measured for 7 extreme, 5 strong, 7 moderate and 4 weak/non-sensitizers. 17 out of the 23 tested chemicals were pseudo-first order and 3 were second order. In 3 out of the 23 chemicals, deviations from first and second order were apparent where the chemicals exhibited complex kinetics whose rates are mixed order. The reaction rates of the electrophiles correlated positively with their EC3 values within the same mechanistic domain. Nonsensitizers such as benzaldehyde, sodium lauryl sulfate and benzocaine did not react with nitrobenzenethiol. Cyclic anhydrides, diones and aromatic aldehydes proved to be false negatives in this assay. The findings from this simple and rapid absorbance model show that for the same mechanistic domain, skin sensitization is driven mainly by electrophilic reactivity. This simple, rapid and inexpensive absorbance based method has great potential for use as a preliminary screening tool for skin allergens.
doi:10.1021/tx100003w
PMCID: PMC2885775  PMID: 20402462
18.  Morphology and Histochemistry of the Glandular Trichomes of Lippia scaberrima (Verbenaceae) 
Annals of Botany  2007;99(6):1111-1119.
Background and Aims
Lippia scaberrima, an aromatic indigenous South African plant, with medicinal application, potentially has economic value. The production of essential oil from this plant has not been optimized, and this study of the chemico-morphological characteristics was aimed at determining the location of oil production within the plant. Furthermore, the locality of other secondary metabolites important in medicinal applications needed to be ascertained. This information would be useful in deciding the protocol required for isolation of such compounds.
Methods
The morphology of the glandular trichomes was investigated using a combination of scanning electron and light microscopy. Concurrently, the chemical content was studied by applying various chemical reagents and fluorescence microscopy.
Key Results
Three types of trichomes were distinguished on the material investigated. Large, bulbous peltate glands containing compounds of terpenoid nature are probably the main site of essential oil accumulation. Small glands were found to be both peltate and capitate and fluorescent stain indicated the possible presence of phenolic compounds. The third type was a slender tapered seta with an ornamented surface and uniseriate base, and evidently secretory in nature.
Conclusions
This study linking the chemical content and morphology of the glandular trichomes of L. scaberrima has contributed to the knowledge and understanding of secretory structures of Lippia spp. in general.
doi:10.1093/aob/mcm064
PMCID: PMC3243582  PMID: 17468110
Lippia scaberrima; Verbenaceae; trichomes; setae; terpenoids; phenolics; microscopy; staining; fluorescence
19.  Dynamics and Potential Impact of the Immune Response to Chronic Myelogenous Leukemia 
PLoS Computational Biology  2008;4(6):e1000095.
Recent mathematical models have been developed to study the dynamics of chronic myelogenous leukemia (CML) under imatinib treatment. None of these models incorporates the anti-leukemia immune response. Recent experimental data show that imatinib treatment may promote the development of anti-leukemia immune responses as patients enter remission. Using these experimental data we develop a mathematical model to gain insights into the dynamics and potential impact of the resulting anti-leukemia immune response on CML. We model the immune response using a system of delay differential equations, where the delay term accounts for the duration of cell division. The mathematical model suggests that anti-leukemia T cell responses may play a critical role in maintaining CML patients in remission under imatinib therapy. Furthermore, it proposes a novel concept of an “optimal load zone” for leukemic cells in which the anti-leukemia immune response is most effective. Imatinib therapy may drive leukemic cell populations to enter and fall below this optimal load zone too rapidly to sustain the anti-leukemia T cell response. As a potential therapeutic strategy, the model shows that vaccination approaches in combination with imatinib therapy may optimally sustain the anti-leukemia T cell response to potentially eradicate residual leukemic cells for a durable cure of CML. The approach presented in this paper accounts for the role of the anti-leukemia specific immune response in the dynamics of CML. By combining experimental data and mathematical models, we demonstrate that persistence of anti-leukemia T cells even at low levels seems to prevent the leukemia from relapsing (for at least 50 months). As a consequence, we hypothesize that anti-leukemia T cell responses may help maintain remission under imatinib therapy. The mathematical model together with the new experimental data imply that there may be a feasible, low-risk, clinical approach to enhancing the effects of imatinib treatment.
Author Summary
Recent mathematical models have been developed to study the dynamics of chronic myelogenous leukemia (CML) under imatinib treatment. None of these models incorporates the anti-leukemia immune response. Recent experimental data show that imatinib treatment may promote the development of anti-leukemia immune responses as patients enter remission. Using these experimental data, we developed a mathematical model to gain insights into the dynamics and potential impact of the resulting anti-leukemia immune response on CML. The mathematical model suggests that anti-leukemia T cell responses may play a critical role in maintaining CML patients in remission under imatinib therapy. Furthermore, it proposes a novel concept of an “optimal load zone” for leukemic cells in which the anti-leukemia immune response is most effective. Imatinib therapy may drive leukemic cell populations to enter and fall below this optimal load zone too rapidly to sustain the anti-leukemia T cell response. As a potential therapeutic strategy, the model shows that vaccination approaches in combination with imatinib therapy may optimally sustain the anti-leukemia T cell response to potentially eradicate residual leukemic cells for a durable cure of CML.
doi:10.1371/journal.pcbi.1000095
PMCID: PMC2427197  PMID: 18566683
20.  Anti-Tumor Activity of Eurycoma longifolia Root Extracts against K-562 Cell Line: In Vitro and In Vivo Study 
PLoS ONE  2014;9(1):e83818.
Eurycoma longifolia Jack has been widely used in traditional medicine for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities. Its anticancer activity has also been recently reported on different solid tumors, however no anti-leukemic activity of this plant has been reported. Thus the present study assesses the in vitro and in vivo anti-proliferative and apoptotic potentials of E. longifolia on K-562 leukemic cell line. The K-562 cells (purchased from ATCC) were isolated from patients with chronic myelocytic leukemia (CML) were treated with the various fractions (TAF273, F3 and F4) of E. longifolia root methanolic extract at various concentrations and time intervals and the anti-proliferative activity assessed by MTS assay. Flow cytometry was used to assess the apoptosis and cell cycle arrest. Nude mice injected subcutaneously with 107 K-562 cells were used to study the anti-leukemic activity of TAF273 in vivo. TAF273, F3 and F4 showed various degrees of growth inhibition with IC50 values of 19, 55 and 62 µg/ml, respectively. TAF273 induced apoptosis in a dose and time dependent manner. TAF273 arrested cell cycle at G1and S phases. Intraperitoneal administration of TAF273 (50 mg/kg) resulted in a significant growth inhibition of subcutaneous tumor in TAF273-treated mice compared with the control mice (P = 0.024). TAF273 shows potent anti-proliferative activity in vitro and in vivo models of CML and therefore, justifies further efforts to define more clearly the potential benefits of using TAF273 as a novel therapeutic strategy for CML management.
doi:10.1371/journal.pone.0083818
PMCID: PMC3883656  PMID: 24409284
21.  Differing views of the role of selenium in thioredoxin reductase 
Amino acids  2010;41(1):73-89.
This review covers three different chemical explanations that could account for the requirement of selenium in the form of selenocysteine in the active site of mammalian thioredoxin reductase. These views are the following: (1) the traditional view of selenocysteine as a superior nucleophile relative to cysteine, (2) the superior leaving group ability of a selenol relative to a thiol due to its significantly lower pKa and, (3) the superior ability of selenium to accept electrons (electrophilicity) relative to sulfur. We term these chemical explanations as the “chemico-enzymatic” function of selenium in an enzyme. We formally define the chemico-enzymatic function of selenium as its specific chemical property that allows a selenoenzyme to catalyze its individual reaction. However we, and others, question whether selenocysteine is chemically necessary to catalyze an enzymatic reaction since cysteine-homologs of selenocysteine-containing enzymes catalyze their specific enzymatic reactions with high catalytic efficiency. There must be a unique chemical reason for the presence of selenocysteine in enzymes that explains the biological pressure on the genome to maintain the complex selenocysteine-insertion machinery. We term this biological pressure the “chemico-biological” function of selenocysteine. We discuss evidence that this chemico-biological function is the ability of selenoenzymes to resist inactivation by irreversible oxidation. The way in which selenocysteine confers resistance to oxidation could be due to the superior ability of the oxidized form of selenocysteine (Sec-SeO2−, seleninic acid) to be recycled back to its parent form (Sec-SeH, selenocysteine) in comparison to the same cycling of cysteine-sulfinic acid to cysteine (Cys-SO2− to Cys-SH).
doi:10.1007/s00726-010-0494-6
PMCID: PMC2935959  PMID: 20397034
Selenocysteine; Seleninic acid; Sulfinic acid; Nucleophile; Leaving group; Electrophile
22.  Pak and Rac GTPases promote oncogenic KIT–induced neoplasms 
The Journal of Clinical Investigation  2013;123(10):4449-4463.
An acquired somatic mutation at codon 816 in the KIT receptor tyrosine kinase is associated with poor prognosis in patients with systemic mastocytosis and acute myeloid leukemia (AML). Treatment of leukemic cells bearing this mutation with an allosteric inhibitor of p21–activated kinase (Pak) or its genetic inactivation results in growth repression due to enhanced apoptosis. Inhibition of the upstream effector Rac abrogates the oncogene-induced growth and activity of Pak. Although both Rac1 and Rac2 are constitutively activated via the guanine nucleotide exchange factor (GEF) Vav1, loss of Rac1 or Rac2 alone moderately corrected the growth of KIT-bearing leukemic cells, whereas the combined loss resulted in 75% growth repression. In vivo, the inhibition of Vav or Rac or Pak delayed the onset of myeloproliferative neoplasms (MPNs) and corrected the associated pathology in mice. To assess the role of Rac GEFs in oncogene-induced transformation, we used an inhibitor of Rac, EHop-016, which specifically targets Vav1 and found that EHop-016 was a potent inhibitor of human and murine leukemic cell growth. These studies identify Pak and Rac GTPases, including Vav1, as potential therapeutic targets in MPN and AML involving an oncogenic form of KIT.
doi:10.1172/JCI67509
PMCID: PMC3784531  PMID: 24091327
23.  Vesicular Stomatitis Virus G Glycoprotein and ATRA Enhanced Bystander Killing of Chemoresistant Leukemic Cells by Herpes Simplex Virus Thymidine Kinase/Ganciclovir 
Biomolecules & Therapeutics  2014;22(2):114-121.
Refractoriness of acute myeloid leukemia (AML) cells to chemotherapeutics represents a major clinical barrier. Suicide gene therapy for cancer has been attractive but with limited clinical efficacy. In this study, we investigated the potential application of herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) based system to inhibit chemoresistant AML cells. We first generated Ara-C resistant K562 cells and doxorubicin-resistant THP-1 cells. We found that the HSV-TK/GCV anticancer system suppressed drug resistant leukemic cells in culture. Chemoresistant AML cell lines displayed similar sensitivity to HSV-TK/GCV. Moreover, HSV-TK/GCV killing of leukemic cells was augmented to a mild but significant extent by all-trans retinoic acid (ATRA) with concomitant upregulation of Connexin 43, a major component of gap junctions. Interestingly, HSV-TK/GCV killing was enhanced by expression of vesicular stomatitis virus G glycoprotein (VSV-G), a fusogenic membrane protein, which also increased leukemic cell fusion. Co-culture resistant cells expressing HSV-TK and cells stably transduced with VSV-G showed that expression of VSV-G could promote the bystander killing effect of HSV-TK/GCV. Furthermore, combination of HSV-TK/GCV with VSV-G plus ATRA produced more pronounced antileukemia effect. These results suggest that the HSV-TK/GCV system in combination with fusogenic membrane proteins and/or ATRA could provide a strategy to mitigate the chemoresistance of AML.
doi:10.4062/biomolther.2013.112
PMCID: PMC3975477  PMID: 24753816
VSV-G; ATRA; Bystander killing; Chemoresisitant leukemia cells; HSV-TK/GCV
24.  Interleukin 4 inhibits in vitro proliferation of leukemic and normal human B cell precursors. 
Journal of Clinical Investigation  1992;90(5):1697-1706.
In the present study, we have investigated the effects of IL-4 on the proliferation and differentiation of leukemic and normal human B cell precursors (BCP). We have demonstrated that IL-4 significantly inhibited spontaneous [3H]thymidine ([3H]-TdR) incorporation by leukemic blasts from some B lineage acute lymphoblastic leukemia (BCP-ALL) patients (8 of 14). Furthermore, IL-4 was found to suppress the spontaneous and factor-dependent (IL-7 and IL-3) proliferation of normal BCP (CD10+ surface [s] IgM- cells) isolated from fetal bone marrow. Maximum growth inhibition of either leukemic or normal BCP was reached at low IL-4 concentrations (10 U/ml), and the effect was specifically neutralized by anti-IL-4 antibody. IL-4 was further found to induce the expression of CD20 antigen on BCP-ALL cells from a number of the cases examined (5 of 8), but in contrast to leukemic cells, IL-4 failed to induce CD20 antigen on normal BCP. Finally, IL-4 was found to induce neither the expression of cytoplasmic mu chain, nor the appearance of sIgM+ cells in cultures of normal or leukemic BCP. Our data indicate that IL-4 has the potential to inhibit cell proliferation in leukemic and normal human B lymphopoiesis but is unable to drive the transition from BCP to mature B cells.
Images
PMCID: PMC443226  PMID: 1385474
25.  FACTORS AFFECTING ASPARTASE ACTIVITY 
Journal of Bacteriology  1961;82(3):383-386.
Depue, Robert H. (Hahnemann Medical College, Philadelphia), and Albert G. Moat. Factors affecting aspartase activity. J. Bacteriol. 82:383–386. 1961.—Cells of Escherichia coli grown in a glucose-mineral salts medium contain about one-fifth the amount of aspartase activity observed in cells grown in a yeast extract-peptone medium. The aspartase activity of the cells grown in glucose-salts medium would appear to be too low to provide a mechanism for synthesis of amino groups. Aspartase was purified approximately eightfold by ammonium sulfate precipitation and column chromatography of cell-free extracts. The purified preparation was specific for l-aspartic acid and contained no fumarase activity. A divalent metal ion requirement was demonstrated, this requirement being satisfied by cobaltous or manganous ions. The enzyme activity was found to be dependent upon free sulfhydryl groups. Biotin did not appear to be directly involved in the aspartase reaction since high concentrations of avidin did not alter the reaction rate. The Michaelis constant for aspartase with aspartic acid as substrate was determined to be 0.033 m.
PMCID: PMC279177  PMID: 13722004

Results 1-25 (556542)