Search tips
Search criteria

Results 1-25 (1156473)

Clipboard (0)

Related Articles

1.  Investigating the Temporal Patterns within and between Intrinsic Connectivity Networks under Eyes-Open and Eyes-Closed Resting States: A Dynamical Functional Connectivity Study Based on Phase Synchronization 
PLoS ONE  2015;10(10):e0140300.
The brain active patterns were organized differently under resting states of eyes open (EO) and eyes closed (EC). The altered voxel-wise and regional-wise resting state active patterns under EO/EC were found by static analysis. More importantly, dynamical spontaneous functional connectivity has been observed in the resting brain. To the best of our knowledge, the dynamical mechanisms of intrinsic connectivity networks (ICNs) under EO/EC remain largely unexplored. The goals of this paper were twofold: 1) investigating the dynamical intra-ICN and inter-ICN temporal patterns during resting state; 2) analyzing the altered dynamical temporal patterns of ICNs under EO/EC. To this end, a cohort of healthy subjects with scan conditions of EO/EC were recruited from 1000 Functional Connectomes Project. Through Hilbert transform, time-varying phase synchronization (PS) was applied to evaluate the inter-ICN synchrony. Meanwhile, time-varying amplitude was analyzed as dynamical intra-ICN temporal patterns. The results found six micro-states of inter-ICN synchrony. The medial visual network (MVN) showed decreased intra-ICN amplitude during EC relative to EO. The sensory-motor network (SMN) and auditory network (AN) exhibited enhanced intra-ICN amplitude during EC relative to EO. Altered inter-ICN PS was found between certain ICNs. Particularly, the SMN and AN exhibited enhanced PS to other ICNs during EC relative to EO. In addition, the intra-ICN amplitude might influence the inter-ICN synchrony. Moreover, default mode network (DMN) might play an important role in information processing during EO/EC. Together, the dynamical temporal patterns within and between ICNs were altered during different scan conditions of EO/EC. Overall, the dynamical intra-ICN and inter-ICN temporal patterns could benefit resting state fMRI-related research, and could be potential biomarkers for human functional connectome.
PMCID: PMC4607488  PMID: 26469182
2.  Default Mode Dynamics for Global Functional Integration 
The Journal of Neuroscience  2015;35(46):15254-15262.
The default mode network (DMN) has been traditionally assumed to hinder behavioral performance in externally focused, goal-directed paradigms and to provide no active contribution to human cognition. However, recent evidence suggests greater DMN activity in an array of tasks, especially those that involve self-referential and memory-based processing. Although data that robustly demonstrate a comprehensive functional role for DMN remains relatively scarce, the global workspace framework, which implicates the DMN in global information integration for conscious processing, can potentially provide an explanation for the broad range of higher-order paradigms that report DMN involvement. We used graph theoretical measures to assess the contribution of the DMN to global functional connectivity dynamics in 22 healthy volunteers during an fMRI-based n-back working-memory paradigm with parametric increases in difficulty. Our predominant finding is that brain modularity decreases with greater task demands, thus adapting a more global workspace configuration, in direct relation to increases in reaction times to correct responses. Flexible default mode regions dynamically switch community memberships and display significant changes in their nodal participation coefficient and strength, which may reflect the observed whole-brain changes in functional connectivity architecture. These findings have important implications for our understanding of healthy brain function, as they suggest a central role for the DMN in higher cognitive processing.
SIGNIFICANCE STATEMENT The default mode network (DMN) has been shown to increase its activity during the absence of external stimulation, and hence was historically assumed to disengage during goal-directed tasks. Recent evidence, however, implicates the DMN in self-referential and memory-based processing. We provide robust evidence for this network's active contribution to working memory by revealing dynamic reconfiguration in its interactions with other networks and offer an explanation within the global workspace theoretical framework. These promising findings may help redefine our understanding of the exact DMN role in human cognition.
PMCID: PMC4649001  PMID: 26586814
alluvial diagram; default mode network; flexibility; functional connectivity; graph theory; large-scale brain network
3.  Deficits in episodic memory retrieval reveal impaired default mode network connectivity in amnestic mild cognitive impairment 
NeuroImage : Clinical  2014;4:473-480.
Amnestic mild cognitive impairment (aMCI) is believed to represent a transitional stage between normal healthy ageing and the development of dementia. In particular, aMCI patients have been shown to have higher annual transition rates to Alzheimer's Disease (AD) than individuals without cognitive impairment. Despite intensifying interest investigating the neuroanatomical basis of this transition, there remain a number of questions regarding the pathophysiological process underlying aMCI itself. A number of recent studies in aMCI have shown specific impairments in connectivity within the default mode network (DMN), which is a group of regions strongly related to episodic memory capacities. However to date, no study has investigated the integrity of the DMN between patients with aMCI and those with a non-amnestic pattern of MCI (naMCI), who have cognitive impairment, but intact memory storage systems. In this study, we contrasted the DMN connectivity in 24 aMCI and 33 naMCI patients using seed-based resting state fMRI. The two groups showed no statistical difference in their DMN intra-connectivity. However when connectivity was analysed according to performance on measures of episodic memory retrieval, the two groups were separable, with aMCI patients demonstrating impaired functional connectivity between the hippocampal formation and the posterior cingulate cortex. We provide evidence that this lack of connectivity is driven by impaired communication from the posterior cingulate hub and does not simply represent hippocampal atrophy, suggesting that posterior cingulate degeneration is the driving force behind impaired DMN connectivity in aMCI.
•First trial to explore Default Mode Network (DMN) connectivity between MCI and naMCI•Amnestic and nonamnestic MCI groups show similar overall DMN intra-connectivity.•aMCI patients have connectivity deficits related to impaired memory retention.•Impaired DMN connectivity is driven by deficits in posterior cingulate cortex.•Alzheimer’s disease pathology likely evolves from PCC to hippocampus
PMCID: PMC3952352  PMID: 24634833
Functional magnetic resonance imaging; Resting state functional connectivity; Mild cognitive impairment; Memory; Amnestic; Default mode network
4.  Is a Responsive Default Mode Network Required for Successful Working Memory Task Performance? 
The Journal of Neuroscience  2015;35(33):11595-11605.
In studies of cognitive processing using tasks with externally directed attention, regions showing increased (external-task-positive) and decreased or “negative” [default-mode network (DMN)] fMRI responses during task performance are dynamically responsive to increasing task difficulty. Responsiveness (modulation of fMRI signal by increasing load) has been linked directly to successful cognitive task performance in external-task-positive regions but not in DMN regions. To investigate whether a responsive DMN is required for successful cognitive performance, we compared healthy human subjects (n = 23) with individuals shown to have decreased DMN engagement (chronic pain patients, n = 28). Subjects performed a multilevel working-memory task (N-back) during fMRI. If a responsive DMN is required for successful performance, patients having reduced DMN responsiveness should show worsened performance; if performance is not reduced, their brains should show compensatory activation in external-task-positive regions or elsewhere. All subjects showed decreased accuracy and increased reaction times with increasing task level, with no significant group differences on either measure at any level. Patients had significantly reduced negative fMRI response (deactivation) of DMN regions (posterior cingulate/precuneus, medial prefrontal cortex). Controls showed expected modulation of DMN deactivation with increasing task difficulty. Patients showed significantly reduced modulation of DMN deactivation by task difficulty, despite their successful task performance. We found no evidence of compensatory neural recruitment in external-task-positive regions or elsewhere. Individual responsiveness of the external-task-positive ventrolateral prefrontal cortex, but not of DMN regions, correlated with task accuracy. These findings suggest that a responsive DMN may not be required for successful cognitive performance; a responsive external-task-positive network may be sufficient.
SIGNIFICANCE STATEMENT We studied the relationship between responsiveness of the brain to increasing task demand and successful cognitive performance, using chronic pain patients as a probe. fMRI working memory studies show that two main cognitive networks [“external-task positive” and “default-mode network” (DMN)] are responsive to increasing task difficulty. The responsiveness of both of these brain networks is suggested to be required for successful task performance. The responsiveness of external-task-positive regions has been linked directly to successful cognitive task performance, as we also show here. However, pain patients show decreased engagement and responsiveness of the DMN but can perform a working memory task as well as healthy subjects, without demonstrable compensatory neural recruitment. Therefore, a responsive DMN might not be needed for successful cognitive performance.
PMCID: PMC4540797  PMID: 26290236
chronic pain; default mode; external-task-positive; FMRI; task performance; working memory
5.  Default mode network connectivity in stable vs progressive mild cognitive impairment 
Neurology  2011;76(6):511-517.
Dysfunction of the default mode network (DMN) has been identified in prior cross-sectional fMRI studies of Alzheimer disease (AD) and mild cognitive impairment (MCI); however, no studies have examined its utility in predicting future cognitive decline.
fMRI scans during a face–name memory task were acquired from a cohort of 68 subjects (25 normal control, 31 MCI, and 12 AD). Subjects with MCI were followed for 2.4 years (±0.8) to determine progression to AD. Maps of DMN connectivity were compared with a template DMN map constructed from elderly normal controls to obtain goodness-of-fit (GOF) indices of DMN expression. Indices were compared between groups and correlated with cognitive decline.
GOF indices were highest in normal controls, intermediate in MCI, and lowest in AD (p < 0.0001). In a predictive model (that included baseline GOF indices, age, education, Mini-Mental State Examination score, and an index of DMN gray matter volume), the effect of GOF index on progression from MCI to dementia was significant. In MCI, baseline GOF indices were correlated with change from baseline in functional status (Clinical Dementia Rating–sum of boxes) (r = −0.40, p < 0.04). However, there was no additional predictive value for DMN connectivity when baseline delayed recall was included in the models.
fMRI connectivity indices distinguish patients with MCI who undergo cognitive decline and conversion to AD from those who remain stable over a 2- to 3-year follow-up period. Our data support the notion of different functional brain connectivity endophenotypes for “early” vs “late” MCI, which are associated with different baseline memory scores and different rates of progression and conversion.
PMCID: PMC3053179  PMID: 21228297
6.  Resting-State Brain Organization Revealed by Functional Covariance Networks 
PLoS ONE  2011;6(12):e28817.
Brain network studies using techniques of intrinsic connectivity network based on fMRI time series (TS-ICN) and structural covariance network (SCN) have mapped out functional and structural organization of human brain at respective time scales. However, there lacks a meso-time-scale network to bridge the ICN and SCN and get insights of brain functional organization.
Methodology and Principal Findings
We proposed a functional covariance network (FCN) method by measuring the covariance of amplitude of low-frequency fluctuations (ALFF) in BOLD signals across subjects, and compared the patterns of ALFF-FCNs with the TS-ICNs and SCNs by mapping the brain networks of default network, task-positive network and sensory networks. We demonstrated large overlap among FCNs, ICNs and SCNs and modular nature in FCNs and ICNs by using conjunctional analysis. Most interestingly, FCN analysis showed a network dichotomy consisting of anti-correlated high-level cognitive system and low-level perceptive system, which is a novel finding different from the ICN dichotomy consisting of the default-mode network and the task-positive network.
The current study proposed an ALFF-FCN approach to measure the interregional correlation of brain activity responding to short periods of state, and revealed novel organization patterns of resting-state brain activity from an intermediate time scale.
PMCID: PMC3236756  PMID: 22174905
7.  Patterns of altered functional connectivity in mesial temporal lobe epilepsy 
Epilepsia  2012;53(6):1013-1023.
In mesial temporal lobe epilepsy (MTLE) the epileptogenic area is confined to the mesial temporal lobe, but other cortical and subcortical areas are also affected and cognitive and psychiatric impairments are usually documented. Functional connectivity methods are based on the correlation of the blood oxygen level dependent (BOLD) signal between brain regions, which exhibit consistent and reproducible functional networks from resting state data. The aim of this study is to compare functional connectivity of patients with MTLE during the interictal period with healthy subjects. We hypothesize that patients show reduced functional connectivity compared to controls, the interest being to determine which regions show this reduction.
We selected electroencephalography–functional magnetic resonance imaging (EEG-fMRI) resting state data without EEG spikes from 16 patients with right and 7 patients with left MTLE. EEG-fMRI resting state data of 23 healthy subjects matched for age, sex, and manual preference were selected as controls. Four volumes of interest in the left and right amygdalae and hippocampi (LA, RA, LH, and RH) were manually segmented in the anatomic MRI of each subject. The averaged BOLD time course within each volume of interest was used to detect brain regions with BOLD signal correlated with it. Group differences between patients and controls were estimated.
Key Findings
In patients with right MTLE, group difference functional connectivity maps (RMTLE – controls) showed for RA and RH decreased connectivity with the brain areas of the default mode network (DMN), the ventromesial limbic prefrontal regions, and contralateral mesial temporal structures; and for LA and LH, decreased connectivity with DMN and contralateral hippocampus. Additional decreased connectivity was found between LA and pons and between LH and ventromesial limbic prefrontal structures. In patients with left MTLE, functional connectivity maps (LMTLE – controls) showed for LA and LH decreased connectivity with DMN, contralateral hippocampus, and bilateral ventromesial limbic prefrontal regions; no change in connectivity was detected for RA; and for RH, there was decreased connectivity with DMN, bilateral ventromesial limbic prefrontal regions, and contralateral amygdala and hippocampus.
In unilateral MTLE, amygdala and hippocampus on the affected and to a lesser extent on the healthy side are less connected, and are also less connected with the dopaminergic mesolimbic and the DMNs. Changes in functional connectivity between mesial temporal lobe structures and these structures may explain cognitive and psychiatric impairments often found in patients with MTLE.
PMCID: PMC3767602  PMID: 22578020 CAMSID: cams3332
EEG-fMRI; Resting state functional connectivity; Mesial temporal lobe epilepsy; Default mode network
8.  The Influence of Rest Period Instructions on the Default Mode Network 
The default mode network (DMN) refers to regional brain activity that is greater during rest periods than during attention-demanding tasks; many studies have reported DMN alterations in patient populations. It has also been shown that the DMN is suppressed by scanner background noise (SBN), which is the noise produced by functional magnetic resonance imaging (fMRI). However, it is unclear whether different approaches to “rest” in the noisy MR environment can alter the DMN and constitute a confound in studies investigating the DMN in particular patient populations (e.g., individuals with schizophrenia, Alzheimer's disease). We examined 27 healthy adult volunteers who completed an fMRI experiment with three different instructions for rest: (1) relax and be still, (2) attend to SBN, or (3) ignore SBN. Region of interest analyses were performed to determine the influence of rest period instructions on core regions of the DMN and DMN regions previously reported to be altered in patients with or at risk for Alzheimer's disease or schizophrenia. The dorsal medial prefrontal cortex (dmPFC) exhibited greater activity when specific resting instructions were given (i.e., attend to or ignore SBN) compared to when non-specific resting instructions were given. Condition-related differences in connectivity were also observed between regions of the dmPFC and inferior parietal/posterior superior temporal cortex. We conclude that rest period instructions and SBN levels should be carefully considered for fMRI studies on the DMN, especially studies on clinical populations and groups that may have different approaches to rest, such as first-time research participants and children.
PMCID: PMC2999982  PMID: 21151779
default mode; fMRI; resting state; scanner background noise
9.  Functional Brain Imaging 
Executive Summary
The objective of this analysis is to review a spectrum of functional brain imaging technologies to identify whether there are any imaging modalities that are more effective than others for various brain pathology conditions. This evidence-based analysis reviews magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) for the diagnosis or surgical management of the following conditions: Alzheimer’s disease (AD), brain tumours, epilepsy, multiple sclerosis (MS), and Parkinson’s disease (PD).
Clinical Need: Target Population and Condition
Alzheimer’s disease is a progressive, degenerative, neurologic condition characterized by cognitive impairment and memory loss. The Canadian Study on Health and Aging estimated that there will be 97,000 incident cases (about 60,000 women) of dementia (including AD) in Canada in 2006.
In Ontario, there will be an estimated 950 new cases and 580 deaths due to brain cancer in 2006. Treatments for brain tumours include surgery and radiation therapy. However, one of the limitations of radiation therapy is that it damages tissue though necrosis and scarring. Computed tomography (CT) and magnetic resonance imaging (MRI) may not distinguish between radiation effects and resistant tissue, creating a potential role for functional brain imaging.
Epilepsy is a chronic disorder that provokes repetitive seizures. In Ontario, the rate of epilepsy is estimated to be 5 cases per 1,000 people. Most people with epilepsy are effectively managed with drug therapy; but about 50% do not respond to drug therapy. Surgical resection of the seizure foci may be considered in these patients, and functional brain imaging may play a role in localizing the seizure foci.
Multiple sclerosis is a progressive, inflammatory, demyelinating disease of the central nervous system (CNS). The cause of MS is unknown; however, it is thought to be due to a combination of etiologies, including genetic and environmental components. The prevalence of MS in Canada is 240 cases per 100,000 people.
Parkinson’s disease is the most prevalent movement disorder; it affects an estimated 100,000 Canadians. Currently, the standard for measuring disease progression is through the use of scales, which are subjective measures of disease progression. Functional brain imaging may provide an objective measure of disease progression, differentiation between parkinsonian syndromes, and response to therapy.
The Technology Being Reviewed
Functional Brain Imaging
Functional brain imaging technologies measure blood flow and metabolism. The results of these tests are often used in conjunction with structural imaging (e.g., MRI or CT). Positron emission tomography and MRS identify abnormalities in brain tissues. The former measures abnormalities through uptake of radiotracers in the brain, while the latter measures chemical shifts in metabolite ratios to identify abnormalities. The potential role of functional MRI (fMRI) is to identify the areas of the brain responsible for language, sensory and motor function (sensorimotor cortex), rather than identifying abnormalities in tissues. Magnetoencephalography measures magnetic fields of the electric currents in the brain, identifying aberrant activity. Magnetoencephalography may have the potential to localize seizure foci and to identify the sensorimotor cortex, visual cortex and auditory cortex.
In terms of regulatory status, MEG and PET are licensed by Health Canada. Both MRS and fMRI use a MRI platform; thus, they do not have a separate licence from Health Canada. The radiotracers used in PET scanning are not licensed by Health Canada for general use but can be used through a Clinical Trials Application.
Review Strategy
The literature published up to September 2006 was searched in the following databases: MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Cochrane Database of Systematic Reviews, CENTRAL, and International Network of Agencies for Health Technology Assessment (INAHTA). The database search was supplemented with a search of relevant Web sites and a review of the bibliographies of selected papers.
General inclusion criteria were applied to all conditions. Those criteria included the following:
Full reports of systematic reviews, randomized controlled trials (RCTs), cohort-control studies, prospective cohort studies (PCS’), and retrospective studies.
Sample sizes of at least 20 patients (≥ 10 with condition being reviewed).
English-language studies.
Human studies.
Any age.
Studying at least one of the following: fMRI, PET, MRS, or MEG.
Functional brain imaging modality must be compared with a clearly defined reference standard.
Must report at least one of the following outcomes: sensitivity, specificity, accuracy, positive predictive value (PPV), receiver operating characteristic curve, outcome measuring impact on diagnostic testing, treatment, patient health, or cost.
Summary of Findings
There is evidence to indicate that PET can accurately diagnose AD; however, at this time, there is no evidence to suggest that a diagnosis of AD with PET alters the clinical outcomes of patients.
The addition of MRS or O-(2-18F-Fluoroethyl)-L-Tyrosine (FET)-PET to gadolinium (Gd)-enhanced MRI for distinguishing malignant from benign tumours during primary diagnosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients to distinguish malignant from benign tumours is unclear, because patients with a suspected brain tumour will likely undergo a biopsy despite additional imaging results.
The addition of MRS, FET-PET, or MRI T2 to Gd-enhanced MRI for the differentiation of recurrence from radiation necrosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients with a suspected recurrence is in the monitoring of patients. Based on the evidence available, it is unclear if one of the imaging modalities (MRS, FET-PET, or MRI T2) offers significantly improved specificity over another.
There may be a role for fMRI in the identification of surgical candidates for tumour resection; however, this requires further research.
Based on the studies available, it is unclear if MEG has similar accuracy in localizing seizure foci to intracranial electroencephalogram (ICEEG). More high-quality research is needed to establish whether there is a difference in accuracy between MEG and ICEEG.
The results of the studies comparing PET to noninvasive electroencephalogram (EEG) did not demonstrate that PET was more accurate at localizing seizure foci; however, there may be some specific conditions, such as tuberous sclerosis, where PET may be more accurate than noninvasive EEG.
There may be some clinical utility for MEG or fMRI in presurgical functional mapping; however, this needs further investigation involving comparisons with other modalities. The clinical utility of MRS has yet to be established for patients with epilepsy.
Positron emission tomography has high sensitivity and specificity in the diagnosis of PD and the differential diagnosis of parkinsonian syndromes; however, it is unclear at this time if the addition of PET in the diagnosis of these conditions contributes to the treatment and clinical outcomes of patients.
There is limited clinical utility of functional brain imaging in the management of patients with MS at this time. Diagnosis of MS is established through clinical history, evoked potentials, and MRI. Magnetic resonance imaging can identify the multifocal white lesions and other structural characteristics of MS.
PMCID: PMC3379170  PMID: 23074493
10.  Abnormal Insula Functional Network is Associated with Episodic Memory Decline in Amnestic Mild Cognitive Impairment 
NeuroImage  2012;63(1):320-327.
Abnormalities of functional connectivity in the default mode network (DMN) recently have been reported in patients with amnestic mild cognitive impairment (aMCI), Alzheimer’s disease (AD) or other psychiatric diseases. As such, these abnormalities may be epiphenomena instead of playing a causal role in AD progression. To date, few studies have investigated specific brain networks, which extend beyond DMN involved in the early AD stages, especially in aMCI. The insula is one site affected by early pathological changes in AD and is a crucial hub of the human brain networks. Currently, we explored the contribution of the insula networks to cognitive performance in aMCI patients. Thirty aMCI and 26 cognitively normal (CN) subjects participated in this study. Intrinsic connectivity of the insula networks was measured, using the resting-state functional connectivity fMRI approach. We examined the differential connectivity of insula networks between groups, and the neural correlation between the altered insula networks connectivity and the cognitive performance in aMCI patients and CN subjects, respectively. Insula subregional volumes were also investigated. AMCI subjects, when compared to CN subjects, showed significantly reduced right posterior insula volumes, cognitive deficits and disrupted intrinsic connectivity of the insula networks. Specifically, decreased intrinsic connectivity was primarily located in the frontal-parietal network and the cingulo-opercular network, including the anterior prefrontal cortex (aPFC), anterior cingulate cortex, operculum, inferior parietal cortex and precuneus. Increased intrinsic connectivity was primarily situated in the visual-auditory pathway, which included the posterior superior temporal gyrus and middle occipital gyrus. Conjunction analysis was performed; and significantly decreased intrinsic connectivity in the overlapping regions of the anterior and posterior insula networks, including the bilateral aPFC, left dorsolateral prefrontal cortex, dorsomedial prefrontal cortex, and anterior temporal pole was found. Furthermore, the disrupted intrinsic connectivity was associated with episodic memory (EM) deficits in the aMCI patients and not in the CN subjects. These findings demonstrated that the functional integration of the insula networks plays an important role in the EM process. They provided new insight into the neural mechanism underlying the memory deficits in aMCI patients.
PMCID: PMC4513936  PMID: 22776459
insula network; episodic memory; cognition; amnestic mild cognitive impairment; functional connectivity fMRI
11.  Alterations in default mode network connectivity during pain processing in borderline personality disorder 
Archives of general psychiatry  2012;69(10):993-1002.
Recent neuroimaging studies have associated activity in the default mode network (DMN) with self-referential and pain processing, both of which are altered in borderline personality disorder (BPD). In patients with BPD, antinociception has been linked to altered activity in brain regions involved in the cognitive and affective evaluation of pain. Findings in healthy subjects indicate that painful stimulation leads to blood oxygenation level-dependent (BOLD) signal decreases and changes in the functional architecture of the DMN.
To connect the previously separate research areas of DMN connectivity and altered pain perception in BPD and explore DMN connectivity during pain processing in patients with BPD.
Case-control study
A university hospital
Twenty-five women with BPD, 92 percent with a history of self-harm, and 22 age-matched controls.
Psychophysical assessment and functional MRI (fMRI) during painful heat versus neutral temperature stimulation.
Main Outcome Measure
DMN connectivity as assessed via independent component analysis and psychophysiological interaction analysis.
Compared to controls, patients with BPD showed less integration of the left retrosplenial cortex and left superior frontal gyrus into the DMN. Higher BPD symptom severity and trait dissociation were associated with an attenuated signal decrease of the DMN in response to painful stimulation. During “pain” versus “neutral”, BPD patients exhibited less posterior cingulate cortex seed region connectivity with the left dorsolateral prefrontal cortex.
Patients with BPD showed significant alterations in DMN connectivity, with differences in spatial integrity and temporal characteristics. These alterations may reflect a different cognitive and affective appraisal of pain as less self-relevant and aversive, and a deficiency in the switching between baseline and task-related processing. This deficiency may be related to everyday difficulties of BPD patients to regulate their emotions, focus mindfully on one task at a time, and efficiently shift their attention from one task to another.
PMCID: PMC4429518  PMID: 22637967
12.  Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data 
The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078–0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p < 0.05). Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain’s functioning at resting state.
PMCID: PMC4740785  PMID: 26869900
effective connectivity; default mode network (DMN); resting-state fMRI; dynamic causal modeling (DCM); resting-state networks
13.  Episodic memory retrieval, parietal cortex, and the Default Mode Network: functional and topographic analyses 
The default mode network (DMN) is often considered a functionally homogeneous system that is broadly associated with internally directed cognition (e.g. episodic memory, theory of mind, self-evaluation). However, few studies have examined how this network interacts with other networks during putative “default” processes such as episodic memory retrieval. Using fMRI, we investigated the topography and response profile of human parietal regions inside and outside the DMN, independently defined using task-evoked deactivations and resting state functional connectivity, during episodic memory retrieval. Memory retrieval activated posterior nodes of the DMN, particularly the angular gyrus, but also more anterior and dorsal parietal regions that were anatomically separate from the DMN. The two sets of parietal regions showed different resting-state functional connectivity and response profiles. During memory retrieval, responses in DMN regions peaked sooner than non-DMN regions, which in turn showed responses that were sustained until a final memory judgment was reached. Moreover, a parahippocampal region that showed strong resting-state connectivity with parietal DMN regions also exhibited a pattern of task-evoked activity similar to that exhibited by DMN regions. These results suggest that DMN parietal regions directly supported memory retrieval, whereas non-DMN parietal regions were more involved in post-retrieval processes such as memory-based decision making. Finally, a robust functional dissociation within the DMN was observed. While angular gyrus and posterior cingulate/precuneus were significantly activated during memory retrieval, an anterior DMN node in medial prefrontal cortex was strongly deactivated. This latter finding demonstrates functional heterogeneity rather than homogeneity within the DMN during episodic memory retrieval.
PMCID: PMC3098040  PMID: 21430142
fMRI; default mode network; episodic memory; medial prefrontal; parietal; functional connectivity
14.  Epileptic Discharges Affect the Default Mode Network – fMRI and Intracerebral EEG Evidence 
PLoS ONE  2013;8(6):e68038.
Functional neuroimaging studies of epilepsy patients often show, at the time of epileptic activity, deactivation in default mode network (DMN) regions, which is hypothesized to reflect altered consciousness. We aimed to study the metabolic and electrophysiological correlates of these changes in the DMN regions. We studied six epilepsy patients that underwent scalp EEG-fMRI and later stereotaxic intracerebral EEG (SEEG) sampling regions of DMN (posterior cingulate cortex, Pre-cuneus, inferior parietal lobule, medial prefrontal cortex and dorsolateral frontal cortex) as well as non-DMN regions. SEEG recordings were subject to frequency analyses comparing sections with interictal epileptic discharges (IED) to IED-free baselines in the IED-generating region, DMN and non-DMN regions. EEG-fMRI and SEEG were obtained at rest. During IEDs, EEG-fMRI demonstrated deactivation in various DMN nodes in 5 of 6 patients, most frequently the pre-cuneus and inferior parietal lobule, and less frequently the other DMN nodes. SEEG analyses demonstrated decrease in gamma power (50–150 Hz), and increase in the power of lower frequencies (<30 Hz) at times of IEDs, in at least one DMN node in all patients. These changes were not apparent in the non-DMN regions. We demonstrate that, at the time of IEDs, DMN regions decrease their metabolic demand and undergo an EEG change consisting of decreased gamma and increased lower frequencies. These findings, specific to DMN regions, confirm in a pathological condition a direct relationship between DMN BOLD activity and EEG activity. They indicate that epileptic activity affects the DMN, and therefore may momentarily reduce the consciousness level and cognitive reserve.
PMCID: PMC3695970  PMID: 23840805
15.  Investigation of long-term reproducibility of intrinsic connectivity network mapping: A resting-state fMRI study 
Connectivity mapping based on resting-state fMRI is rapidly developing and this methodology has great potential for clinical applications. However, before resting-state fMRI can be applied for diagnosis, prognosis, and monitoring treatment for an individual patient with neurologic or psychiatric diseases, it is essential to assess its long-term reproducibility and between-subject variations among healthy individuals. The purpose of the study is to (1) quantify the long-term test-retest reproducibility of intrinsic connectivity network (ICN) measures derived from resting-state fMRI, and (2) assess the between-subject variation of ICN measures across the whole brain.
Longitudinal resting-state fMRI data of six healthy volunteers were acquired from nine scan sessions over a period of more than one year. The within-subject reproducibility and between-subject variation of ICN measures, across 1) the whole brain and 2) major nodes of the default mode network, were quantified with intraclass correlation coefficient (ICC) and coefficient of variance (COV).
Our data show that the long-term test-retest reproducibility of ICN measures is outstanding, with over 70% of the connectivity networks showing an ICC greater than 0.60. COV across six healthy volunteers in this sample was greater than 0.2, suggesting significant between-subject variation.
Our data indicate that resting-state ICN measures (e.g., the correlation coefficients between fMRI signal profiles from two different brain regions) are potentially suitable as biomarkers for monitoring disease progression and treatment effects in clinical trials and individual patients. Because between-subject variation is significant, it may be difficult to use quantitative ICN measures, in their current state, as a diagnostic tool.
PMCID: PMC3584561  PMID: 22268094
16.  Three Large-Scale Functional Brain Networks from Resting-State Functional MRI in Subjects with Different Levels of Cognitive Impairment 
Psychiatry Investigation  2015;13(1):1-7.
Normal aging and to a greater degree degenerative brain diseases such as Alzheimer's disease (AD), cause changes in the brain's structure and function. Degenerative changes in brain structure and decline in its function are associated with declines in cognitive ability. Early detection of AD is a key priority in dementia services and research. However, depending on the disease progression, neurodegenerative manifestations, such as cerebral atrophy, are detected late in course of AD. Functional changes in the brain may be an indirect indicator of trans-synaptic activity and they usually appear prior to structural changes in AD. Resting-state functional magnetic resonance imaging (RS-fMRI) has recently been highlighted as a new technique for interrogating intrinsic functional connectivity networks. Among the majority of RS-fMRI studies, the default mode network (DMN), salience network (SN), and central executive network (CEN) gained particular focus because alterations to their functional connectivity were observed in subjects who had AD, who had mild cognitive impairment (MCI), or who were at high risk for AD. Herein, we present a review of the current research on changes in functional connectivity, as measured by RS-fMRI. We focus on the DMN, SN, and CEN to describe RS-fMRI results from three groups: normal healthy aging, MCI and AD.
PMCID: PMC4701672  PMID: 26766941
Alzheimer's; Aging; Functional connectivity; fMRI; Resting state
17.  Flexible modulation of network connectivity related to cognition in Alzheimer’s disease 
NeuroImage  2014;100:544-557.
Functional neuroimaging tools, such as fMRI methods, may elucidate the neural correlates of clinical, behavioral, and cognitive performance. Most functional imaging studies focus on regional task-related activity or resting state connectivity rather than how changes in functional connectivity across conditions and tasks are related to cognitive and behavioral performance. To investigate the promise of characterizing context-dependent connectivity-behavior relationships, this study applies the method of generalized psychophysiological interactions (gPPI) to assess the patterns of associative-memory-related fMRI hippocampal functional connectivity in Alzheimer’s disease (AD) associated with performance on memory and other cognitively demanding neuropsychological tests and clinical measures. Twenty-four subjects with mild AD dementia (ages 54–82, nine females) participated in a face-name paired-associate encoding memory study. Generalized PPI analysis was used to estimate the connectivity between the hippocampus and the whole brain during encoding. The difference in hippocampal-whole brain connectivity between encoding novel and repeated face-name pairs was used in multiple-regression analyses as an independent predictor for 10 behavioral, neuropsychological and clinical tests. The analysis revealed connectivity-behavior relationships that were distributed, dynamically overlapping, and task-specific within and across intrinsic networks; hippocampal-whole brain connectivity-behavior relationships were not isolated to single networks, but spanned multiple brain networks. Importantly, these spatially distributed performance patterns were unique for each measure. In general, out-of-network behavioral associations with encoding novel greater than repeated face-name pairs hippocampal-connectivity were observed in the default-mode network, while correlations with encoding repeated greater than novel face-name pairs hippocampal-connectivity were observed in the executive control network (p<0.05, cluster corrected). Psychophysiological interactions revealed significantly more extensive and robust associations between paired-associate encoding task-dependent hippocampal-whole brain connectivity and performance on memory and behavioral/clinical measures than previously revealed by standard activity-behavior analysis. Compared to resting state and task-activation methods, gPPI analyses may be more sensitive to reveal additional complementary information regarding subtle within- and between-network relations. The patterns of robust correlations between hippocampal-whole brain connectivity and behavioral measures identified here suggest that there are ‘coordinated states’ in the brain; that the dynamic range of these states is related to behavior and cognition; and that these states can be observed and quantified, even in individuals with mild AD.
PMCID: PMC4154596  PMID: 24852459
functional MRI; functional connectivity; gPPI; episodic memory; biomarker; dementia
18.  Functional Brain Network Modularity Captures Inter- and Intra-Individual Variation in Working Memory Capacity 
PLoS ONE  2012;7(1):e30468.
Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional organization of neural systems. The degree to which the organization of these functional networks is optimized may relate to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working memory capacity.
Methodology/Principal Findings
Twenty-two participants performed a test of working memory capacity and then underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic techniques to measure network organization on 34 brain regions of interest (ROI). Network modularity, which measures the level of integration and segregation across sub-networks, and small-worldness, which measures global network connection efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual variation across the two sessions. Partial correlations controlling for the component of working memory that was stable across sessions revealed that modularity was almost entirely associated with the variability of working memory at each session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory capacity variability.
The results suggest that the intrinsic functional organization of an a priori defined cognitive control network measured at rest provides substantial information about actual cognitive performance. The association of network modularity to the variability in an individual's working memory capacity suggests that the organization of this network into high connectivity within modules and sparse connections between modules may reflect effective signaling across brain regions, perhaps through the modulation of signal or the suppression of the propagation of noise.
PMCID: PMC3262818  PMID: 22276205
19.  The Structural Connectivity Pattern of the Default Mode Network and Its Association with Memory and Anxiety 
The default mode network (DMN) is one of the most widely studied resting state functional networks. The structural basis for the DMN is of particular interest and has been studied by several researchers using diffusion tensor imaging (DTI). Most of these previous studies focused on a few regions or white matter tracts of the DMN so that the global structural connectivity pattern and network properties of the DMN remain unclear. Moreover, evidences indicate that the DMN is involved in both memory and emotion, but how the DMN regulates memory and anxiety from the perspective of the whole DMN structural network remains unknown. We used multimodal neuroimaging methods to investigate the structural connectivity pattern of the DMN and the association of its network properties with memory and anxiety in 205 young healthy subjects with age ranging from 18 to 29 years old. The Group ICA method was used to extract the DMN component from functional magnetic resonance imaging (fMRI) data and a probabilistic fiber tractography technique based on DTI data was applied to construct the global structural connectivity pattern of the DMN. Then we used the graph theory method to analyze the DMN structural network and found that memory quotient (MQ) score was significantly positively correlated with the global and local efficiency of the DMN whereas anxiety was found to be negatively correlated with the efficiency. The strong structural connectivity between multiple brain regions within DMN may reflect that the DMN has certain structural basis. Meanwhile, the results we found that the network efficiency of the DMN were related to memory and anxiety measures, indicated that the DMN may play a role in the memory and anxiety.
PMCID: PMC4659898  PMID: 26635544
DTI; default mode network; memory; anxiety; structural network
20.  Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load 
PLoS ONE  2009;4(5):e5743.
Recent functional MRI (fMRI) studies have demonstrated that there is an intrinsically organized default mode network (DMN) in the resting brain, primarily made up of the posterior cingulate cortex (PCC) and the medial prefrontal cortex (MPFC). Several previous studies have found that the DMN is minimally disturbed during different resting-state conditions with limited cognitive demand. However, this conclusion was drawn from the visual inspection of the functional connectivity patterns within the DMN and no statistical comparison was performed.
Methodology/Principal Findings
Four resting-state fMRI sessions were acquired: 1) eyes-closed (EC) (used to generate the DMN mask); 2) EC; 3) eyes-open with no fixation (EO); and 4) eyes-open with a fixation (EO-F). The 2–4 sessions were counterbalanced across participants (n = 20, 10 males). We examined the statistical differences in both functional connectivity and regional amplitude of low frequency fluctuation (ALFF) within the DMN among the 2–4 resting-state conditions (i.e., EC, EO, and EO-F). Although the connectivity patterns of the DMN were visually similar across these three different conditions, we observed significantly higher functional connectivity and ALFF in both the EO and the EO-F conditions as compared to the EC condition. In addition, the first and second resting EC conditions showed significant differences within the DMN, suggesting an order effect on the DMN activity.
Our findings of the higher DMN connectivity and regional spontaneous activities in the resting state with the eyes open suggest that the participants might have more non-specific or non-goal-directed visual information gathering and evaluation, and mind wandering or daydreaming during the resting state with the eyes open as compared to that with the eyes closed, thus providing insights into the understanding of unconstrained mental activity within the DMN. Our results also suggest that it should be cautious when choosing the type of a resting condition and designating the order of the resting condition in multiple scanning sessions in experimental design.
PMCID: PMC2683943  PMID: 19492040
21.  Treatment with Olanzapine is Associated with Modulation of the Default Mode Network in Patients with Schizophrenia 
Neuropsychopharmacology  2009;35(4):904-912.
Earlier studies have shown widespread alterations of functional connectivity of various brain networks in schizophrenia, including the default mode network (DMN). The DMN has also an important role in the performance of cognitive tasks. Furthermore, treatment with second-generation antipsychotic drugs may ameliorate to some degree working memory (WM) deficits and related brain activity. The aim of this study was to evaluate the effects of treatment with olanzapine monotherapy on functional connectivity among brain regions of the DMN during WM. Seventeen patients underwent an 8-week prospective study and completed two functional magnetic resonance imaging (fMRI) scans at 4 and 8 weeks of treatment during the performance of the N-back WM task. To control for potential repetition effects, 19 healthy controls also underwent two fMRI scans at a similar time interval. We used spatial group-independent component analysis (ICA) to analyze fMRI data. Relative to controls, patients with schizophrenia had reduced connectivity strength within the DMN in posterior cingulate, whereas it was greater in precuneus and inferior parietal lobule. Treatment with olanzapine was associated with increases in DMN connectivity with ventromedial prefrontal cortex, but not in posterior regions of DMN. These results suggest that treatment with olanzapine is associated with the modulation of DMN connectivity in schizophrenia. In addition, our findings suggest critical functional differences in the regions of DMN.
PMCID: PMC3055362  PMID: 19956088
default mode network; schizophrenia; antipsychotics; working memory; ventromedial prefrontal cortex; fMRI; Biological Psychiatry; Imaging; Clinical or Preclinical; Schizophrenia/Antipsychotics; Cognition; default mode network; ventromedial prefrontal cortex; fMRI; olanzapine
22.  Fast transient networks in spontaneous human brain activity 
eLife  2014;3:e01867.
To provide an effective substrate for cognitive processes, functional brain networks should be able to reorganize and coordinate on a sub-second temporal scale. We used magnetoencephalography recordings of spontaneous activity to characterize whole-brain functional connectivity dynamics at high temporal resolution. Using a novel approach that identifies the points in time at which unique patterns of activity recur, we reveal transient (100–200 ms) brain states with spatial topographies similar to those of well-known resting state networks. By assessing temporal changes in the occurrence of these states, we demonstrate that within-network functional connectivity is underpinned by coordinated neuronal dynamics that fluctuate much more rapidly than has previously been shown. We further evaluate cross-network interactions, and show that anticorrelation between the default mode network and parietal regions of the dorsal attention network is consistent with an inability of the system to transition directly between two transient brain states.
eLife digest
When subjects lie motionless inside scanners without any particular task to perform, their brains show stereotyped patterns of activity across regions known as resting state networks. Each network consists of areas with a common function, such as the ‘motor’ network or the ‘visual’ network. The role of resting state networks is unclear, but these spontaneous activity patterns are altered in disorders including autism, schizophrenia, and Alzheimer’s disease.
One puzzling feature of resting state networks is that they seem to last for relatively long times. However, the majority of studies into resting state networks have used fMRI brain scans, in which changes in the level of oxygen in the blood are used as a proxy for the activity of a given brain region. Since changes in blood oxygen occur relatively slowly, the ability of fMRI to detect rapid changes in activity is limited: it is thus possible that the long-lived nature of resting state networks is an artefact of the use of fMRI.
Now, Baker et al. have used a different type of brain scan known as an MEG scan to show that the activity of resting state networks is shorter lived than previously thought. MEG scanners measure changes in the magnetic fields generated by electrical currents in the brain, which means that they can detect alterations in brain activity much more rapidly than fMRI.
MEG recordings from the brains of nine healthy subjects revealed that individual resting state networks were typically stable for only 100 ms to 200 ms. Moreover, transitions between different networks did not occur randomly; instead, certain networks were much more likely to become active after others. The work of Baker et al. suggests that the resting brain is constantly changing between different patterns of activity, which enables it to respond quickly to any given situation.
PMCID: PMC3965210  PMID: 24668169
magnetoencephalography; resting state; connectivity; non-stationary; hidden Markov model; microstates; human
23.  Antidepressants Normalize the Default Mode Network in Patients With Dysthymia 
JAMA psychiatry  2013;70(4):373-382.
The default mode network (DMN) is a collection of brain regions that reliably deactivate during goal-directed behaviors and is more active during a baseline, or so-called resting, condition. Coherence of neural activity, or functional connectivity, within the brain’s DMN is increased in major depressive disorder relative to healthy control (HC) subjects; however, whether similar abnormalities are present in persons with dysthymic disorder (DD) is unknown. Moreover, the effect of antidepressant medications on DMN connectivity in patients with DD is also unknown.
To use resting-state functional-connectivity magnetic resonance imaging (MRI) to study (1) the functional connectivity of the DMN in subjects with DD vs HC participants and (2) the effects of antidepressant therapy on DMN connectivity.
After collecting baseline MRI scans from subjects with DD and HC participants, we enrolled the participants with DD into a 10-week prospective, double-blind, placebo-controlled trial of duloxetine and collected MRI scans again at the conclusion of the study. Enrollment occurred between 2007 and 2011.
University research institute.
Volunteer sample of 41 subjects with DD and 25 HC participants aged 18 to 53 years. Control subjects were group matched to patients with DD by age and sex.
Main Outcome Measures
We used resting-state functional-connectivity MRI to measure the functional connectivity of the brain’s DMN in persons with DD compared with HC subjects, and we examined the effects of treatment with duloxetine vs placebo on DMN connectivity.
Of the 41 subjects with DD, 32 completed the clinical trial and MRI scans, along with the 25 HC participants. At baseline, we found that the coherence of neural activity within the brain’s DMN was greater in persons with DD compared with HC subjects. Following a 10-week clinical trial, we found that treatment with duloxetine, but not placebo, normalized DMN connectivity.
Conclusions and Relevance
The baseline imaging findings are consistent with those found in patients with major depressive disorder and suggest that increased connectivity within the DMN may be important in the pathophysiology of both acute and chronic manifestations of depressive illness. The normalization of DMN connectivity following antidepressant treatment suggests an important causal pathway through which antidepressants may reduce depression.
PMCID: PMC3935731  PMID: 23389382
24.  Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder 
Major depressive disorder (MDD) is characterized by altered intrinsic functional connectivity within (intra-iFC) intrinsic connectivity networks (ICNs), such as the Default Mode- (DMN), Salience- (SN) and Central Executive Network (CEN). It has been proposed that aberrant switching between DMN-mediated self-referential and CEN-mediated goal-directed cognitive processes might contribute to MDD, possibly explaining patients' difficulties to disengage the processing of self-focused, often negatively biased thoughts. Recently, it has been shown that the right anterior insula (rAI) within the SN is modulating DMN/CEN interactions. Since structural and functional alterations within the AI have been frequently reported in MDD, we hypothesized that aberrant intra-iFC in the SN's rAI is associated with both aberrant iFC between DMN and CEN (inter-iFC) and severity of symptoms in MDD. Twenty-five patients with MDD and 25 healthy controls were assessed using resting-state fMRI (rs-fMRI) and psychometric examination. High-model-order independent component analysis (ICA) of rs-fMRI data was performed to identify ICNs including DMN, SN, and CEN. Intra-iFC within and inter-iFC between distinct subsystems of the DMN, SN, and CEN were calculated, compared between groups and correlated with the severity of symptoms. Patients with MDD showed (1) decreased intra-iFC within the SN's rAI, (2) decreased inter-iFC between the DMN and CEN, and (3) increased inter-iFC between the SN and DMN. Moreover, decreased intra-iFC in the SN's rAI was associated with severity of symptoms and aberrant DMN/CEN interactions, with the latter losing significance after correction for multiple comparisons. Our results provide evidence for a relationship between aberrant intra-iFC in the salience network's rAI, aberrant DMN/CEN interactions and severity of symptoms, suggesting a link between aberrant salience mapping, abnormal coordination of DMN/CEN based cognitive processes and psychopathology in MDD.
PMCID: PMC3896989  PMID: 24478665
intrinsic functional connectivity; intrinsic networks; central executive network; default mode network; salience network; triple network hypothesis; anterior insula; major depressive disorder
25.  Aberrant default mode network in subjects with amnestic mild cognitive impairment using resting-state functional MRI 
Magnetic resonance imaging  2011;30(1):48-61.
Amnestic mild cognitive impairment (aMCI) is a syndrome associated with faster memory decline than normal aging, and frequently represents the prodromal phase of Alzheimer’s disease. When a person is not actively engaged in a goal-directed task, spontaneous functional magnetic resonance imaging (fMRI) signals can reveal functionally connected brain networks, including the so-called default mode network (DMN). To date, only a few studies have investigated DMN functions in aMCI populations. In this study, group independent component analysis was conducted for resting-state fMRI data, with slices acquired perpendicular to the long axis of the hippocampus, from eight subjects with aMCI and eight normal control subjects. Subjects with aMCI showed increased DMN activity in middle cingulate cortex, medial prefrontal cortex, and left inferior parietal cortex compared to the normal control group. Decreased DMN activity for the aMCI group compared to the normal control group was noted in lateral prefrontal cortex, left medial temporal lobe (MTL), left medial temporal gyrus, posterior cingulate cortex/retrosplenial cortex/precuneus, and right angular gyrus. Although MTL volume difference between the two groups was not statistical significant, decreased activity in left MTL was observed for the aMCI group. Positive correlations between DMN activity and memory scores were noted for left lateral prefrontal cortex, left medial temporal gyrus, and right angular gyrus. These findings support the premise that alterations of the DMN occur in aMCI and may indicate deficiencies in functional, intrinsic brain architecture, that correlate with memory function, even before significant medial temporal lobe atrophy is detectable by structural MRI.
PMCID: PMC3232317  PMID: 21982164
default mode network (DMN); amnestic mild cognitive impairment (aMCI); resting-state fMRI; medial temporal lobe (MTL)

Results 1-25 (1156473)