PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (812286)

Clipboard (0)
None

Related Articles

1.  Inhibition of 11βHSD1 with the S-phenylethylaminothiazolone BVT116429 increases adiponectin concentrations and improves glucose homeostasis in diabetic KKAy mice 
BMC Pharmacology  2008;8:3.
Background
A substantial body of evidence indicates that reduced plasma adiponectin levels may be key in the development of insulin resistance, type 2 diabetes and the metabolic syndrome. Glucocorticoids decrease the levels of adiponectin in animals and humans. Cortisone is transformed to its active form cortisol, via 11β-hydroxysteroid dehydrogenase (HSD) type 1. This study sought to ascertain if inhibition of 11β HSD1 with a new selective inhibitor, BVT116429, affects the concentrations of circulating adiponectin with concomitant effects on glucose homeostasis in diabetic mice.
Results
KKAy mice were treated with BVT116429 (3, 10, 30 mg/kg), rosiglitazone (5 mg/kg) or vehicle once daily for ten days. Plasma adiponectin levels rose in mice treated with BVT116429 and this was found to be both the hexameric and the high molecular weight multimeric forms of adiponectin. Seven days of treatment with the 11β HSD1-inhibitor BVT116429 decreased basal insulin levels but no changes in glucose tolerance were seen. After ten days of treatment, fasting blood glucose level was decreased by BVT116429 comparable to the effects of rosiglitazone. Another 11β HSD1 inhibitor, BVT2733, improved HbA1c but had no effect on adiponectin.
Conclusion
Inhibition of 11β HSD1 can be expected to be beneficial for treating the pathology of type 2 diabetes mellitus. The differences seen in adiponectin between BVT116429 and BVT2733 could be explained by different pharmacodynamics exerted by the compounds in different tissues in the body. Increases in adiponectin concentrations may be an integral component in the mechanism of action of this new11β HSD1 inhibitor and may be a useful marker of efficacy during the clinical development of 11β HSD1 inhibitor compounds.
doi:10.1186/1471-2210-8-3
PMCID: PMC2270815  PMID: 18269730
2.  11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1) Inhibitors Still Improve Metabolic Phenotype in Male 11β-HSD1 Knockout Mice Suggesting Off-Target Mechanisms 
Endocrinology  2013;154(12):4580-4593.
The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a target for novel type 2 diabetes and obesity therapies based on the premise that lowering of tissue glucocorticoids will have positive effects on body weight, glycemic control, and insulin sensitivity. An 11β-HSD1 inhibitor (compound C) inhibited liver 11β-HSD1 by >90% but led to only small improvements in metabolic parameters in high-fat diet (HFD)–fed male C57BL/6J mice. A 4-fold higher concentration produced similar enzyme inhibition but, in addition, reduced body weight (17%), food intake (28%), and glucose (22%). We hypothesized that at the higher doses compound C might be accessing the brain. However, when we developed male brain-specific 11β-HSD1 knockout mice and fed them the HFD, they had body weight and fat pad mass and glucose and insulin responses similar to those of HFD-fed Nestin-Cre controls. We then found that administration of compound C to male global 11β-HSD1 knockout mice elicited improvements in metabolic parameters, suggesting “off-target” mechanisms. Based on the patent literature, we synthesized another 11β-HSD1 inhibitor (MK-0916) from a different chemical series and showed that it too had similar off-target body weight and food intake effects at high doses. In summary, a significant component of the beneficial metabolic effects of these 11β-HSD1 inhibitors occurs via 11β-HSD1–independent pathways, and only limited efficacy is achievable from selective 11β-HSD1 inhibition. These data challenge the concept that inhibition of 11β-HSD1 is likely to produce a “step-change” treatment for diabetes and/or obesity.
doi:10.1210/en.2013-1613
PMCID: PMC4192288  PMID: 24169553
3.  Increased Angiogenesis Protects against Adipose Hypoxia and Fibrosis in Metabolic Disease-resistant 11β-Hydroxysteroid Dehydrogenase Type 1 (HSD1)-deficient Mice* 
The Journal of Biological Chemistry  2011;287(6):4188-4197.
Background: Adipose hypertrophy limits fat cell oxygenation, promotes scarring, and associates with increased local glucocorticoid regeneration (higher 11βHSD1 enzyme).
Results: 11βHSD1 knock-out mice have reduced scarring and better vascularization and oxygenation in their adipose tissue.
Conclusion: Elevated adipose 11βHSD1 contributes to obesity pathogenesis by suppressing adipose angiogenesis.
Significance: Enhancement of adipose oxygenation and vascularization is a novel therapeutic modality for 11βHSD1 inhibitors.
In obesity, rapidly expanding adipose tissue becomes hypoxic, precipitating inflammation, fibrosis, and insulin resistance. Compensatory angiogenesis may prevent these events. Mice lacking the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1−/−) have “healthier” adipose tissue distribution and resist metabolic disease with diet-induced obesity. Here we show that adipose tissues of 11βHSD1−/− mice exhibit attenuated hypoxia, induction of hypoxia-inducible factor (HIF-1α) activation of the TGF-β/Smad3/α-smooth muscle actin (α-SMA) signaling pathway, and fibrogenesis despite similar fat accretion with diet-induced obesity. Moreover, augmented 11βHSD1−/− adipose tissue angiogenesis is associated with enhanced peroxisome proliferator-activated receptor γ (PPARγ)-inducible expression of the potent angiogenic factors VEGF-A, apelin, and angiopoietin-like protein 4. Improved adipose angiogenesis and reduced fibrosis provide a novel mechanism whereby suppression of intracellular glucocorticoid regeneration promotes safer fat expansion with weight gain.
doi:10.1074/jbc.M111.259325
PMCID: PMC3281676  PMID: 22158867
Adipose Tissue; Collagen; Extracellular Matrix Proteins; Fibroblast; Hypoxia; Angiogenesis; Fibrosis; Glucocorticoids
4.  Antisense reduction of 11β-hydroxysteroid dehydrogenase type 1 enhances energy expenditure, and insulin sensitivity independent of food intake in C57BL/6J mice on a Western-type diet 
Metabolism  2011;61(6):823-835.
OBJECTIVE
We recently reported that inhibition of 11beta-hydroxysteroid dehydrogenases 1 (11β-HSD1) by antisense oligonucleotide (ASO) improved hepatic lipid metabolism independent of food intake. In that study, 11β-HSD1 ASO-treated mice lost weight compared to food matched control ASO-treated mice, suggesting treatment-mediated increased energy expenditure. We have now examined the effects of 11β-HSD1 ASO treatment on adipose tissue metabolism, insulin sensitivity, and whole body energy expenditure.
MATERIALS/METHODS
We used an ASO to knockdown 11β-HSD1in C57BL/6J mice consuming a Western-type diet (WTD). 11β-HSD1 ASO-treated mice consumed less food, so food-matched control ASO-treated mice were also evaluated. We characterized body composition, gene expression of individual adipose depots, and measures of energy metabolism. We also investigated glucose/insulin tolerance as well as acute insulin signaling in several tissues.
RESULTS
Knockdown of 11β-HSD1 protected against WTD-induced obesity by reducing epididymal, mesenteric, and subcutaneous white adipose tissue (WAT) while activating thermogenesis in brown adipose tissue (BAT). The latter was confirmed by demonstrating increased energy expenditure in 11β-HSD1 ASO treated mice. 11β-HSD1 ASO treatment also protected against WTD-induced glucose intolerance and insulin resistance; this protection was associated with smaller cells and fewer macrophages in epididymal WAT as well as enhanced in vivo insulin signaling.
CONCLUSIONS
Our results indicate that ASO-mediated inhibition of 11β-HSD1 can protect against several WTD-induced metabolic abnormalities. These effects are, at least in part, mediated by increases in the oxidative capacity of BAT.
doi:10.1016/j.metabol.2011.11.008
PMCID: PMC3319522  PMID: 22209663
Glucocorticoids; adipose tissue; brown adipose tissue; insulin resistance
5.  Adipose tissue metabolism and inflammation are differently affected by weight loss in obese mice due to either a high-fat diet restriction or change to a low-fat diet 
Genes & Nutrition  2014;9(3):391.
Restriction of a high-fat diet (HFD) and a change to a low-fat diet (LFD) are two interventions that were shown to promote weight loss and improve parameters of metabolic health in obesity. Examination of the biochemical and molecular responses of white adipose tissue (WAT) to these interventions has not been performed so far. Here, male C57BL/6JOlaHsd mice, harboring an intact nicotinamide nucleotide transhydrogenase gene, were fed a purified 40 energy% HFD for 14 weeks to induce obesity. Afterward, mice were divided into three dietary groups: HFD (maintained on HFD), LFD (changed to LFD with identical ingredients), and HFD-CR (restricted to 70 % of the HFD). The effects of the interventions were examined after 5 weeks. Beneficial effects were seen for both HFD-CR and LFD (compared to HFD) regarding physiological parameters (body weight and fat mass) and metabolic parameters, including circulating insulin and leptin levels. Macrophage infiltration in WAT was reduced by both interventions, although more effectively by HFD-CR. Strikingly, molecular parameters in WAT differed between HFD-CR and LFD, with increased activation of mitochondrial carbohydrate and fat metabolism in HFD-CR mice. Our results confirm that restriction of the amount of dietary intake and reduction in the dietary energy content are both effective in inducing weight loss. The larger decrease in WAT inflammation and increase in mitochondrial carbohydrate metabolism may be due to a larger degree of energy restriction in HFD-CR, but could also be due to superior effectiveness of dietary restriction in weight loss strategies.
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-014-0391-9) contains supplementary material, which is available to authorized users.
doi:10.1007/s12263-014-0391-9
PMCID: PMC4026436  PMID: 24718728
Caloric restriction; Fat restriction; Nutrition; Metabolic health; White adipose tissue
6.  Dietary manipulation reveals an unexpected inverse relationship between fat mass and adipose 11β-hydroxysteroid dehydrogenase type 1 
Increased dietary fat intake is associated with obesity, insulin resistance, and metabolic disease. In transgenic mice, adipose tissue-specific overexpression of the glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) exacerbates high-fat (HF) diet-induced visceral obesity and diabetes, whereas 11β-HSD1 gene knockout ameliorates this, favoring accumulation of fat in nonvisceral depots. Paradoxically, in normal mice HF diet-induced obesity (DIO) is associated with marked downregulation of adipose tissue 11β-HSD1 levels. To identify the specific dietary fats that regulate adipose 11β-HSD1 and thereby impact upon metabolic disease, we either fed mice diets enriched (45% calories as fat) in saturated (stearate), monounsaturated (oleate), or polyunsaturated (safflower oil) fats ad libitum or we pair fed them a low-fat (11%) control diet for 4 wk. Adipose and liver mass and glucocorticoid receptor and 11β-HSD1 mRNA and activity levels were determined. Stearate caused weight loss and hypoinsulinemia, partly due to malabsorption, and this markedly increased plasma corticosterone levels and adipose 11β-HSD1 activity. Oleate induced pronounced weight gain and hyperinsulinemia in association with markedly low plasma corticosterone and adipose 11β-HSD1 activity. Weight gain and hyperinsulinemia was less pronounced with safflower compared with oleate despite comparable suppression of plasma corticosterone and adipose 11β-HSD1. However, with pair feeding, safflower caused a selective reduction in visceral fat mass and relative insulin sensitization without affecting plasma corticosterone or adipose 11β-HSD1. The dynamic depot-selective relationship between adipose 11β-HSD1 and fat mass strongly implicates a dominant physiological role for local tissue glucocorticoid reactivation in fat mobilization.
doi:10.1152/ajpendo.00531.2010
PMCID: PMC3605916  PMID: 21406612
glucocorticoid; dietary fats
7.  11β-hydroxysteroid dehydrogenase type 1 deficiency in bone marrow-derived cells reduces atherosclerosis 
The FASEB Journal  2013;27(4):1519-1531.
11β-Hydroxysteroid dehydrogenase type-1 (11β-HSD1) converts inert cortisone into active cortisol, amplifying intracellular glucocorticoid action. 11β-HSD1 deficiency improves cardiovascular risk factors in obesity but exacerbates acute inflammation. To determine the effects of 11β-HSD1 deficiency on atherosclerosis and its inflammation, atherosclerosis-prone apolipoprotein E-knockout (ApoE-KO) mice were treated with a selective 11β-HSD1 inhibitor or crossed with 11β-HSD1-KO mice to generate double knockouts (DKOs) and challenged with an atherogenic Western diet. 11β-HSD1 inhibition or deficiency attenuated atherosclerosis (74–76%) without deleterious effects on plaque structure. This occurred without affecting plasma lipids or glucose, suggesting independence from classical metabolic risk factors. KO plaques were not more inflamed and indeed had 36% less T-cell infiltration, associated with 38% reduced circulating monocyte chemoattractant protein-1 (MCP-1) and 36% lower lesional vascular cell adhesion molecule-1 (VCAM-1). Bone marrow (BM) cells are key to the atheroprotection, since transplantation of DKO BM to irradiated ApoE-KO mice reduced atherosclerosis by 51%. 11β-HSD1-null macrophages show 76% enhanced cholesterol ester export. Thus, 11β-HSD1 deficiency reduces atherosclerosis without exaggerated lesional inflammation independent of metabolic risk factors. Selective 11β-HSD1 inhibitors promise novel antiatherosclerosis effects over and above their benefits for metabolic risk factors via effects on BM cells, plausibly macrophages.—Kipari, T., Hadoke, P. W. F., Iqbal, J., Man, T. Y., Miller, E., Coutinho, A. E., Zhang, Z., Sullivan, K. M., Mitic, T., Livingstone, D. E. W., Schrecker, C., Samuel, K., White, C. I., Bouhlel, M. A., Chinetti-Gbaguidi, G., Staels, B., Andrew, R., Walker, B. R., Savill, J. S., Chapman, K. E., Seckl, J. R. 11β-hydroxysteroid dehydrogenase type 1 deficiency in bone marrow-derived cells reduces atherosclerosis.
doi:10.1096/fj.12-219105
PMCID: PMC3606528  PMID: 23303209
atherogenesis; glucocorticoids; inflammation
8.  Protective effect of Garcinia against renal oxidative stress and biomarkers induced by high fat and sucrose diet 
Background
Obesity became major health problem in the world, the objective of this work was to examine the effect of high sucrose and high fat diet to induce obesity on antioxidant defense system, biochemical changes in blood and tissue of control, non treated and treated groups by administration of Garcinia cambogia, and explore the mechanisms that link obesity with altered renal function
Methods
Rats were fed a standard control diet for 12 week (wk) or a diet containing 65% high sucrose (HSD) or 35% fat (HFD) for 8 wk and then HFD group divided into two groups for the following 4 wks. One group was given Garcinia+HFD, the second only high fat, Also the HSD divided into two groups, 1st HSD+Garcinia and 2nd HSD. Blood and renal, mesenteric, Perirenal and epididymal adipose tissues were collected for biochemical assays.
Results
HFD and HSD groups of rats showed a significant increase in feed intake, Body weight (BW) and body mass index (BMI). Also there were significant increases in weights of mesenteric, Perirenal and epididymal adipose tissues in HFD and HSD groups.
HFD and HSD affect the kidney by increasing serum urea and creatinine levels and decreased level of nitric oxide (NO) and increased blood glucose, low density lipoproteins (LDL), triacylglycerol (TG), total cholesterol (TC) and malondialdehyde (MDA). Glucose 6-phosphate dehydrogenase (G6PD) activities were significantly decreased in HFD while there were significant increases in HSD and HSD+G groups p ≤ 0.05 compared with control. Moreover, renal catalase activities and MDA levels were significantly increased while NO level was lowered. These changes improved by Garcinia that decreased the oxidative stress biomarkers and increased NO level.
There were significant positive correlations among BMI, kidney functions (Creatinine and urea), TG and Oxidative markers (renal MDA and catalase).
Conclusions
Rats fed a diet with HFD or HSD showed, hypertriglyceridemia, increased LDL production, increased oxidative stress and renal alteration. Moreover, suggesting association between lipid peroxidation, obesity and nephropathy, while Garcinia ameliorated the damaging effects of the HFD or HSD and decreased feed intake, MDA level and decreased oxidative stress in renal tissues.
doi:10.1186/1476-511X-10-6
PMCID: PMC3034692  PMID: 21235803
9.  Carbenoxolone Treatment Ameliorated Metabolic Syndrome in WNIN/Ob Obese Rats, but Induced Severe Fat Loss and Glucose Intolerance in Lean Rats 
PLoS ONE  2012;7(12):e50216.
Background
11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates local glucocorticoid action in tissues by catalysing conversion of inactive glucocorticoids to active glucocorticoids. 11β-HSD1 inhibition ameliorates obesity and associated co-morbidities. Here, we tested the effect of 11β-HSD inhibitor, carbenoxolone (CBX) on obesity and associated comorbidities in obese rats of WNIN/Ob strain, a new animal model for genetic obesity.
Methodology/Principal Findings
Subcutaneous injection of CBX (50 mg/kg body weight) or volume-matched vehicle was given once daily for four weeks to three month-old WNIN/Ob lean and obese rats (n = 6 for each phenotype and for each treatment). Body composition, plasma lipids and hormones were assayed. Hepatic steatosis, adipose tissue morphology, inflammation and fibrosis were also studied. Insulin resistance and glucose intolerance were determined along with tissue glycogen content. Gene expressions were determined in liver and adipose tissue. CBX significantly inhibited 11β-HSD1 activity in liver and adipose tissue of WNIN/Ob lean and obese rats. CBX significantly decreased body fat percentage, hypertriglyceridemia, hypercholesterolemia, insulin resistance in obese rats. CBX ameliorated hepatic steatosis, adipocyte hypertrophy, adipose tissue inflammation and fibrosis in obese rats. Tissue glycogen content was significantly decreased by CBX in liver and adipose tissue of obese rats. Severe fat loss and glucose- intolerance were observed in lean rats after CBX treatment.
Conclusions/Significance
We conclude that 11β-HSD1 inhibition by CBX decreases obesity and associated co-morbidities in WNIN/Ob obese rats. Our study supports the hypothesis that inhibition of 11β-HSD1 is a key strategy to treat metabolic syndrome. Severe fat loss and glucose -intolerance by CBX treatment in lean rats suggest that chronic 11β-HSD1 inhibition may lead to insulin resistance in normal conditions.
doi:10.1371/journal.pone.0050216
PMCID: PMC3524236  PMID: 23284633
10.  The aminoguanidine carboxylate BVT.12777 activates ATP-sensitive K+ channels in the rat insulinoma cell line, CRI-G1 
BMC Pharmacology  2004;4:17.
Background
3-guanidinopropionic acid derivatives reduce body weight in obese, diabetic mice. We have assessed whether one of these analogues, the aminoguanidine carboxylate BVT.12777, opens KATP channels in rat insulinoma cells, by the same mechanism as leptin.
Results
BVT.12777 hyperpolarized CRI-G1 rat insulinoma cells by activation of KATP channels. In contrast, BVT.12777 did not activate heterologously expressed pancreatic β-cell KATP subunits directly. Although BVT.12777 stimulated phosphorylation of MAPK and STAT3, there was no effect on enzymes downstream of PI3K. Activation of KATP in CRI-G1 cells by BVT.12777 was not dependent on MAPK or PI3K activity. Confocal imaging showed that BVT.12777 induced a re-organization of cellular actin. Furthermore, the activation of KATP by BVT.12777 in CRI-G1 cells was demonstrated to be dependent on actin cytoskeletal dynamics, similar to that observed for leptin.
Conclusions
This study shows that BVT.12777, like leptin, activates KATP channels in insulinoma cells. Unlike leptin, BVT.12777 activates KATP channels in a PI3K-independent manner, but, like leptin, channel activation is dependent on actin cytoskeleton remodelling. Thus, BVT.12777 appears to act as a leptin mimetic, at least with respect to KATP channel activation, and may bypass up-stream signalling components of the leptin pathway.
doi:10.1186/1471-2210-4-17
PMCID: PMC516774  PMID: 15329154
11.  Effect of the cannabinoid receptor–1 antagonist rimonabant on inflammation in mice with diet-induced obesity 
Obesity (Silver Spring, Md.)  2010;19(3):505-513.
We studied whether CB1 blockade with rimonabant has an anti-inflammatory effect in obese mice, and whether this effect depends on weight loss and/or diet consumption. High-fat diet (HFD)–induced obese mice were treated orally with rimonabant (HFD-R) or vehicle (HFD-V) for 4 weeks. Paired-feeding was conducted in 2 additional groups of obese mice to achieve either the same body weight (HFD-BW) or the same HFD intake (HFD-DI) as HFD-R. All these groups of mice were maintained on HFD throughout, with mice on normal diet throughout as lean controls. Rimonabant treatment of obese mice induced marked diet-intake reduction and weight loss during the first week, which was followed by maintenance of low body weight but not diet-intake reduction. Lower HFD intake was required to reach the same degree of weight loss in HFD-BW. HFD-DI had similar weight loss initially, but then started to gain weight, reaching a higher body weight than HFD-R. Despite the same degree of weight loss, HFD-R had less fat mass and lower adipogenic gene expression than HFD-BW. Compared to HFD-V or HFD-DI, HFD-R had reduced inflammation in adipose tissue (AT) and/or liver indicated primarily by lower monocyte chemoattractant protein–1 (MCP-1) levels. However, MCP-1 levels were not significantly different between HFD-R and HFD-BW. In vitro incubation of rimonabant with AT explants did not change MCP-1 levels. Thus, rimonabant induced weight loss in obese mice by diet intake–dependent and –independent fashions. Rimonabant decreased inflammation in obese mice, possibly through a primary effect on weight reduction.
doi:10.1038/oby.2010.213
PMCID: PMC3272877  PMID: 20885384
Rimonabant; chemokine; inflammation; obesity
12.  Salicylate Downregulates 11β-HSD1 Expression in Adipose Tissue in Obese Mice and in Humans, Mediating Insulin Sensitization 
Diabetes  2012;61(4):790-796.
Recent trials show salicylates improve glycemic control in type 2 diabetes, but the mechanism is poorly understood. Expression of the glucocorticoid-generating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in adipose tissue is increased in vitro by proinflammatory cytokines and upregulated in obesity. 11β-HSD1 inhibition enhances insulin sensitivity. We hypothesized that salicylates downregulate 11β-HSD1 expression, contributing to their metabolic efficacy. We treated diet-induced obese (DIO) 11β-HSD1–deficient mice and C57Bl/6 mice with sodium salicylate for 4 weeks. Glucose tolerance was assessed in vivo. Tissue transcript levels were assessed by quantitative PCR and enzyme activity by incubation with 3H-steroid. Two weeks’ administration of salsalate was also investigated in a randomized double-blind placebo-controlled crossover study in 16 men, with measurement of liver 11β-HSD1 activity in vivo and adipose tissue 11β-HSD1 transcript levels ex vivo. In C57Bl/6 DIO mice, salicylate improved glucose tolerance and downregulated 11β-HSD1 mRNA and activity selectively in visceral adipose. DIO 11β-HSD1–deficient mice were resistant to these metabolic effects of salicylate. In men, salsalate reduced 11β-HSD1 expression in subcutaneous adipose, and in vitro salicylate treatment reduced adipocyte 11β-HSD1 expression and induced adiponectin expression only in the presence of 11β-HSD1 substrate. Reduced intra-adipose glucocorticoid regeneration by 11β-HSD1 is a novel mechanism that contributes to the metabolic efficacy of salicylates.
doi:10.2337/db11-0931
PMCID: PMC3314355  PMID: 22357964
13.  Increased Adiposity in Annexin A1-Deficient Mice 
PLoS ONE  2013;8(12):e82608.
Production of Annexin A1 (ANXA1), a protein that mediates the anti-inflammatory action of glucocorticoids, is altered in obesity, but its role in modulation of adiposity has not yet been investigated. The objective of this study was to investigate modulation of ANXA1 in adipose tissue in murine models of obesity and to study the involvement of ANXA1 in diet-induced obesity in mice. Significant induction of ANXA1 mRNA was observed in adipose tissue of both C57BL6 and Balb/c mice with high fat diet (HFD)-induced obesity versus mice on chow diet. Upregulation of ANXA1 mRNA was independent of leptin or IL-6, as demonstrated by use of leptin-deficient ob/ob mice and IL-6 KO mice. Compared to WT mice, female Balb/c ANXA1 KO mice on HFD had increased adiposity, as indicated by significantly elevated body weight, fat mass, leptin levels, and adipocyte size. Whereas Balb/c WT mice upregulated expression of enzymes involved in the lipolytic pathway in response to HFD, this response was absent in ANXA1 KO mice. A significant increase in fasting glucose and insulin levels as well as development of insulin resistance was observed in ANXA1 KO mice on HFD compared to WT mice. Elevated plasma corticosterone levels and blunted downregulation of 11-beta hydroxysteroid dehydrogenase type 1 in adipose tissue was observed in ANXA1 KO mice compared to diet-matched WT mice. However, no differences between WT and KO mice on either chow or HFD were observed in expression of markers of adipose tissue inflammation.
These data indicate that ANXA1 is an important modulator of adiposity in mice, with female ANXA1 KO mice on Balb/c background being more susceptible to weight gain and diet-induced insulin resistance compared to WT mice, without significant changes in inflammation.
doi:10.1371/journal.pone.0082608
PMCID: PMC3846785  PMID: 24312665
14.  Regulation of Adipocyte 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1) by CCAAT/Enhancer-Binding Protein (C/EBP) β Isoforms, LIP and LAP 
PLoS ONE  2012;7(5):e37953.
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses intracellular regeneration of active glucocorticoids, notably in liver and adipose tissue. 11β-HSD1 is increased selectively in adipose tissue in human obesity, a change implicated in the pathogenesis of metabolic syndrome. With high fat (HF)-feeding, adipose tissue 11β-HSD1 is down-regulated in mice, plausibly to counteract metabolic disease. Transcription of 11β-HSD1 is directly regulated by members of the CCAAT/enhancer binding protein (C/EBP) family. Here we show that while total C/EBPβ in adipose tissue is unaltered by HF diet, the ratio of the C/EBPβ isoforms liver-enriched inhibitor protein (LIP) and liver-enriched activator protein (LAP) (C/EBPβ-LIP:LAP) is increased in subcutaneous adipose. This may cause changes in 11β-HSD1 expression since genetically modified C/EBPβ(+/L) mice, with increased C/EBPβ-LIP:LAP ratio, have decreased subcutaneous adipose 11β-HSD1 mRNA levels, whereas C/EBPβΔuORF mice, with decreased C/EBPβ-LIP:LAP ratio, show increased subcutaneous adipose 11β-HSD1. C/EBPβ-LIP:LAP ratio is regulated by endoplasmic reticulum (ER) stress and mTOR signalling, both of which are altered in obesity. In 3T3-L1 adipocytes, 11β-HSD1 mRNA levels were down-regulated following induction of ER stress by tunicamycin but were up-regulated following inhibition of mTOR by rapamycin. These data point to a central role for C/EBPβ and its processing to LIP and LAP in transcriptional regulation of 11β-HSD1 in adipose tissue. Down-regulation of 11β-HSD1 by increased C/EBPβ-LIP:LAP in adipocytes may be part of a nutrient-sensing mechanism counteracting nutritional stress generated by HF diet.
doi:10.1371/journal.pone.0037953
PMCID: PMC3360670  PMID: 22662254
15.  Vitamin A decreases pre-receptor amplification of glucocorticoids in obesity: study on the effect of vitamin A on 11beta-hydroxysteroid dehydrogenase type 1 activity in liver and visceral fat of WNIN/Ob obese rats 
Nutrition Journal  2011;10:70.
Background
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and its inhibition ameliorates obesity and metabolic syndrome. So far, no studies have reported the effect of dietary vitamin A on 11β-HSD1 activity in visceral fat and liver under normal and obese conditions. Here, we studied the effect of chronic feeding of vitamin A-enriched diet (129 mg/kg diet) on 11β-HSD1 activity in liver and visceral fat of WNIN/Ob lean and obese rats.
Methods
Male, 5-month-old, lean and obese rats of WNIN/Ob strain (n = 16 for each phenotype) were divided into two subgroups consisting of 8 rats of each phenotype. Control groups received stock diet containing 2.6 mg vitamin A/kg diet, where as experimental groups received diet containing 129 mg vitamin A/Kg diet for 20 weeks. Food and water were provided ad libitum. At the end of the experiment, tissues were collected and 11β-HSD1 activity was assayed in liver and visceral fat.
Results
Vitamin A supplementation significantly decreased body weight, visceral fat mass and 11β-HSD1 activity in visceral fat of WNIN/Ob obese rats. Hepatic 11β-HSD1 activity and gene expression were significantly reduced by vitamin A supplementation in both the phenotypes. CCAAT/enhancer binding protein α (C/EBPα), the main transcription factor essential for the expression of 11β-HSD1, decreased in liver of vitamin A fed-obese rats, but not in lean rats. Liver × receptor α (LXRα), a nuclear transcription factor which is known to downregulate 11β-HSD1 gene expression was significantly increased by vitamin A supplementation in both the phenotypes.
Conclusions
This study suggests that chronic consumption of vitamin A-enriched diet decreases 11β-HSD1 activity in liver and visceral fat of WNIN/Ob obese rats. Decreased 11β-HSD1 activity by vitamin A may result in decreased levels of active glucocorticoids in adipose tissue and possibly contribute to visceral fat loss in these obese rats. Studying the role of various nutrients on the regulation of 11β-HSD1 activity and expression will help in the evolving of dietary approaches to treat obesity and insulin resistance.
doi:10.1186/1475-2891-10-70
PMCID: PMC3142207  PMID: 21696642
16.  Endurance interval training in obese mice reduces muscle inflammation and macrophage content independently of weight loss 
Physiological Reports  2014;2(5):e12012.
Abstract
Obesity is associated with chronic low‐grade inflammation that involves infiltration of macrophages into metabolic organs such as skeletal muscle. Exercise enhances skeletal muscle insulin sensitivity independently of weight loss; but its role in regulating muscle inflammation is not fully understood. We hypothesized that exercise training would inhibit skeletal muscle inflammation and alter macrophage infiltration into muscle independently of weight loss. Wild type C57BL/6 male mice were fed a chow diet or a high‐fat diet (HFD, 45% calories fat) for 6 weeks. Then, mice maintained on the HFD either remained sedentary (HFD Sed) or exercised (HFD Ex) on a treadmill for another 6 weeks. The exercise training protocol involved conducting intervals of 2 min in duration followed by 2 min of rest for 60 min thrice weekly. Chow‐fed control mice remained sedentary for the entire 12 weeks. Muscle cytokine and macrophage gene expression analysis were conducted using qRT‐PCR, and muscle macrophage content was also measured using immunohistochemistry. Muscle cytokine protein content was quantified using a cytokine array. The HFD increased adiposity and weight gain compared to chow‐fed controls. HFD Sed and HFD Ex mice had similar body mass as well as total and visceral adiposity. However, despite similar adiposity, exercise reduced inflammation and muscle macrophage infiltration. We conclude that Endurance exercise training modulates the immune‐metabolic crosstalk in obesity independently of weight loss, and may have potential benefits in reducing obesity‐related muscle inflammation.
e12012
Obesity is associated with chronic low‐grade inflammation that involves infiltration of macrophages into metabolic organs such as skeletal muscle. Exercise enhances skeletal muscle insulin sensitivity independently of weight loss; but its role in regulating muscle inflammation is not fully understood. In this article, we show that endurance interval training inhibited skeletal muscle inflammation and reduced macrophage infiltration into muscle independently of weight loss in mice.
doi:10.14814/phy2.12012
PMCID: PMC4098740  PMID: 24843075
Cytokines; endurance exercise; inflammation; macrophage
17.  A novel 11β-hydroxysteroid dehydrogenase type1 inhibitor CNX-010-49 improves hyperglycemia, lipid profile and reduces body weight in diet induced obese C57B6/J mice with a potential to provide cardio protective benefits 
Background
11ß–hydroxysteroid dehydrogenase type1 (11β-HSD1) converts inactive glucocorticoids to active glucocorticoids which, in excess, leads to development of the various risk factors of the metabolic syndrome. Recent studies clearly suggest that both increased expression and activity of 11β-HSD1 in metabolically active tissues such as liver, muscle and adipose are implicated in tissue specific dysregulation which collectively contribute to the whole body pathology seen in metabolic syndrome. In the present study we have evaluated CNX-010-49, a highly potent, selective and ‘pan tissue’ acting 11β-HSD1 inhibitor, for its potential to modulate multiple risk factors of the metabolic syndrome.
Methods
Male C57B6/J mice on high fat diet (DIO mice) were orally dosed with CNX-010-49 (30 mg/kg twice daily; n = 8) or vehicle for 10 weeks. Fasting glucose, triglycerides, glycerol, free fatty acids, body weight and feed intake were measured at selected time points. At the end of the treatment an OGTT and subsequently organ histology was performed. In vitro, CNX-010-49 was evaluated in 3T3-L1 preadipocytes to assess impact on adipocytes differentiation, hypertrophy and lipolysis whereas in fully differentiated C2C12 cells and in primary mouse hepatocytes to assess the impact on glucose metabolism and hepatic glucose output respectively.
Results
CNX-010-49 a highly potent and selective pan tissue acting 11β-HSD1 inhibitor (EC50 = 6 nM) significantly inhibits glucocorticoids and isoproterenol mediated lipolysis in mature 3T3-L1 adipocytes, improves muscle glucose oxidation, reduces proteolysis and enhances mitochondrial biogenesis. Also a significant inhibition of gluconeogenesis in primary mouse hepatocytes was observed. The treatment with CNX-010-49 resulted in a significant decrease in fasting glucose, improved insulin sensitivity and glucose tolerance. Treatment also resulted in a significant decrease in serum triglycerides levels and a complete inhibition of body weight gain without affecting feed consumption. A significant reduction in the serum biomarkers like Plasminogen activator inhibitor-1 (PAI-1), interleukin 6 (IL-6) and Fetuin-A with CNX-010-49 treatment was observed indicating a potential to modulate processes implicated in cardiovascular benefits.
Conclusions
These results indicate that inhibition of 11β-HSD1 with CNX-010-49 can give a potential benefit in the management of metabolic dysregulations that are seen in type 2 diabetes.
doi:10.1186/2050-6511-15-43
PMCID: PMC4127523  PMID: 25098735
11β-HSD1; CNX-010-49; Glucose; Insulin sensitivity; Triglycerides; Adipogenesis and Body weight; Type 2 Diabetes; Cardiovascular risks
18.  Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Deficiency Reduces Insulin Sensitivity in High-Fat Diet-Fed Mice 
PLoS ONE  2014;9(9):e106300.
Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation, MK2−/− mice are protected against inflammation in different disease models. Therefore, MK2 is considered an attractive therapeutic target for the treatment of chronic inflammatory diseases. This study tested the impact of MK2-deficiency on high-fat diet (HFD)-induced adipose tissue inflammation and insulin resistance. After feeding MK2−/− and WT control mice a HFD (60% energy from fat) for 24 weeks, body weight was not different between groups. Also, liver weight and the amount of abdominal fat remained unchanged. However, in MK2−/− mice plasma cholesterol levels were significantly increased. Surprisingly, macrophage infiltration in adipose tissue was not altered. However, adipose tissue macrophages were more skewed to the inflammatory M1 phenotype in MK2−/− mice. This differerence in macrophage polarization did however not translate in significantly altered expression levels of Mcp-1, Tnfα and Il6. Glucose and insulin tolerance tests demonstrated that MK2−/− mice had a significantly reduced glucose tolerance and increased insulin resistance. Noteworthy, the expression of the insulin-responsive glucose transporter type 4 (GLUT4) in adipose tissue of MK2−/− mice was reduced by 55% (p<0.05) and 33% (p<0.05) on the mRNA and protein level, respectively, compared to WT mice. In conclusion, HFD-fed MK2−/− display decreased glucose tolerance and increased insulin resistance compared to WT controls. Decreased adipose tissue expression of GLUT4 might contribute to this phenotype. The data obtained in this study indicate that clinical use of MK2 inhibitors has to be evaluated with caution, taking potential metabolic adverse effects into account.
doi:10.1371/journal.pone.0106300
PMCID: PMC4169416  PMID: 25233471
19.  11β-Hydroxysteroid Dehydrogenase Type 1 Gene Knockout Attenuates Atherosclerosis and In Vivo Foam Cell Formation in Hyperlipidemic apoE−/− Mice 
PLoS ONE  2013;8(2):e53192.
Background
Chronic glucocorticoid excess has been linked to increased atherosclerosis and general cardiovascular risk in humans. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) increases active glucocorticoid levels within tissues by catalyzing the conversion of cortisone to cortisol. Pharmacological inhibition of 11βHSD1 has been shown to reduce atherosclerosis in murine models. However, the cellular and molecular details for this effect have not been elucidated.
Methodology/Principal Findings
To examine the role of 11βHSD1 in atherogenesis, 11βHSD1 knockout mice were created on the pro-atherogenic apoE−/− background. Following 14 weeks of Western diet, aortic cholesterol levels were reduced 50% in 11βHSD1−/−/apoE−/− mice vs. 11βHSD1+/+/apoE−/− mice without changes in plasma cholesterol. Aortic 7-ketocholesterol content was reduced 40% in 11βHSD1−/−/apoE−/− mice vs. control. In the aortic root, plaque size, necrotic core area and macrophage content were reduced ∼30% in 11βHSD1−/−/apoE−/− mice. Bone marrow transplantation from 11βHSD1−/−/apoE−/− mice into apoE−/− recipients reduced plaque area 39–46% in the thoracic aorta. In vivo foam cell formation was evaluated in thioglycollate-elicited peritoneal macrophages from 11βHSD1+/+/apoE−/− and 11βHSD1−/−/apoE−/− mice fed a Western diet for ∼5 weeks. Foam cell cholesterol levels were reduced 48% in 11βHSD1−/−/apoE−/− mice vs. control. Microarray profiling of peritoneal macrophages revealed differential expression of genes involved in inflammation, stress response and energy metabolism. Several toll-like receptors (TLRs) were downregulated in 11βHSD1−/−/apoE−/− mice including TLR 1, 3 and 4. Cytokine release from 11βHSD1−/−/apoE−/−-derived peritoneal foam cells was attenuated following challenge with oxidized LDL.
Conclusions
These findings suggest that 11βHSD1 inhibition may have the potential to limit plaque development at the vessel wall and regulate foam cell formation independent of changes in plasma lipids. The diminished cytokine response to oxidized LDL stimulation is consistent with the reduction in TLR expression and suggests involvement of 11βHSD1 in modulating binding of pro-atherogenic TLR ligands.
doi:10.1371/journal.pone.0053192
PMCID: PMC3562192  PMID: 23383297
20.  P-Selectin Glycoprotein Ligand-1 Deficiency Is Protective Against Obesity-Related Insulin Resistance 
Diabetes  2010;60(1):189-199.
OBJECTIVE
An inflammatory process is involved in the mechanism of obesity-related insulin resistance. Recent studies indicate that monocyte chemoattractant protein-1 (MCP-1) is a major chemokine that promotes monocyte infiltration into adipose tissues; however, the adhesion pathway in adipose tissues remains unclear. We aimed to clarify the adhesion molecules that mediate monocyte infiltration into adipose tissue.
RESEARCH DESIGN AND METHODS
We used a DNA microarray to compare the gene expression profiles in epididymal white adipose tissues (eWAT) between db/db mice and C57/BL6 mice each fed a high-fat diet (HFD) or a low-fat diet (LFD). We investigated the change of insulin resistance and inflammation in eWAT in P-selectin glycoprotein ligand-1 (PSGL-1) homozygous knockout (PSGL-1−/−) mice compared with wild-type (WT) mice fed HFD.
RESULTS
DNA microarray analysis revealed that PSGL-1, a major ligand for selectins, is upregulated in eWAT from both db/db mice and WT mice fed HFD. Quantitative real-time RT-PCR and immunohistochemistry showed that PSGL-1 is expressed on both endothelial cells and macrophages in eWAT of obese mice. PSGL-1−/− mice fed HFD showed a remarkable reduction of macrophage accumulation and expression of proinflammatory genes, including MCP-1 in eWAT. Moreover, adipocyte hypertrophy, insulin resistance, lipid metabolism, and hepatic fatty change were improved in PSGL-1−/− mice compared with WT mice fed HFD.
CONCLUSIONS
These results indicate that PSGL-1 is a crucial adhesion molecule for the recruitment of monocytes into adipose tissues in obese mice, making it a candidate for a novel therapeutic target for the prevention of obesity-related insulin resistance.
doi:10.2337/db09-1894
PMCID: PMC3012171  PMID: 20971965
21.  Transgenic Increase in N-3/N-6 Fatty Acid Ratio Reduces Maternal Obesity-Associated Inflammation and Limits Adverse Developmental Programming in Mice 
PLoS ONE  2013;8(6):e67791.
Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD) or control diet (CD) for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (P<0.02), and a striking increase in 12 serum pro-inflammatory cytokines (P<0.05), while Fat1-HFD mothers remained similar to WT-CD mothers, despite equal weight gain. E18.5 Fetuses from WT-HFD mothers had larger placentas (P<0.02), as well as increased placenta and fetal liver TG deposition (P<0.01 and P<0.02, respectively) and increased placental LPL TG-hydrolase activity (P<0.02), which correlated with degree of maternal insulin resistance (r = 0.59, P<0.02). The placentas and fetal livers from Fat1-HFD mothers were protected from this excess placental growth and fetal-placental lipid deposition. Importantly, maternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (P<0.05), body and liver fat (P<0.05 and P<0.001, respectively), and whole body insulin resistance (P<0.05), these were prevented in WT offspring from Fat1-HFD mothers. Our results suggest that reducing excess maternal inflammation may be a promising target for preventing adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.
doi:10.1371/journal.pone.0067791
PMCID: PMC3692451  PMID: 23825686
22.  Deficiency for Costimulatory Receptor 4-1BB Protects Against Obesity-Induced Inflammation and Metabolic Disorders 
Diabetes  2011;60(12):3159-3168.
OBJECTIVE
Inflammation is an important factor in the development of insulin resistance, type 2 diabetes, and fatty liver disease. As a member of the tumor necrosis factor receptor superfamily (TNFRSF9) expressed on immune cells, 4-1BB/CD137 provides a bidirectional inflammatory signal through binding to its ligand 4-1BBL. Both 4-1BB and 4-1BBL have been shown to play an important role in the pathogenesis of various inflammatory diseases.
RESEARCH DESIGN AND METHODS
Eight-week-old male 4-1BB–deficient and wild-type (WT) mice were fed a high-fat diet (HFD) or a regular diet for 9 weeks.
RESULTS
We demonstrate that 4-1BB deficiency protects against HFD-induced obesity, glucose intolerance, and fatty liver disease. The 4-1BB–deficient mice fed an HFD showed less body weight gain, adiposity, adipose infiltration of macrophages/T cells, and tissue levels of inflammatory cytokines (e.g., TNF-α, interleukin-6, and monocyte chemoattractant protein-1 [MCP-1]) compared with HFD-fed control mice. HFD-induced glucose intolerance/insulin resistance and fatty liver were also markedly attenuated in the 4-1BB–deficient mice.
CONCLUSIONS
These findings suggest that 4-1BB and 4-1BBL may be useful therapeutic targets for combating obesity-induced inflammation and metabolic disorders.
doi:10.2337/db10-1805
PMCID: PMC3219944  PMID: 21998397
23.  Emodin, an 11β-hydroxysteroid dehydrogenase type 1 inhibitor, regulates adipocyte function in vitro and exerts anti-diabetic effect in ob/ob mice 
Acta Pharmacologica Sinica  2012;33(9):1195-1203.
Aim:
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a potent and selective inhibitor of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) with the ability to ameliorate metabolic disorders in diet-induced obese mice. In the present study, we investigated the effects of emodin on adipocyte function and the underlying mechanisms in vitro, and its anti-diabetic effects in ob/ob mice.
Methods:
3T3-L1 adipocytes were used for in vitro studies. 11β-HSD1A activity was evaluated with a scintillation proximity assay. The adipogenesis, glucose uptake, lipolysis and adiponectin secretion were investigated in 3T3-L1 adipocytes treated with emodin in the presence of active (corticosterone) or inactive glucocorticoid (11-dehydrocorticosterone). For in vivo studies, ob/ob mice were administered emodin (25 and 50 mg·kg−1·d−1, ip) for 26 d. On the last day of administration, the serum was collected and the mesenteric and perirenal fat were dissected for analyses.
Results:
Emodin inhibited the 11β-HSD1 activity in 3T3-L1 adipocytes in concentration- and time-dependent manners (the IC50 values were 7.237 and 4.204 μmol/L, respectively, after 1 and 24 h treatment. In 3T3-L1 adipocytes, emodin (30 μmol/L) suppressed 11-dehydrocorticosterone-induced adipogenesis without affecting corticosterone-induced adipogenesis; emodin (3 μmol/L) reduced 11-dehydrocorticosterone-stimulated lipolysis, but had no effect on corticosterone-induced lipolysis. Moreover, emodin (3 μmol/L) partly reversed the impaired insulin-stimulated glucose uptake and adiponectin secretion induced by 11-dehydrocorticosterone but not those induced by corticosterone. In ob/ob mice, long-term emodin administration decreased 11β-HSD1 activity in mesenteric adipose tissues, lowered non-fasting and fasting blood glucose levels, and improved glucose tolerance.
Conclusion:
Emodin improves the inactive glucocorticoid-induced adipose tissue dysfunction by selective inhibition on 11β-HSD1 in adipocyte in vitro and improves glycemic control in ob/ob mice.
doi:10.1038/aps.2012.87
PMCID: PMC4003114  PMID: 22922341
emodin; 11β-hydroxysteroid dehydrogenase type 1; adipocyte; glucocorticoid; type 2 diabetes; ob/ob mice
24.  Increased Whole-Body and Sustained Liver Cortisol Regeneration by 11β-Hydroxysteroid Dehydrogenase Type 1 in Obese Men With Type 2 Diabetes Provides a Target for Enzyme Inhibition 
Diabetes  2011;60(3):720-725.
OBJECTIVE
The cortisol-regenerating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies glucocorticoid levels in liver and adipose tissue. 11β-HSD1 inhibitors are being developed to treat type 2 diabetes. In obesity, 11β-HSD1 is increased in adipose tissue but decreased in liver. The benefits of pharmacological inhibition may be reduced if hepatic 11β-HSD1 is similarly decreased in obese patients with type 2 diabetes. To examine this, we quantified in vivo whole-body, splanchnic, and hepatic 11β-HSD1 activity in obese type 2 diabetic subjects.
RESEARCH DESIGN AND METHODS
Ten obese men with type 2 diabetes and seven normal-weight control subjects were infused with 9,11,12,12-[2H]4cortisol (40%) and cortisol (60%) at 1.74 mg/h. Adrenal cortisol secretion was suppressed with dexamethasone. Samples were obtained from the hepatic vein and an arterialized hand vein at steady state and after oral administration of cortisone (5 mg) to estimate whole-body and liver 11β-HSD1 activity using tracer dilution.
RESULTS
In obese type 2 diabetic subjects, the appearance rate of 9,12,12-[2H]3cortisol in arterialized blood was increased (35 ± 2 vs. 29 ± 1 nmol/min, P < 0.05), splanchnic 9,12,12-[2H]3cortisol production was not reduced (29 ± 6 vs. 29 ± 6 nmol/min), and cortisol appearance in the hepatic vein after oral cortisone was unchanged.
CONCLUSIONS
Whole-body 11β-HSD1 activity is increased in obese men with type 2 diabetes, whereas liver 11β-HSD1 activity is sustained, unlike in euglycemic obesity. This supports the concept that inhibitors of 11β-HSD1 are likely to be most effective in obese type 2 diabetic subjects.
doi:10.2337/db10-0726
PMCID: PMC3046832  PMID: 21266326
25.  Novel Fat Depot–Specific Mechanisms Underlie Resistance to Visceral Obesity and Inflammation in 11β-Hydroxysteroid Dehydrogenase Type 1–Deficient Mice 
Diabetes  2011;60(4):1158-1167.
OBJECTIVE
The study objective was to determine the key early mechanisms underlying the beneficial redistribution, function, and inflammatory profile of adipose tissue in 11β-hydroxysteroid dehydrogenase type 1 knockout (11β-HSD1−/−) mice fed a high-fat (HF) diet.
RESEARCH DESIGN AND METHODS
By focusing on the earliest divergence in visceral adiposity, subcutaneous and visceral fat depots from 11β-HSD1−/− and C57Bl/6J control mice fed an HF diet for 4 weeks were used for comparative microarray analysis of gene expression, and differences were validated with real-time PCR. Key changes in metabolic signaling pathways were confirmed using Western blotting/immunoprecipitation, and fat cell size was compared with the respective chow-fed control groups. Altered adipose inflammatory cell content and function after 4 weeks (early) and 18 weeks (chronic) of HF feeding was investigated using fluorescence (and magnetic)-activated cell sorting analysis, immunohistochemistry, and in situ hybridization.
RESULTS
In subcutaneous fat, HF-fed 11β-HSD1−/− mice showed evidence of enhanced insulin and β-adrenergic signaling associated with accretion of smaller metabolically active adipocytes. In contrast, reduced 11β-HSD1−/− visceral fat accumulation was characterized by maintained AMP kinase activation, not insulin sensitization, and higher adipocyte interleukin-6 release. Intracellular glucocorticoid deficiency was unexpectedly associated with suppressed inflammatory signaling and lower adipocyte monocyte chemoattractant protein-1 secretion with strikingly reduced cytotoxic T-cell and macrophage infiltration, predominantly in visceral fat.
CONCLUSIONS
Our data define for the first time the novel and distinct depot-specific mechanisms driving healthier fat patterning and function as a result of reduced intra-adipose glucocorticoid levels.
doi:10.2337/db10-0830
PMCID: PMC3064089  PMID: 21350084

Results 1-25 (812286)