PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1376018)

Clipboard (0)
None

Related Articles

1.  Following Mitochondrial Footprints through a Long Mucosal Path to Lung Cancer 
PLoS ONE  2009;4(8):e6533.
Background
Mitochondrial DNA (mtDNA) mutations are reported in different tumors. However, there is no information on the temporal development of the mtDNA mutations/content alteration and their extent in normal and abnormal mucosa continuously exposed to tobacco smoke in lung cancer patients.
Methodology
We examined the pattern of mtDNA alteration (mtDNA mutation and content index) in 25 airway mucosal biopsies, corresponding tumors and normal lymph nodes obtained from three patients with primary lung cancers. In addition, we examined the pattern of mtDNA mutation in corresponding tumors and normal lymph nodes obtained from eight other patients with primary lung cancers. The entire 16.5 kb mitochondrial genome was sequenced on Affymetrix Mitochip v2.0 sequencing platform in every sample. To examine mtDNA content index, we performed real-time PCR analysis.
Principal Findings
The airway mucosal biopsies obtained from three lung cancer patients were histopathologically negative but exhibited multiple clonal mtDNA mutations detectable in the corresponding tumors. One of the patients was operated twice for the removal of tumor from the right upper and left lower lobe respectively within a span of two years. Both of these tumors exhibited twenty identical mtDNA mutations. MtDNA content increased significantly (P<0.001) in the lung cancer and all the histologically negative mucosal biopsies except one compared to the control lymph node.
Conclusions/Significance:
Our results document the extent of massive clonal patches that develop in lifetime smokers and ultimately give rise to clinically significant cancers. These observations shed light on the extent of disease in the airway of smokers traceable through mtDNA mutation. MtDNA mutation could be a reliable tool for molecular assessment of respiratory epithelium exposed to continuous smoke as well as disease detection and monitoring. Functional analysis of the pathogenic mtDNA mutations may be useful to understand their role in lung tumorigenesis.
doi:10.1371/journal.pone.0006533
PMCID: PMC2719062  PMID: 19657397
2.  Lungs don’t forget: Comparison of the KRAS and EGFR mutation profile and survival of “collegiate smokers” and never smokers with advanced lung cancers 
HYPOTHESIS
We hypothesize that among patients with lung cancers the KRAS/EGFR mutation profile and overall survival of “collegiate smokers” (former smokers who smoked between 101 lifetime cigarettes and 5 pack years) are distinct from those of never smokers and former smokers with ≥ 15 pack years.
METHODS
We collected age, sex, stage, survival, and smoking history for patients evaluated from 2004 to 2009 with advanced stage lung cancers and known KRAS/EGFR status. Mutation profile and overall survival were compared using Fisher’s exact test and log-rank test, respectively.
RESULTS
Data were available for 852 patients with advanced stage lung cancers with known KRAS/EGFR status. 6% were “collegiate smokers”, 36% were never smokers, and 30% were former smokers with ≥ 15 pack years. The mutation profile of “collegiate smokers” (15% KRAS mutations, 27% EGFR mutations) was distinct from those of never smokers (p < .001) and former smokers with ≥ 15 pack years (p < .001)and not significantly different from those of former smokers with 5 to 15 pack years (p = 0.9). Median overall survival for “collegiate smokers” was 25 months, compared to 32 months for never smokers (p = 0.4), 33 months for former smokers with 5–15 pack years (p = 0.48),and 21 months for former smokers with ≥ 15 pack years (p = 0.63).
CONCLUSIONS
“Collegiate smokers” with advanced stage lung cancers represent a distinct subgroup of patients with a higher frequency of KRAS mutations and lower frequency of EGFR mutations compared to never smokers. These observations reinforce the recommendation for routine mutation testing for all patients with lung cancers and that no degree of tobacco exposure is safe.
doi:10.1097/JTO.0b013e31827914ea
PMCID: PMC3534987  PMID: 23242442
Collegiate Smokers; non-small cell lung cancers; epidermal growth factor receptor mutation; KRAS mutation
3.  Performance of mitochondrial DNA mutations detecting early stage cancer 
BMC Cancer  2008;8:285.
Background
Mutations in the mitochondrial genome (mtgenome) have been associated with cancer and many other disorders. These mutations can be point mutations or deletions, or admixtures (heteroplasmy). The detection of mtDNA mutations in body fluids using resequencing microarrays, which are more sensitive than other sequencing methods, could provide a strategy to measure mutation loads in remote anatomical sites.
Methods
We determined the mtDNA mutation load in the entire mitochondrial genome of 26 individuals with different early stage cancers (lung, bladder, kidney) and 12 heavy smokers without cancer. MtDNA was sequenced from three matched specimens (blood, tumor and body fluid) from each cancer patient and two matched specimens (blood and sputum) from smokers without cancer. The inherited wildtype sequence in the blood was compared to the sequences present in the tumor and body fluid, detected using the Affymetrix Genechip® Human Mitochondrial Resequencing Array 1.0 and supplemented by capillary sequencing for noncoding region.
Results
Using this high-throughput method, 75% of the tumors were found to contain mtDNA mutations, higher than in our previous studies, and 36% of the body fluids from these cancer patients contained mtDNA mutations. Most of the mutations detected were heteroplasmic. A statistically significantly higher heteroplasmy rate occurred in tumor specimens when compared to both body fluid of cancer patients and sputum of controls, and in patient blood compared to blood of controls. Only 2 of the 12 sputum specimens from heavy smokers without cancer (17%) contained mtDNA mutations. Although patient mutations were spread throughout the mtDNA genome in the lung, bladder and kidney series, a statistically significant elevation of tRNA and ND complex mutations was detected in tumors.
Conclusion
Our findings indicate comprehensive mtDNA resequencing can be a high-throughput tool for detecting mutations in clinical samples with potential applications for cancer detection, but it is unclear the biological relevance of these detected mitochondrial mutations. Whether the detection of tumor-specific mtDNA mutations in body fluidsy this method will be useful for diagnosis and monitoring applications requires further investigation.
doi:10.1186/1471-2407-8-285
PMCID: PMC2572633  PMID: 18834532
4.  Driver Mutations Determine Survival in Smokers and Never Smokers with Stage IIIB/IV Lung Adenocarcinomas 
Cancer  2012;118(23):5840-5847.
Background
We previously demonstrated that stage IIIB/IV non-small cell lung cancer (NSCLC) never smokers lived 50% longer than former/current smokers. This observation persisted after adjusting for age, performance status, and gender. We hypothesized that smoking-dependent differences in the distribution of driver mutations might explain differences in prognosis between these subgroups.
Methods
We reviewed 293 never smokers and 382 former/current smokers with lung adenocarcinoma who underwent testing for EGFR and KRAS mutations and rearrangements in ALK between 2009 and 2010. Clinical outcomes and patient characteristics were collected. Survival probabilities were estimated using the Kaplan-Meier method. Group comparison was performed with log-rank tests and Cox proportional hazards methods.
Results
While the overall incidence of these mutations was nearly identical (55% never smokers vs. 57% current/former smokers, p=0.48), there were significant differences in the distribution of mutations between these groups: EGFR mutations- 37% never smokers vs. 14% former/current smokers (p<0.0001); KRAS mutations- 4% never smokers vs. 43% former/current smokers (p<0.0001); ALK rearrangements- 12% never smokers vs. 2% former/current smokers (p<0.0001). Among never smokers and former/current smokers, prognosis differed significantly by genotype. Patients harboring KRAS mutations demonstrated the poorest survival. Smoking status, however, had no influence on survival within each genotype.
Conclusion
Never smokers and former/current smokers with lung adenocarcinomas are not homogeneous subgroups. Each is made up of individuals whose tumors have a unique distribution of driver mutations which are associated with different prognoses, irrespective of smoking history.
doi:10.1002/cncr.27637
PMCID: PMC3424296  PMID: 22605530
non-small cell lung cancer; adenocarcinoma; EGFR; KRAS; ALK; never smoker
5.  Family history of lung cancer in never smokers with non-small-cell lung cancer and its association with tumors harboring EGFR mutations 
INTRODUCTION
Inherited susceptibility to lung cancer is understudied. Never smokers are an important subgroup of patients enriched for tumors harboring oncogene aberrations in the EGFR and ALK genes. We aimed to better characterize the incidence of family history of lung cancer among never smokers with NSCLC.
METHODS
Clinicopathologic data, tumor genotype, family history of cancer, and specifically family history of lung cancer from 230 consecutive never smokers was retrospectively compiled and analyzed.
RESULTS
In our cohort, the median age was 56 years, 67% were women, 75% were white, 59% had advanced NSCLC and 87% had adenocarcinoma histology. In these tumors, 98/230 (42%) had an EGFR mutation, 17/155 (11%) had KRAS mutations and 27/127 (21%) had an ALK translocation. Family history of any cancer was common (57%) and specific family history of lung cancer was present in 42/230 cases (18%). The percentage of cases with family history of lung cancer was higher in the EGFR mutated versus EGFR wild-type NSCLCs. Out of the cases with a family history of any cancer, 22/53 (41.5%) EGFR mutated, 1/5 (20%) KRAS mutated and 3/19 (15.5%) ALK translocated cohorts had a family history of lung cancer. The ratio of family history of lung cancer to family history of cancer was significantly higher in the EGFR mutated cohort when compared to the ALK translocated plus KRAS mutated cohorts (p=0.039).
CONCLUSIONS
Family history of lung cancer is common in never smokers with NSCLC, and there seems to be a particular link in families in which the proband has an EGFR mutated tumor when compared to ALK translocated or KRAS mutated tumors. Further study of families with EGFR-mutated NSCLC may yield insights into the pathogenesis of this tumor type.
doi:10.1016/j.lungcan.2012.12.002
PMCID: PMC3566317  PMID: 23273562
lung cancer; non-small-cell lung cancer; family history; never smokers; epidermal growth factor receptor; EGFR; anaplastic lymphoma kinase; ALK; KRAS
6.  Associations between cigarette smoking and mitochondrial DNA abnormalities in buccal cells 
Carcinogenesis  2008;29(6):1170-1177.
DNA alterations in mitochondria are believed to play a role in carcinogenesis and are found in smoking-related cancers. We sought to replicate earlier findings for the association of smoking with increased mitochondrial DNA (mtDNA) content in buccal cells and further hypothesized that there would be an increased number of somatic mtDNA mutations in smokers. Buccal cells and blood lymphocytes were studied from 42 healthy smokers and 30 non-smokers. Temporal temperature gradient electrophoresis screening and sequencing was used to identify mtDNA mutations. The relative mtDNA content was determined by real-time polymerase chain reaction. Assuming that mtDNA in lymphocytes represents the inherited sequence, it was found that 31% of smokers harbored at least one somatic mtDNA mutation in buccal cells with a total of 39 point mutations and 8 short deletions/insertions. In contrast, only 23% of non-smokers possessed mutations with a total of 10 point mutations and no insertions/deletions detected. mtDNA somatic mutation density was higher in smokers (0.68/10 000 bp per person) than in non-smokers (0.2/10 000 bp per person). There was a statistically significant difference in the pattern of homoplasmy and heteroplasmy mutation changes between smokers and non-smokers. Whereas non-smokers had the most mutations in D-loop region (70%), smokers had mutations in both messenger RNA encoding gene (36%) and D-loop region (49%). The mean ratio of buccal cells to lymphocytes of mtDNA content in smokers was increased (2.81) when compared with non-smokers (0.46). These results indicate that cigarette smoke exposure affects mtDNA in buccal cells of smokers. Additional studies are needed to determine if mitochondrial mutation assays provide new or complementary information for estimating cigarette smoke exposure at the cellular level or as a cancer risk biomarker.
doi:10.1093/carcin/bgn034
PMCID: PMC2443276  PMID: 18281252
7.  Differences in EGFR and KRAS mutation spectra in lung adenocarcinoma of never and heavy smokers 
Oncology Letters  2013;6(5):1207-1212.
Epidermal growth factor receptor (EGFR) mutations are common in lung adenocarcinomas of never smokers, while KRAS mutations are more frequent among heavy smokers. Different clinicopathological and biological characteristics may, therefore, exist in lung adenocarcinoma according to smoking status. In the present study, a retrospective review was performed using 521 patients with surgically resected lung adenocarcinomas. The clinicopathological factors of age, gender, pathological tumor size, nodal status, lymphatic permeation and blood vessel invasion and the EGFR and KRAS mutation spectra were compared between never and heavy smokers. EGFR mutations were detected in 233 (45%) patients, while KRAS mutations were detected in 56 (11%) patients. EGFR-mutated adenocarcinomas had a higher prevalence of females in the never smokers compared with the heavy smokers (P<0.001). KRAS-mutated adenocarcinomas had a higher prevalence of females (P<0.001) and showed less frequent vascular invasion (P=0.018) in the never smokers compared with the heavy smokers. Minor EGFR mutations, excluding exon 21 L858R and exon 19 deletions, were more common in heavy smokers than never smokers (P=0.055). KRAS G to A transition was more common in never smokers, while KRAS G to T and G to C transversions were more common in heavy smokers (P=0.036). The clinicopathological characteristics and the spectra of the EGFR and KRAS mutations in lung adenocarcinoma were different between the never and heavy smokers. Further large-scale studies are required to evaluate the efficacy of molecular targeting agents with consideration to specific EGFR and KRAS mutations.
doi:10.3892/ol.2013.1551
PMCID: PMC3813793  PMID: 24179496
lung cancer; adenocarcinoma; smoking; epidermal growth factor receptor; KRAS; mutation
8.  Driver mutations among never smoking female lung cancer tissues in China identify unique EGFR and KRAS mutation pattern associated with household coal burning 
Respiratory medicine  2013;107(11):10.1016/j.rmed.2013.08.018.
Lung cancer in never smokers, which has been partially attributed to household solid fuel use (i.e coal), is etiologically and clinically different from lung cancer attributed to tobacco smoking. To explore the spectrum of driver mutations among lung cancer tissues from never smokers, specifically in a population where high lung cancer rates have been attributed to indoor air pollution from domestic coal use, multiplexed assays were used to detect >40 point mutations, insertions, and deletions (EGFR, KRAS, BRAF, HER2, NRAS, PIK3CA, MEK1, AKT1, and PTEN) among the lung tumors of confirmed never smoking females from Xuanwei, China [32 adenocarcinomas (ADCs), 7 squamous cell carcinomas (SCCs), 1 adenosquamous carcinoma (ADSC)]. EGFR mutations were detected in 35% of tumors. 46% of these involved EGFR exon 18 G719X, while 14% were exon 21 L858R mutations. KRAS mutations, all of which were G12C_34G>T, were observed in 15% of tumors. EGFR and KRAS mutations were mutually exclusive, and no mutations were observed in the other tested genes. Most point mutations were transversions and were also found in tumors from patients who used coal in their homes. Our high mutation frequencies in EGFR exon 18 and KRAS and low mutation frequency in EGFR exon 21 are strikingly divergent from those in other smoking and never smoking populations from Asia. Given that our subjects live in a region where coal is typically burned indoors, our findings provide new insights into the pathogenesis of lung cancer among never smoking females exposed to indoor air pollution from coal.
doi:10.1016/j.rmed.2013.08.018
PMCID: PMC3848251  PMID: 24055406
EGFR; KRAS; lung cancer; never smoking; China; driver mutations; tumor tissue
9.  Lung Cancer Occurrence in Never-Smokers: An Analysis of 13 Cohorts and 22 Cancer Registry Studies  
PLoS Medicine  2008;5(9):e185.
Background
Better information on lung cancer occurrence in lifelong nonsmokers is needed to understand gender and racial disparities and to examine how factors other than active smoking influence risk in different time periods and geographic regions.
Methods and Findings
We pooled information on lung cancer incidence and/or death rates among self-reported never-smokers from 13 large cohort studies, representing over 630,000 and 1.8 million persons for incidence and mortality, respectively. We also abstracted population-based data for women from 22 cancer registries and ten countries in time periods and geographic regions where few women smoked. Our main findings were: (1) Men had higher death rates from lung cancer than women in all age and racial groups studied; (2) male and female incidence rates were similar when standardized across all ages 40+ y, albeit with some variation by age; (3) African Americans and Asians living in Korea and Japan (but not in the US) had higher death rates from lung cancer than individuals of European descent; (4) no temporal trends were seen when comparing incidence and death rates among US women age 40–69 y during the 1930s to contemporary populations where few women smoke, or in temporal comparisons of never-smokers in two large American Cancer Society cohorts from 1959 to 2004; and (5) lung cancer incidence rates were higher and more variable among women in East Asia than in other geographic areas with low female smoking.
Conclusions
These comprehensive analyses support claims that the death rate from lung cancer among never-smokers is higher in men than in women, and in African Americans and Asians residing in Asia than in individuals of European descent, but contradict assertions that risk is increasing or that women have a higher incidence rate than men. Further research is needed on the high and variable lung cancer rates among women in Pacific Rim countries.
Michael Thun and colleagues pooled and analyzed comprehensive data on lung cancer incidence and death rates among never-smokers to examine what factors other than active smoking affect lung cancer risk.
Editors' Summary
Background.
Every year, more than 1.4 million people die from lung cancer, a leading cause of cancer deaths worldwide. In the US alone, more than 161,000 people will die from lung cancer this year. Like all cancers, lung cancer occurs when cells begin to divide uncontrollably because of changes in their genes. The main trigger for these changes in lung cancer is exposure to the chemicals in cigarette smoke—either directly through smoking cigarettes or indirectly through exposure to secondhand smoke. Eighty-five to 90% of lung cancer deaths are caused by exposure to cigarette smoke and, on average, current smokers are 15 times more likely to die from lung cancer than lifelong nonsmokers (never smokers). Furthermore, a person's cumulative lifetime risk of developing lung cancer is related to how much they smoke, to how many years they are a smoker, and—if they give up smoking—to the age at which they stop smoking.
Why Was This Study Done?
Because lung cancer is so common, even the small fraction of lung cancer that occurs in lifelong nonsmokers represents a large number of people. For example, about 20,000 of this year's US lung cancer deaths will be in never-smokers. However, very little is known about how age, sex, or race affects the incidence (the annual number of new cases of diseases in a population) or death rates from lung cancer among never-smokers. A better understanding of the patterns of lung cancer incidence and death rates among never-smokers could provide useful information about the factors other than cigarette smoke that increase the likelihood of not only never-smokers, but also former smokers and current smokers developing lung cancer. In this study, therefore, the researchers pooled and analyzed a large amount of information about lung cancer incidence and death rates among never smokers to examine what factors other than active smoking affect lung cancer risk.
What Did the Researchers Do and Find?
The researchers analyzed information on lung cancer incidence and/or death rates among nearly 2.5 million self-reported never smokers (men and women) from 13 large studies investigating the health of people in North America, Europe, and Asia. They also analyzed similar information for women taken from cancer registries in ten countries at times when very few women were smokers (for example, the US in the late 1930s). The researchers' detailed statistical analyses reveal, for example, that lung cancer death rates in African Americans and in Asians living in Korea and Japan (but not among Asians living in the US) are higher than those in people of the European continental ancestry group. They also show that men have higher death rates from lung cancer than women irrespective of racial group, but that women aged 40–59 years have a slightly higher incidence of lung cancer than men of a similar age. This difference disappears at older ages. Finally, an analysis of lung cancer incidence and death rates at different times during the past 70 years shows no evidence of an increase in the lung cancer burden among never smokers over time.
What Do These Findings Mean?
Although some of the findings described above have been hinted at in previous, smaller studies, these and other findings provide a much more accurate picture of lung cancer incidence and death rates among never smokers. Most importantly the underlying data used in these analyses are now freely available and should provide an excellent resource for future studies of lung cancer in never smokers.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050185.
The US National Cancer Institute provides detailed information for patients and health professionals about all aspects of lung cancer and information on smoking and cancer (in English and Spanish)
Links to other US-based resources dealing with lung cancer are provided by MedlinePlus (in English and Spanish)
Cancer Research UK provides key facts about the link between lung cancer and smoking and information about all other aspects of lung cancer
doi:10.1371/journal.pmed.0050185
PMCID: PMC2531137  PMID: 18788891
10.  Circulating Mitochondrial DNA in Patients in the ICU as a Marker of Mortality: Derivation and Validation 
PLoS Medicine  2013;10(12):e1001577.
In this paper, Choi and colleagues analyzed levels of mitochondrial DNA in two prospective observational cohort studies and found that increased mtDNA levels are associated with ICU mortality, and improve risk prediction in medical ICU patients. The data suggests that mtDNA could serve as a viable plasma biomarker in MICU patients.
Background
Mitochondrial DNA (mtDNA) is a critical activator of inflammation and the innate immune system. However, mtDNA level has not been tested for its role as a biomarker in the intensive care unit (ICU). We hypothesized that circulating cell-free mtDNA levels would be associated with mortality and improve risk prediction in ICU patients.
Methods and Findings
Analyses of mtDNA levels were performed on blood samples obtained from two prospective observational cohort studies of ICU patients (the Brigham and Women's Hospital Registry of Critical Illness [BWH RoCI, n = 200] and Molecular Epidemiology of Acute Respiratory Distress Syndrome [ME ARDS, n = 243]). mtDNA levels in plasma were assessed by measuring the copy number of the NADH dehydrogenase 1 gene using quantitative real-time PCR. Medical ICU patients with an elevated mtDNA level (≥3,200 copies/µl plasma) had increased odds of dying within 28 d of ICU admission in both the BWH RoCI (odds ratio [OR] 7.5, 95% CI 3.6–15.8, p = 1×10−7) and ME ARDS (OR 8.4, 95% CI 2.9–24.2, p = 9×10−5) cohorts, while no evidence for association was noted in non-medical ICU patients. The addition of an elevated mtDNA level improved the net reclassification index (NRI) of 28-d mortality among medical ICU patients when added to clinical models in both the BWH RoCI (NRI 79%, standard error 14%, p<1×10−4) and ME ARDS (NRI 55%, standard error 20%, p = 0.007) cohorts. In the BWH RoCI cohort, those with an elevated mtDNA level had an increased risk of death, even in analyses limited to patients with sepsis or acute respiratory distress syndrome. Study limitations include the lack of data elucidating the concise pathological roles of mtDNA in the patients, and the limited numbers of measurements for some of biomarkers.
Conclusions
Increased mtDNA levels are associated with ICU mortality, and inclusion of mtDNA level improves risk prediction in medical ICU patients. Our data suggest that mtDNA could serve as a viable plasma biomarker in medical ICU patients.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Intensive care units (ICUs, also known as critical care units) are specialist hospital wards that provide care for people with life-threatening injuries and illnesses. In the US alone, more than 5 million people are admitted to ICUs every year. Different types of ICUs treat different types of problems. Medical ICUs treat patients who, for example, have been poisoned or who have a serious infection such as sepsis (blood poisoning) or severe pneumonia (inflammation of the lungs); trauma ICUs treat patients who have sustained a major injury; cardiac ICUs treat patients who have heart problems; and surgical ICUs treat complications arising from operations. Patients admitted to ICUs require constant medical attention and support from a team of specially trained nurses and physicians to prevent organ injury and to keep their bodies functioning. Monitors, intravenous tubes (to supply essential fluids, nutrients, and drugs), breathing machines, catheters (to drain urine), and other equipment also help to keep ICU patients alive.
Why Was This Study Done?
Although many patients admitted to ICUs recover, others do not. ICU specialists use scoring systems (algorithms) based on clinical signs and physiological measurements to predict their patients' likely outcomes. For example, the APACHE II scoring system uses information on heart and breathing rates, temperature, levels of salts in the blood, and other signs and physiological measurements collected during the first 24 hours in the ICU to predict the patient's risk of death. Existing scoring systems are not perfect, however, and “biomarkers” (molecules in bodily fluids that provide information about a disease state) are needed to improve risk prediction for ICU patients. Here, the researchers investigate whether levels of circulating cell-free mitochondrial DNA (mtDNA) are associated with ICU deaths and whether these levels can be used as a biomarker to improve risk prediction in ICU patients. Mitochondria are cellular structures that produce energy. Levels of mtDNA in the plasma (the liquid part of blood) increase in response to trauma and infection. Moreover, mtDNA activates molecular processes that lead to inflammation and organ injury.
What Did the Researchers Do and Find?
The researchers measured mtDNA levels in the plasma of patients enrolled in two prospective observational cohort studies that monitored the outcomes of ICU patients. In the Brigham and Women's Hospital Registry of Critical Illness study, blood was taken from 200 patients within 24 hours of admission into the hospital's medical ICU. In the Molecular Epidemiology of Acute Respiratory Distress Syndrome study (acute respiratory distress syndrome is a life-threatening inflammatory reaction to lung damage or infection), blood was taken from 243 patients within 48 hours of admission into medical and non-medical ICUs at two other US hospitals. Patients admitted to medical ICUs with a raised mtDNA level (3,200 or more copies of a specific mitochondrial gene per microliter of plasma) had a 7- to 8-fold increased risk of dying within 28 days of admission compared to patients with mtDNA levels of less than 3,200 copies/µl plasma. There was no evidence of an association between raised mtDNA levels and death among patients admitted to non-medical ICUs. The addition of an elevated mtDNA level to a clinical model for risk prediction that included the APACHE II score and biomarkers that are already used to predict ICU outcomes improved the net reclassification index (an indicator of the improvement in risk prediction algorithms offered by new biomarkers) of 28-day mortality among medical ICU patients in both studies.
What Do These Findings Mean?
These findings indicate that raised mtDNA plasma levels are associated with death in medical ICUs and show that, among patients in medical ICUs, measurement of mtDNA plasma levels can improve the prediction of the risk of death from the APACHE II scoring system, even when commonly measured biomarkers are taken into account. These findings do not indicate whether circulating cell-free mtDNA increased because of the underlying severity of illness or whether mtDNA actively contributes to the disease process in medical ICU patients. Moreover, they do not provide any evidence that raised mtDNA levels are associated with an increased risk of death among non-medical (mainly surgical) ICU patients. These findings need to be confirmed in additional patients, but given the relative ease and rapidity of mtDNA measurement, the determination of circulating cell-free mtDNA levels could be a valuable addition to the assessment of patients admitted to medical ICUs.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001577.
The UK National Health Service Choices website provides information about intensive care
The Society of Critical Care Medicine provides information for professionals, families, and patients about all aspects of intensive care
MedlinePlus provides links to other resources about intensive care (in English and Spanish)
The UK charity ICUsteps supports patients and their families through recovery from critical illness; its booklet Intensive Care: A Guide for Patients and Families is available in English and ten other languages; its website includes patient experiences and relative experiences of treatment in ICUs
Wikipedia has a page on ICU scoring systems (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1001577
PMCID: PMC3876981  PMID: 24391478
11.  Epidermal growth factor receptor mutation in lung adenocarcinoma in India: A single center study 
Background:
Adenocarcinoma, a subgroup of non-small cell lung cancer, is the most frequent form occurring in the non-smokers. Mutation in tyrosine kinase domain of epidermal growth factor receptor (EGFR) has been a common feature observed in lung adenocarcinoma. The study was carried out to detect the prevalence of EGFR mutation in lung adenocarcinoma.
Materials and Methods:
EGFR mutation status in 166 lung adenocarcinoma patients was obtained retrospectively. Mutation tests were performed on paraffin embedded tissue blocks as a routine diagnostic procedure by polymerase chain reaction followed by direct nucleotide sequencing. Patient’s demographics and other clinical details were obtained from the medical records.
Results:
EGFR mutation was detected in 43/166 (25.9%) patients. Gender wise mutation was observed as 18/55 (32.7%) in females and 25/111 (22.5%) in males. Overall, EGFR mutation was correlated with never smokers and distant metastasis (P < 0.05), but not associated with the gender, disease stage and pleural effusion. Exon 19 deletions were significantly correlated with females, never smokers, pleural effusion and distant metastasis (P < 0.05). However, point mutation on exon 21 did not show any statistical association with the above variables. Median overall survival was 22 months (95% confidence interval, 15.4-28.6). Female sex, EGFR mutation and absence of metastasis are associated with good prognosis.
Conclusion:
EGFR mutation in lung adenocarcinoma was higher in never smokers, females and patients with distant metastasis. However, it was not linked with tobacco smoking. The prevalence of EGFR mutation observed is in range with the previously published reports from the Asian countries.
doi:10.4103/1477-3163.114970
PMCID: PMC3746453  PMID: 23961259
Adenocarcinoma; epidermal growth factor receptor; mutation; non-small cell lung cancer
12.  Clinical investigation of EGFR mutation detection by pyrosequencing in lung cancer patients 
Oncology Letters  2012;5(1):271-276.
Direct sequencing is the standard method for the detection of epidermal growth factor receptor (EGFR) mutations in lung cancer, however, its relatively low sensitivity limits its clinical use. Pyrosequencing is a bioluminometric, real-time non-electrophoretic DNA sequencing technique with a number of advantages compared with direct sequencing, including higher sensitivity, speed, automation and cost-effectiveness. Clinical specimens from 202 lung cancer patients were analyzed for EGFR mutations in exons 18, 19, 20 and 21 using the pyrosequencing method following genomic DNA extraction from paraffin-embedded tissue specimens. All clinical data and tumor specimens were obtained from the Konkuk University Hospital (Korea) between July 2006 and December 2008. The results and clinical responses to EGFR-tyrosine kinase inhibitors (TKIs) were compared. Overall, EGFR mutation-positive rate was 26.7% (54/202). Activating EGFR mutations were observed more frequently in female (52.1 vs. 13.0%), non-smoking (47.8 vs. 15.8%) and adenocarcinoma (35.2 vs. 5.2%) patients. However, significant numbers of EGFR mutation-positive patients were identified as male, former or current smokers and non-adenocarcinoma patients. The combinations of favorable clinicopathological factors, including female, non-smoking and adenocarcinoma, were not identified to significantly increase the positive EGFR mutation rate (female, 52.1%; female and non-smoker, 52.6%; female, non-smoker and adenocarcinoma, 51.9%). The present findings indicate that EGFR mutation analysis is a highly useful method for the prediction of response to EGFR-TKI and the use of favorable clinicopathological factors to perform this analysis is not suitable. Exon 19 deletion was the most common mutation (63.6%) and exon 21 L858R substitution was measured at 32.7%. The exon 20 T790M mutation was identified in 1 patient prior to EGFR-TKI treatment. EGFR mutation status is associated with response to EGFR-TKI and the overall response rate in patients who have the activating EGFR mutation was 82.4 vs. 5.9% in patients with a wild-type EGFR. The present study demonstrates that EGFR mutations analyzed by the pyrosequencing method are well correlated with clinicopathological parameters and that this method may be useful in the clinical practice.
doi:10.3892/ol.2012.950
PMCID: PMC3525462  PMID: 23255934
EGFR mutation; pyrosequencing; lung cancer
13.  Smoking status and self-reported race affect the frequency of clinically-relevant oncogenic alterations in non-small-cell lung cancers at a United States-based academic medical practice 
Introduction
The identification of somatic genomic aberrations in non-small-cell lung cancer (NSCLC) is part of evidence-based practice guidelines for care of patients with NSCLC. We sought to establish the frequency and correlates of these changes in routine patient-tumor sample pairs.
Methods
Clinicopathologic data and tumor genotype were retrospectively compiled and analyzed from an overall cohort of 381 patient-tumor samples.
Results
Of these patients, 75.9% self-reported White race, 13.1% Asian, 6.5% Black, 27.8% were never-smokers, 54.9% former-smokers and 17.3% current-smokers. The frequency of EGFR mutations was 23.9%(86/359), KRAS mutations 34.2%(71/207) and ALK FISH positivity 9.1%(23/252) in tumor samples, and almost all had mutually exclusive results for these oncogenes. In tumors from White, Black and Asian patients, the frequencies of EGFR mutations were 18.4%, 18.2% and 62%, respectively; of ALK FISH positivity 7.81%, 0% and 14.8%, respectively; and of KRAS mutations 41.6%, 20% and 0%. These patterns changed significant with increasing pack-year history of smoking. In White patients, the frequencies of EGFR mutations and ALK FISH positivity decreased with increasing pack-year cohorts; while the frequencies of KRAS mutations increased. Interestingly, in Asian patients the frequencies of EGFR mutations were similar in never smokers and in the cohorts with less then 45pack-year histories of smoking and only decreased in the 45pack-year plus cohort.
Conclusions
The frequencies of somatic EGFR, KRAS, and ALK gene abnormalities using routine lung cancer tissue samples from our United States-based academic medical practice reflect the diverse ethnicity (with a higher frequency of EGFR mutations in Asian patients) and smoking patterns (with an inverse correlation between EGFR mutation and ALK rearrangement) of our tested population. These results may help other medical practices appreciate the expected results from introduction of routine tumor genotyping techniques into their day-to-day care of NSCLC.
doi:10.1016/j.lungcan.2013.07.013
PMCID: PMC3800098  PMID: 23932486
lung cancer; non-small-cell lung cancer; never smokers; epidermal growth factor receptor; EGFR; anaplastic lymphoma kinase; ALK; KRAS; tumor genotype; ethnicipty; Asian; White; Black
14.  Molecular Epidemiology of EGFR and KRAS Mutations in 3026 Lung Adenocarcinomas: Higher Susceptibility of Women to Smoking-related KRAS-mutant Cancers 
Purpose
The molecular epidemiology of most EGFR and KRAS mutations in lung cancer remains unclear.
Experimental Design
We genotyped 3026 lung adenocarcinomas for the major EGFR (exon 19 deletions and L858R) and KRAS (G12, G13) mutations and examined correlations with demographic, clinical and smoking history data.
Results
EGFR mutations were found in 43% of never smokers (NS) and in 11% of smokers. KRAS mutations occurred in 34% of smokers and in 6% of NS. In patients with smoking histories up to 10 pack-years, EGFR predominated over KRAS. Among former smokers with lung cancer, multivariate analysis showed that, independent of pack-years, increasing smoking-free years raise the likelihood of EGFR mutation. NS were more likely than smokers to have KRAS G>A transition mutation (mostly G12D) (58% vs. 20%, p=0.0001). KRAS G12C, the most common G>T transversion mutation in smokers, was more frequent in women (p=0.007) and these women were younger than men with the same mutation (median 65 vs. 69, p=0.0008) and had smoked less.
Conclusions
The distinct types of KRAS mutations in smokers vs. NS suggest that most KRAS-mutant lung cancers in NS are not due to secondhand smoke exposure. The higher frequency of KRAS G12C in women, their younger age, and lesser smoking history together support a heightened susceptibility to tobacco carcinogens.
doi:10.1158/1078-0432.CCR-11-3265
PMCID: PMC3500422  PMID: 23014527
lung cancer; tobacco; EGFR; KRAS; molecular epidemiology
15.  Mutations within the tyrosine kinase domain of EGFR gene specifically occur in lung adenocarcinoma patients with a low exposure of tobacco smoking 
British Journal of Cancer  2006;94(6):896-903.
Somatically acquired mutations in the epidermal growth factor receptor (EGFR) gene in lung cancer are associated with significant clinical responses to gefitinib, a tyrosine kinase inhibitor that targets EGFR. We screened the EGFR in 469 resected tumours of patients with lung cancer, which included 322 adenocarcinomas, 102 squamous cell carcinomas, 27 large cell carcinomas, 13 small cell carcinomas, and five other cell types. PCR with a specific condition was performed to identify any deletion in exon 19, while mutant-allele-specific amplification was performed to identify a mutation in codon 858 of exon 21. EGFR mutations were found in 136 cases (42.2%) with adenocarcinoma, in one case with large cell carcinoma, and in one case with pleomorphic carcinoma. An in-frame deletion in exon 19 was found in 62 cases while an L858R mutation was found in 77 cases. In the 322 cases with adenocarcinoma, these mutations were more frequently found in women than in men (P=0.0004), in well differentiated tumours than in poorly differentiated tumours (P=0.0014), and in patients who were never smokers than in patients who were current/former smokers (P<0.0001). The mutation was more frequently observed in patients who smoked ⩽20 pack-year, and in patients who quit at least 20 years before the date of diagnosis for lung cancer. The K-ras mutations were more frequently found in smokers than in never smokers, and in high-dose smokers than in low-dose smokers. In conclusion, the mutations within the tyrosine kinase domain of EGFR were found to specifically occur in lung adenocarcinoma patients with a low exposure of tobacco smoking.
doi:10.1038/sj.bjc.6603040
PMCID: PMC3216424  PMID: 16552419
EGFR; mutation; lung cancer; adenocarcinoma; smoking; screening; K-ras
16.  Evaluation of the Lung Cancer Risks at Which to Screen Ever- and Never-Smokers: Screening Rules Applied to the PLCO and NLST Cohorts 
PLoS Medicine  2014;11(12):e1001764.
Martin Tammemägi and colleagues evaluate which risk groups of individuals, including nonsmokers and high-risk individuals from 65 to 80 years of age, should be screened for lung cancer using computed tomography.
Please see later in the article for the Editors' Summary
Background
Lung cancer risks at which individuals should be screened with computed tomography (CT) for lung cancer are undecided. This study's objectives are to identify a risk threshold for selecting individuals for screening, to compare its efficiency with the U.S. Preventive Services Task Force (USPSTF) criteria for identifying screenees, and to determine whether never-smokers should be screened. Lung cancer risks are compared between smokers aged 55–64 and ≥65–80 y.
Methods and Findings
Applying the PLCOm2012 model, a model based on 6-y lung cancer incidence, we identified the risk threshold above which National Lung Screening Trial (NLST, n = 53,452) CT arm lung cancer mortality rates were consistently lower than rates in the chest X-ray (CXR) arm. We evaluated the USPSTF and PLCOm2012 risk criteria in intervention arm (CXR) smokers (n = 37,327) of the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). The numbers of smokers selected for screening, and the sensitivities, specificities, and positive predictive values (PPVs) for identifying lung cancers were assessed. A modified model (PLCOall2014) evaluated risks in never-smokers. At PLCOm2012 risk ≥0.0151, the 65th percentile of risk, the NLST CT arm mortality rates are consistently below the CXR arm's rates. The number needed to screen to prevent one lung cancer death in the 65th to 100th percentile risk group is 255 (95% CI 143 to 1,184), and in the 30th to <65th percentile risk group is 963 (95% CI 291 to −754); the number needed to screen could not be estimated in the <30th percentile risk group because of absence of lung cancer deaths. When applied to PLCO intervention arm smokers, compared to the USPSTF criteria, the PLCOm2012 risk ≥0.0151 threshold selected 8.8% fewer individuals for screening (p<0.001) but identified 12.4% more lung cancers (sensitivity 80.1% [95% CI 76.8%–83.0%] versus 71.2% [95% CI 67.6%–74.6%], p<0.001), had fewer false-positives (specificity 66.2% [95% CI 65.7%–66.7%] versus 62.7% [95% CI 62.2%–63.1%], p<0.001), and had higher PPV (4.2% [95% CI 3.9%–4.6%] versus 3.4% [95% CI 3.1%–3.7%], p<0.001). In total, 26% of individuals selected for screening based on USPSTF criteria had risks below the threshold PLCOm2012 risk ≥0.0151. Of PLCO former smokers with quit time >15 y, 8.5% had PLCOm2012 risk ≥0.0151. None of 65,711 PLCO never-smokers had PLCOm2012 risk ≥0.0151. Risks and lung cancers were significantly greater in PLCO smokers aged ≥65–80 y than in those aged 55–64 y. This study omitted cost-effectiveness analysis.
Conclusions
The USPSTF criteria for CT screening include some low-risk individuals and exclude some high-risk individuals. Use of the PLCOm2012 risk ≥0.0151 criterion can improve screening efficiency. Currently, never-smokers should not be screened. Smokers aged ≥65–80 y are a high-risk group who may benefit from screening.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lung cancer is the most commonly occurring cancer in the world and the most common cause of cancer-related deaths. Like all cancers, lung cancer occurs when cells acquire genetic changes that allow them to grow uncontrollably and to move around the body (metastasize). The most common trigger for these genetic changes in lung cancer is exposure to cigarette smoke. Symptoms of lung cancer include a persistent cough and breathlessness. If lung cancer is diagnosed when it is confined to the lung (stage I), the tumor can often be removed surgically. Stage II tumors, which have spread into nearby lymph nodes, are usually treated with surgery plus chemotherapy or radiotherapy. For more advanced lung cancers that have spread throughout the chest (stage III) or the body (stage IV), surgery is rarely helpful and these tumors are treated with chemotherapy and radiotherapy alone. Overall, because most lung cancers are not detected until they are advanced, less than 17% of people diagnosed with lung cancer survive for five years.
Why Was This Study Done?
Screening for lung cancer—looking for early disease in healthy people—could save lives. In the US National Lung Screening Trial (NLST), annual screening with computed tomography (CT) reduced lung cancer mortality by 20% among smokers at high risk of developing cancer compared with screening with a chest X-ray. But what criteria should be used to decide who is screened for lung cancer? The US Preventive Services Task Force (USPSTF), for example, recommends annual CT screening of people who are 55–80 years old, have smoked 30 or more pack-years (one pack-year is defined as a pack of cigarettes per day for one year), and—if they are former smokers—quit smoking less than 15 years ago. However, some experts think lung cancer risk prediction models—statistical models that estimate risk based on numerous personal characteristics—should be used to select people for screening. Here, the researchers evaluate PLCOm2012, a lung cancer risk prediction model based on the incidence of lung cancer among smokers enrolled in the US Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). Specifically, the researchers use NLST and PLCO screening trial data to identify a PLCOm2012 risk threshold for selecting people for screening and to compare the efficiency of the PLCOm2012 model and the USPSTF criteria for identifying “screenees.”
What Did the Researchers Do and Find?
By analyzing NLST data, the researchers calculated that at PLCOm2012 risk ≥0.0151, mortality (death) rates among NLST participants screened with CT were consistently below mortality rates among NLST participants screened with chest X-ray and that 255 people with a PLCOm2012 risk ≥0.0151 would need to be screened to prevent one lung cancer death. Next, they used data collected from smokers in the screened arm of the PLCO trial to compare the efficiency of the PLCOm2012 and USPSTF criteria for identifying screenees. They found that 8.8% fewer people had a PLCOm2012 risk ≥0.0151 than met USPSTF criteria for screening, but 12.4% more lung cancers were identified. Thus, using PLCOm2012 improved the sensitivity and specificity of the selection of individuals for lung cancer screening over using UPSTF criteria. Notably, 8.5% of PLCO former smokers with quit times of more than 15 years had PLCOm2012 risk ≥0.0151, none of the PLCO never-smokers had PLCOm2012 risk ≥0.0151, and the calculated risks and incidence of lung cancer were greater among PLCO smokers aged ≥65–80 years than among those aged 55–64 years.
What Do These Findings Mean?
Despite the absence of a cost-effectiveness analysis in this study, these findings suggest that the use of the PLCOm2012 risk ≥0.0151 threshold rather than USPSTF criteria for selecting individuals for lung cancer screening could improve screening efficiency. The findings have several other important implications. First, these findings suggest that screening may be justified in people who stopped smoking more than 15 years ago; USPSTF currently recommends that screening stop once an individual's quit time exceeds 15 years. Second, these findings do not support lung cancer screening among never-smokers. Finally, these findings suggest that smokers aged ≥65–80 years might benefit from screening, although the presence of additional illnesses and reduced life expectancy need to be considered before recommending the provision of routine lung cancer screening to this section of the population.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001764.
The US National Cancer Institute provides information about all aspects of lung cancer for patients and health-care professionals, including information on lung cancer screening (in English and Spanish)
Cancer Research UK also provides detailed information about lung cancer and about lung cancer screening
The UK National Health Service Choices website has a page on lung cancer that includes personal stories
MedlinePlus provides links to other sources of information about lung cancer (in English and Spanish)
Information about the USPSTF recommendations for lung cancer screening is available
doi:10.1371/journal.pmed.1001764
PMCID: PMC4251899  PMID: 25460915
17.  Clinical Characteristics of Patients With Lung Adenocarcinomas Harboring BRAF Mutations 
Journal of Clinical Oncology  2011;29(15):2046-2051.
Purpose
BRAF mutations occur in non–small-cell lung cancer. Therapies targeting BRAF mutant tumors have recently been identified. We undertook this study to determine the clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations.
Patients and Methods
We reviewed data from consecutive patients with lung adenocarcinoma whose tumors underwent BRAF, EGFR, and KRAS mutation testing as well as fluorescence in situ hybridization for ALK rearrangements. Patient characteristics including age, sex, race, performance status, smoking history, stage, treatment history, and overall survival were collected.
Results
Among 697 patients with lung adenocarcinoma, BRAF mutations were present in 18 patients (3%; 95% CI, 2% to 4%). The BRAF mutations identified were V600E (50%), G469A (39%), and D594G (11%). Mutations in EGFR were present in 24%, KRAS in 25%, and ALK translocations in 6%. In contrast to patients with EGFR mutations and ALK rearrangements who were mostly never smokers, all patients with BRAF mutations were current or former smokers (P < .001). The median overall survival of advanced-stage patients with BRAF mutations was not reached. In comparison, the median overall survival of patients with EGFR mutations was 37 months (P = .73), with KRAS mutations was 18 months (P = .12), and with ALK rearrangements was not reached (P = .64).
Conclusion
BRAF mutations occur in 3% of patients with lung adenocarcinoma and occur more commonly in current and former smokers. The incidence of BRAF mutations other than V600E is significantly higher in lung cancer than in melanoma.
doi:10.1200/JCO.2010.33.1280
PMCID: PMC3107760  PMID: 21483012
18.  Clinical Features Reflect Exon Sites of EGFR Mutations in Patients with Resected Non-Small-Cell Lung Cancer 
Journal of Korean Medical Science  2007;22(3):393-399.
The aim of the current study was to determine the clinical significance according to the subtypes of epidermal growth factor receptor (EGFR) mutations and presence of KRAS mutations in operable non-small-cell lung cancer (NSCLC). We sequenced exons 18-21 of the EGFR tyrosine kinase domain and examined mutations in codons 12 and 13 of KRAS in tissues of patients with NSCLC who had undergone surgical resection. EGFR mutations were more frequent in never-smokers than smokers (33% vs. 14%, respectively; p=0.009) and in females than in males (31% vs. 16%, respectively; p=0.036). Mutations in exon 18-19 and 20-21 were found in 10 and 22 patients, respectively. Never-smokers and broncho-alveolar cell carcinoma features were positively associated with a mutation in exon 18-19 (p=0.027 and 0.016, respectively). The five-year survival rate in patients with a mutation in exons 18-19 (100%) was higher than that in patients without such mutation (47%; p=0.021). KRAS mutations were found in 16 patients (12%) and were not related to the overall survival (p=0.742). Patients with an EGFR mutation in exons 18-19 had better survival than patients without such mutation. Subtypes of EGFR mutations may be prognostic factors in patients undergoing curative resection.
doi:10.3346/jkms.2007.22.3.393
PMCID: PMC2693627  PMID: 17596643
Carcinoma, Non-small-cell Lung; Receptor, Epidermal Growth Factor; Genes, Ras; Mutation
19.  Frequency of driver mutations in lung adenocarcinoma from female never-smokers varies with histological subtypes and age at diagnosis 
Clinical Cancer Research  2012;18(7):1947-1953.
Purpose
Our previous study revealed that 90% (47 of 52; 95% CI: 0.79–0.96) of Chinese never-smokers with lung adenocarcinoma harbor known oncogenic driver mutations in just four genes: EGFR, ALK, HER2, and KRAS. Here, we examined the status of known driver mutations specifically in female never-smokers with lung adenocarcinoma.
Experimental Design
Tumors were genotyped for mutations in EGFR, KRAS, ALK, HER2, and BRAF. Data on age, stage, tumor differentiation, histological subtypes, and molecular alterations were recorded from 349 resected lung adenocarcinomas from female never-smokers. We further compared the clinicopathological parameters according to mutational status of these genes.
Results
Two hundred and sixty-six (76.2%) tumors harbored EGFR mutations, 16 (4.6%) HER2 mutations, 15 (4.3%) EML4-ALK fusions, seven (2.0%) KRAS mutations, and two (0.6%) BRAF mutations. In univariate analysis, patients harboring EGFR mutations were significantly older (p<0.001), whereas patients harboring HER2 mutations were significantly younger (p=0.036). Higher prevalence of KRAS (p=0.028) and HER2 (p=0.021) mutations was found in invasive mucinous adenocarcinoma (IMA). The frequency of EGFR mutations was positively correlated with acinar predominant tumors (p=0.002). Multivariate analysis revealed that older age at diagnosis (p=0.013) and acinar predominant subtype (p=0.005) were independent predictors of EGFR mutations. Independent predictors of HER2 mutations included younger age (p=0.030) and IMA (p=0.017). IMA (p=0.006) and poor differentiation (p=0.028) were independently associated with KRAS mutations.
Conclusions
The frequency of driver mutations in never-smoking female lung adenocarcinoma varies with histological subtypes and age at diagnosis. These data have implications for both clinical trial design and therapeutic strategies.
doi:10.1158/1078-0432.CCR-11-2511
PMCID: PMC3319848  PMID: 22317764
Lung adenocarcinoma; Female; Never smoker; EGFR mutation; HER2 mutation; Acinar; Mucinous; Age
20.  Detection of Mitochondrial DNA Alterations in Urine from Urothelial Cell Carcinoma Patients 
The present study aims at understanding the timing and nature of mitochondrial DNA (mtDNA) alterations in urothelial cell carcinoma (UCC) and their detection in urine sediments. The entire 16.5 kb mitochondrial genome was sequenced in matched normal lymphocytes, tumor and urine sediments from 31 UCC patients and compared with different clinical stages and histological grades. The mtDNA content index was examined in all the specimens. Sixty five percent (20/31) of the patients harbored at least 1 somatic mtDNA mutation. A total of 25 somatic mtDNA mutations were detected, which were more frequent in the respiratory complex coding regions (Complex-I, III, IV and V) of the mtDNA and significantly affected respiratory complex-III compared to the other complexes (P=0.021–0.039). Compared to stage Ta, mtDNA mutation was higher in stage T1 and significantly higher in stage T2 (P=0.01) patients. MtDNA mutation was also significantly higher (P=0.04) in stage T2 compared to stage T1 patients. Ninety percent (18/20) of the patients harboring mtDNA mutation in the tumor also had mutation in their urine sediments. Eighty percent (20/25) of the tumor-associated mtDNA mutations was detectable in the urine sediments. Compared to the normal lymphocytes, the mtDNA content increased significantly in the tumor (P=0.0013) and corresponding urine sediments (P=0.0025) in 19/25 (76%) patients analyzed. Our results indicate that mtDNA alterations occur frequently in progressive stages of UCC patients and are readily detectable in the urine sediments. MtDNA mutations appear to provide a promising tool for developing early detection and monitoring strategies for UCC patients.
doi:10.1002/ijc.26357
PMCID: PMC3328657  PMID: 21826645
Urothelial cell carcinoma; mitochondria; mtDNA alteration; urine detection
21.  The Impact of Cigarette Smoking on the Frequency of and Qualitative Differences in KRAS Mutations in Korean Patients with Lung Adenocarcinoma 
Yonsei Medical Journal  2013;54(4):865-874.
Purpose
This study was designed to determine the relationship of cigarette smoking to the frequency and qualitative differences among KRAS mutations in lung adenocarcinomas from Korean patients.
Materials and Methods
Detailed smoking histories were obtained from 200 consecutively enrolled patients with lung adenocarcinoma according to a standard protocol. EGFR (exons 18 to 21) and KRAS (codons 12/13) mutations were determined via direct-sequencing.
Results
The incidence of KRAS mutations was 8% (16 of 200) in patients with lung adenocarcinoma. KRAS mutations were found in 5.8% (7 of 120) of tumors from never-smokers, 15% (6 of 40) from former-smokers, and 7.5% (3 of 40) from current-smokers. The frequency of KRAS mutations did not differ significantly according to smoking history (p=0.435). Never-smokers were significantly more likely than former or current smokers to have a transition mutation (G→A or C→T) rather than a transversion mutation (G→T or G→C) that is known to be smoking-related (p=0.011). In a Cox regression model, the adjusted hazard ratios for the risk of progression with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) were 0.24 (95% CI, 0.14-0.42; p<0.001) for the EGFR mutation and 1.27 (95% CI, 0.58-2.79; p=0.537) for the KRAS mutation.
Conclusion
Cigarette smoking did not influence the frequency of KRAS mutations in lung adenocarcinomas in Korean patients, but influenced qualitative differences in the KRAS mutations.
doi:10.3349/ymj.2013.54.4.865
PMCID: PMC3663229  PMID: 23709419
EGFR; KRAS; pulmonary adenocarcinoma; cigarette smoking; EGFR-tyrosine kinase inhibitors
22.  Polymorphisms, Mutations, and Amplification of the EGFR Gene in Non-Small Cell Lung Cancers 
PLoS Medicine  2007;4(4):e125.
Background
The epidermal growth factor receptor (EGFR) gene is the prototype member of the type I receptor tyrosine kinase (TK) family and plays a pivotal role in cell proliferation and differentiation. There are three well described polymorphisms that are associated with increased protein production in experimental systems: a polymorphic dinucleotide repeat (CA simple sequence repeat 1 [CA-SSR1]) in intron one (lower number of repeats) and two single nucleotide polymorphisms (SNPs) in the promoter region, −216 (G/T or T/T) and −191 (C/A or A/A). The objective of this study was to examine distributions of these three polymorphisms and their relationships to each other and to EGFR gene mutations and allelic imbalance (AI) in non-small cell lung cancers.
Methods and Findings
We examined the frequencies of the three polymorphisms of EGFR in 556 resected lung cancers and corresponding non-malignant lung tissues from 336 East Asians, 213 individuals of Northern European descent, and seven of other ethnicities. We also studied the EGFR gene in 93 corresponding non-malignant lung tissue samples from European-descent patients from Italy and in peripheral blood mononuclear cells from 250 normal healthy US individuals enrolled in epidemiological studies including individuals of European descent, African–Americans, and Mexican–Americans. We sequenced the four exons (18–21) of the TK domain known to harbor activating mutations in tumors and examined the status of the CA-SSR1 alleles (presence of heterozygosity, repeat number of the alleles, and relative amplification of one allele) and allele-specific amplification of mutant tumors as determined by a standardized semiautomated method of microsatellite analysis. Variant forms of SNP −216 (G/T or T/T) and SNP −191 (C/A or A/A) (associated with higher protein production in experimental systems) were less frequent in East Asians than in individuals of other ethnicities (p < 0.001). Both alleles of CA-SSR1 were significantly longer in East Asians than in individuals of other ethnicities (p < 0.001). Expression studies using bronchial epithelial cultures demonstrated a trend towards increased mRNA expression in cultures having the variant SNP −216 G/T or T/T genotypes. Monoallelic amplification of the CA-SSR1 locus was present in 30.6% of the informative cases and occurred more often in individuals of East Asian ethnicity. AI was present in 44.4% (95% confidence interval: 34.1%–54.7%) of mutant tumors compared with 25.9% (20.6%–31.2%) of wild-type tumors (p = 0.002). The shorter allele in tumors with AI in East Asian individuals was selectively amplified (shorter allele dominant) more often in mutant tumors (75.0%, 61.6%–88.4%) than in wild-type tumors (43.5%, 31.8%–55.2%, p = 0.003). In addition, there was a strong positive association between AI ratios of CA-SSR1 alleles and AI of mutant alleles.
Conclusions
The three polymorphisms associated with increased EGFR protein production (shorter CA-SSR1 length and variant forms of SNPs −216 and −191) were found to be rare in East Asians as compared to other ethnicities, suggesting that the cells of East Asians may make relatively less intrinsic EGFR protein. Interestingly, especially in tumors from patients of East Asian ethnicity, EGFR mutations were found to favor the shorter allele of CA-SSR1, and selective amplification of the shorter allele of CA-SSR1 occurred frequently in tumors harboring a mutation. These distinct molecular events targeting the same allele would both be predicted to result in greater EGFR protein production and/or activity. Our findings may help explain to some of the ethnic differences observed in mutational frequencies and responses to TK inhibitors.
Masaharu Nomura and colleagues examine the distribution ofEGFR polymorphisms in different populations and find differences that might explain different responses to tyrosine kinase inhibitors in lung cancer patients.
Editors' Summary
Background.
Most cases of lung cancer—the leading cause of cancer deaths worldwide—are “non-small cell lung cancer” (NSCLC), which has a very low cure rate. Recently, however, “targeted” therapies have brought new hope to patients with NSCLC. Like all cancers, NSCLC occurs when cells begin to divide uncontrollably because of changes (mutations) in their genetic material. Chemotherapy drugs treat cancer by killing these rapidly dividing cells, but, because some normal tissues are sensitive to these agents, it is hard to kill the cancer completely without causing serious side effects. Targeted therapies specifically attack the changes in cancer cells that allow them to divide uncontrollably, so it might be possible to kill the cancer cells selectively without damaging normal tissues. Epidermal growth factor receptor (EGRF) was one of the first molecules for which a targeted therapy was developed. In normal cells, messenger proteins bind to EGFR and activate its “tyrosine kinase,” an enzyme that sticks phosphate groups on tyrosine (an amino acid) in other proteins. These proteins then tell the cell to divide. Alterations to this signaling system drive the uncontrolled growth of some cancers, including NSCLC.
Why Was This Study Done?
Molecules that inhibit the tyrosine kinase activity of EGFR (for example, gefitinib) dramatically shrink some NSCLCs, particularly those in East Asian patients. Tumors shrunk by tyrosine kinase inhibitors (TKIs) often (but not always) have mutations in EGFR's tyrosine kinase. However, not all tumors with these mutations respond to TKIs, and other genetic changes—for example, amplification (multiple copies) of the EGFR gene—also affect tumor responses to TKIs. It would be useful to know which genetic changes predict these responses when planning treatments for NSCLC and to understand why the frequency of these changes varies between ethnic groups. In this study, the researchers have examined three polymorphisms—differences in DNA sequences that occur between individuals—in the EGFR gene in people with and without NSCLC. In addition, they have looked for associations between these polymorphisms, which are present in every cell of the body, and the EGFR gene mutations and allelic imbalances (genes occur in pairs but amplification or loss of one copy, or allele, often causes allelic imbalance in tumors) that occur in NSCLCs.
What Did the Researchers Do and Find?
The researchers measured how often three EGFR polymorphisms (the length of a repeat sequence called CA-SSR1, and two single nucleotide variations [SNPs])—all of which probably affect how much protein is made from the EGFR gene—occurred in normal tissue and NSCLC tissue from East Asians and individuals of European descent. They also looked for mutations in the EGFR tyrosine kinase and allelic imbalance in the tumors, and then determined which genetic variations and alterations tended to occur together in people with the same ethnicity. Among many associations, the researchers found that shorter alleles of CA-SSR1 and the minor forms of the two SNPs occurred less often in East Asians than in individuals of European descent. They also confirmed that EGFR kinase mutations were more common in NSCLCs in East Asians than in European-descent individuals. Furthermore, mutations occurred more often in tumors with allelic imbalance, and in tumors where there was allelic imbalance and an EGFR mutation, the mutant allele was amplified more often than the wild-type allele.
What Do These Findings Mean?
The researchers use these associations between gene variants and tumor-associated alterations to propose a model to explain the ethnic differences in mutational frequencies and responses to TKIs seen in NSCLC. They suggest that because of the polymorphisms in the EGFR gene commonly seen in East Asians, people from this ethnic group make less EGFR protein than people from other ethnic groups. This would explain why, if a threshold level of EGFR is needed to drive cells towards malignancy, East Asians have a high frequency of amplified EGFR tyrosine kinase mutations in their tumors—mutation followed by amplification would be needed to activate EGFR signaling. This model, though speculative, helps to explain some clinical findings, such as the frequency of EGFR mutations and of TKI sensitivity in NSCLCs in East Asians. Further studies of this type in different ethnic groups and in different tumors, as well as with other genes for which targeted therapies are available, should help oncologists provide personalized cancer therapies for their patients.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040125.
US National Cancer Institute information on lung cancer and on cancer treatment for patients and professionals
MedlinePlus encyclopedia entries on NSCLC
Cancer Research UK information for patients about all aspects of lung cancer, including treatment with TKIs
Wikipedia pages on lung cancer, EGFR, and gefitinib (note that Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0040125
PMCID: PMC1876407  PMID: 17455987
23.  Lesions in patients with multifocal adenocarcinoma are more frequently in the right upper lobes 
OBJECTIVES
Opportunities to treat multifocal lung cancers, mostly adenocarcinoma, are increasing due to the development of imaging technologies. The optimal therapy modality to treat multifocally growing lung cancers remains obscure. To determine the features of multifocal lung cancers, we retrospectively reviewed patients with multiple lung lesions.
METHODS
Clinical, pathological and genetic characteristics of 31 patients with multifocal lesions were compared with those of patients who had had radical lung resection for solitary lung cancer. Gene mutation analyses for EGFR, KRAS and P53 were performed on three tumours of each of the patients who had four or more lesions.
RESULTS
Of the 31 patients, 17 had double tumours, 4 had triple tumours and 10 had 4 or more lesions. Patients with four or more lesions were significantly more likely to be females and never smokers. All of the histologically confirmed tumours of the cases with four or more lesions were adenocarcinoma in situ or lepidic predominant adenocarcinoma. The number of lesions in the right upper lobes when compared with the right lower lobes was significantly higher in patients with four or more lesions than in patients with double or triple lesions (P = 0.013). Five of the 12 tumours were positive for the EGFR mutation L858R in exon 21. No KRAS mutation was found.
CONCLUSIONS
Lesions in patients with multifocal adenocarcinoma are more frequently in the right upper lobes. Genetic analysis suggested that the specific EGFR mutation L858R in exon 21 might be the main factor contributing to lung carcinogenesis in multiple lung cancers. Further investigation of the right upper lobe in those patients compared with the lower lobes might provide more insights into lung carcinogenesis.
doi:10.1093/icvts/ivs276
PMCID: PMC3445368  PMID: 22733594
Lung cancer; Adenocarcinoma; Multiple lung tumour; EGFR mutation
24.  EGFR and HER2 Genomic Gain in Recurrent Non-small Cell Lung Cancer After Surgery 
Journal of Thoracic Oncology  2009;4(3):318-325.
Background
Sensitivity to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) and frequency of activation mutations in EGFR is lower in Caucasian than Asian non small-cell lung cancer (NSCLC) patients. Increased EGFR gene copy numbers evaluated by fluorescence in situ hybridization (FISH) has been reported as predictor of clinical benefit from EGFR-TKIs in Caucasian NSCLC patients. This study was carried out to verify whether EGFR FISH had similar performance in Japanese patients.
Methods
A cohort of 44 Japanese patients with recurrent NSCLC after surgery was treated with gefitinib 250 mg daily. The cohort included 48% females and 52% never-smokers; 73% had prior chemotherapy and 57% had stage III-IV at the time of surgery. Adenocarcinoma was the most common histology (86%). FISH was performed using the EGFR/Chromosome Enumeration Probe 7 and PathVysion DNA probes (Abbott Molecular). Specimens were classified as FISH positive when showing gene amplification or high polysomy (≥4 copies of the gene in ≥40% of tumor cells). Tumor response to gefitinib was assessed by RECIST for 33 patients with measurable diseases.
Results
Twenty-nine tumors (66%) were EGFR FISH+ and 23 (53%) were HER2 FISH+. Overall response rate was 52%, representing 65% of EGFR FISH+ patients and 29% of EGFR FISH+ patients (p = 0.0777). Survival was not impacted by the EGFR FISH (p = 0.9395) or the HER2 FISH (p = 0.0671) status. EGFR FISH= was significantly associated with HER2 FISH+ (p = 0.015) and presence of EGFR mutation (p = 0.0060). EGFR mutation significantly correlated with response (p < 0.0001) and survival after gefitinib (p = 0.0204). EGFR and HER2 FISH status were not associated with KRAS mutation.
Conclusion
Frequency of EGFR FISH+ status was higher and its predictive power for TKI sensitivity was lower in this Japanese cohort than in Western NSCLC cohorts. These findings support differences in the mechanisms of EGFR pathway activation in NSCLC between Asian and Caucasian populations. Confirmation of these results in larger cohorts is warranted.
doi:10.1097/JTO.0b013e31819667a3
PMCID: PMC3379811  PMID: 19247083
FISH; EGFR; HER2; KRAS; Biomarkers; NSCLC; Tyrosine inhibitors
25.  Incidence of EGFR Exon 19 Deletions and L858R in Tumor Specimens From Men and Cigarette Smokers With Lung Adenocarcinomas 
Journal of Clinical Oncology  2011;29(15):2066-2070.
Purpose
EGFR mutations underlie the sensitivity of lung cancers to erlotinib and gefitinib and can occur in any patient with this illness. Here we examine the frequency of EGFR mutations in smokers and men.
Methods
We determined the frequency of EGFR mutations and characterized their association with cigarette smoking status and male sex.
Results
We tested 2,142 lung adenocarcinoma specimens for the presence of EGFR exon 19 deletions and L858R. EGFR mutations were found in 15% of tumors from former smokers (181 of 1,218; 95% CI, 13% to 17%), 6% from current smokers (20 of 344; 95% CI, 4% to 9%), and 52% from never smokers (302 of 580; 95% CI, 48% to 56%; P < .001 for ever v never smokers). EGFR mutations in former or current smokers represented 40% of all those detected (201 of 503; 95% CI, 36% to 44%). EGFR mutations were found in 19% (157 of 827; 95% CI, 16% to 22%) of tumors from men and 26% (346 of 1,315; 95% CI, 24% to 29%) of tumors from women (P < .001). EGFR mutations in men represented 31% (157 of 503; 95% CI, 27% to 35%) of all those detected.
Conclusion
A large number of EGFR mutations are found in adenocarcinoma tumor specimens from men and people who smoked cigarettes. If only women who were never smokers were tested, 57% of all EGFR mutations would be missed. Testing for EGFR mutations should be considered for all patients with adenocarcinoma of the lung at diagnosis, regardless of clinical characteristics. This strategy can extend the use of EGFR tyrosine kinase inhibitors to the greatest number individuals with the potential for substantial benefit.
doi:10.1200/JCO.2010.32.6181
PMCID: PMC3296671  PMID: 21482987

Results 1-25 (1376018)