PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (896832)

Clipboard (0)
None

Related Articles

1.  The pgaABCD Locus of Acinetobacter baumannii Encodes the Production of Poly-β-1-6-N-Acetylglucosamine, Which Is Critical for Biofilm Formation▿  
Journal of Bacteriology  2009;191(19):5953-5963.
We found that Acinetobacter baumannii contains a pgaABCD locus that encodes proteins that synthesize cell-associated poly-β-(1-6)-N-acetylglucosamine (PNAG). Both a mutant with an in-frame deletion of the pga locus (S1Δpga) and a transcomplemented strain (S1Δpga-c) of A. baumannii were constructed, and the PNAG production by these strains was compared using an immunoblot assay. Deleting the pga locus resulted in an A. baumannii strain without PNAG, and transcomplementation of the S1Δpga strain with the pgaABCD genes fully restored the wild-type PNAG phenotype. Heterologous expression of the A. baumannii pga locus in Escherichia coli led to synthesis of significant amounts of PNAG, while no polysaccharide was detected in E. coli cells harboring an empty vector. Nuclear magnetic resonance analysis of the extracellular polysaccharide material isolated from A. baumannii confirmed that it was PNAG, but notably only 60% of the glucosamine amino groups were acetylated. PCR analysis indicated that all 30 clinical A. baumannii isolates examined had the pga genes, and immunoblot assays indicated that 14 of the 30 strains strongly produced PNAG, 14 of the strains moderately to weakly produced PNAG, and 2 strains appeared to not produce PNAG. Deletion of the pga locus led to loss of the strong biofilm phenotype, which was restored by complementation. Confocal laser scanning microscopy studies combined with COMSTAT analysis demonstrated that the biovolume, mean thickness, and maximum thickness of 16-h and 48-h-old biofilms formed by wild-type and pga-complemented A. baumannii strains were significantly greater than the biovolume, mean thickness, and maximum thickness of 16-h and 48-h-old biofilms formed by the S1Δpga mutant strain. Biofilm-dependent production of PNAG could be an important virulence factor for this emerging pathogen that has few known virulence factors.
doi:10.1128/JB.00647-09
PMCID: PMC2747904  PMID: 19633088
2.  Lipopolysaccharide-Deficient Acinetobacter baumannii Shows Altered Signaling through Host Toll-Like Receptors and Increased Susceptibility to the Host Antimicrobial Peptide LL-37 
Infection and Immunity  2013;81(3):684-689.
Infections caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious global health problem. We have shown previously that A. baumannii can become resistant to the last-line antibiotic colistin via the loss of lipopolysaccharide (LPS), including the lipid A anchor, from the outer membrane (J. H. Moffatt, M. Harper, P. Harrison, J. D. Hale, E. Vinogradov, T. Seemann, R. Henry, B. Crane, F. St. Michael, A. D. Cox, B. Adler, R. L. Nation, J. Li, and J. D. Boyce, Antimicrob. Agents Chemother. 54:4971–4977, 2010). Here, we show how these LPS-deficient bacteria interact with components of the host innate immune system. LPS-deficient A. baumannii stimulated 2- to 4-fold lower levels of NF-κB activation and tumor necrosis factor alpha (TNF-α) secretion from immortalized murine macrophages, but it still elicited low levels of TNF-α secretion via a Toll-like receptor 2-dependent mechanism. Furthermore, we show that while LPS-deficient A. baumannii was not altered in its resistance to human serum, it showed increased susceptibility to the human antimicrobial peptide LL-37. Thus, LPS-deficient, colistin-resistant A. baumannii shows significantly altered activation of the host innate immune inflammatory response.
doi:10.1128/IAI.01362-12
PMCID: PMC3584870  PMID: 23250952
3.  Colistin Resistance in Acinetobacter baumannii Is Mediated by Complete Loss of Lipopolysaccharide Production ▿  
Antimicrobial Agents and Chemotherapy  2010;54(12):4971-4977.
Infections caused by multidrug-resistant (MDR) Gram-negative bacteria represent a major global health problem. Polymyxin antibiotics such as colistin have resurfaced as effective last-resort antimicrobials for use against MDR Gram-negative pathogens, including Acinetobacter baumannii. Here we show that A. baumannii can rapidly develop resistance to polymyxin antibiotics by complete loss of the initial binding target, the lipid A component of lipopolysaccharide (LPS), which has long been considered to be essential for the viability of Gram-negative bacteria. We characterized 13 independent colistin-resistant derivatives of A. baumannii type strain ATCC 19606 and showed that all contained mutations within one of the first three genes of the lipid A biosynthesis pathway: lpxA, lpxC, and lpxD. All of these mutations resulted in the complete loss of LPS production. Furthermore, we showed that loss of LPS occurs in a colistin-resistant clinical isolate of A. baumannii. This is the first report of a spontaneously occurring, lipopolysaccharide-deficient, Gram-negative bacterium.
doi:10.1128/AAC.00834-10
PMCID: PMC2981238  PMID: 20855724
4.  Different surface charge of colistin-susceptible and -resistant Acinetobacter baumannii cells measured with zeta potential as a function of growth phase and colistin treatment 
Objectives
Electrostatic forces mediate the initial interaction between cationic colistin and Gram-negative bacterial cells. Lipopolysaccharide (LPS) loss mediates colistin resistance in some A. baumannii strains. Our aim was to determine the surface charge of colistin-susceptible and –resistant A. baumannii as a function of growth phase and in response to polymyxin treatment.
Methods
The zeta potential of A. baumannii ATCC 19606 and 10 clinical multidrug-resistant strains (MICs 0.5–2 mg/L) was assessed. Colistin-resistant derivatives (MIC >128 mg/L) of wild-type strains were selected in the presence of 10 mg/L colistin, including the LPS-deficient lpxA mutant, ATCC 19606R. To determine the contribution of LPS to surface charge, two complemented ATCC 19606R derivatives were examined, namely ATCC 19606R + lpxA (containing an intact lpxA gene) and ATCC 19606R + V (containing empty vector). Investigations were conducted as a function of growth phase and polymyxin treatment (1, 4 and 8 mg/L).
Results
Wild-type cells exhibited a greater negative charge (−60.5 ± 2.36 to −26.2 ± 2.56 mV) thancolistin-resistant cells (−49.2 ± 3.09 to −19.1 ± 2.80 mV) at mid-log phase (ANOVA, P < 0.05). Opposing growth-phase trends were observed for both phenotypes: wild-type cells displayed reduced negative charge and colistin-resistant cells displayed increased negative charge at stationary compared with mid-logarithmic phase. Polymyxin exposure resulted in a concentration-dependent increase in zeta potential. Examination of ATCC 19606R and complemented strains supported the importance of LPS in determining surface charge, suggesting a potential mechanism of colistin resistance.
Conclusions
Zeta potential differences between A. baumannii phenotypes probably reflect compositional outer-membrane variations that impact the electrostatic component of colistin activity.
doi:10.1093/jac/dkq422
PMCID: PMC3001852  PMID: 21081544
physicochemical properties; Gram-negative; polymyxin
5.  Detection and Analysis of Iron Uptake Components Expressed by Acinetobacter baumannii Clinical Isolates 
Journal of Clinical Microbiology  2003;41(9):4188-4193.
The Acinetobacter baumannii 19606 prototype strain produces a 78-kDa iron-regulated outer membrane protein immunologically related to FatA, which is required for iron acquisition by the fish pathogen Vibrio anguillarum via the anguibactin-mediated system. This A. baumannii strain also secretes histamine, a biosynthetic precursor of the siderophore anguibactin. In contrast, the A. baumannii 8399 clinical strain isolated in Oregon produces a siderophore and a putative 73-kDa iron-regulated outer membrane (OM73) receptor that are different from those produced by V. anguillarum and A. baumannii 19606. These observations suggest that different A. baumannii clinical isolates express unrelated iron uptake systems. This hypothesis is supported by differences in outer membrane protein profiles among A. baumannii isolates obtained from Oregon and Europe. The 19606 isolate and some European isolates expressed a FatA-like protein, while neither 19606 nor any of the European isolates expressed proteins related to OM73. Some European isolates failed to express FatA- and OM73-like proteins. All but one of the Oregon isolates expressed OM73-like proteins, while none of them contained a FatA-like protein. The presence of these proteins always correlated with the presence of the om73- and fatA-like genes in the cognate strains. While 19606 and a few European isolates produced histamine, none of the Oregon isolates had this capability. Interestingly, one strain each from the Oregon and European isolates did not express any of these products involved in iron acquisition, indicating that they could acquire iron through siderophore-mediated transport systems different from those expressed by the 19606 and 8399 clinical isolates.
doi:10.1128/JCM.41.9.4188-4193.2003
PMCID: PMC193846  PMID: 12958246
6.  Genetic and Phenotypic Analysis of Acinetobacter baumannii Insertion Derivatives Generated with a Transposome System 
Applied and Environmental Microbiology  2002;68(12):6353-6360.
Acinetobacter baumannii is a metabolically versatile pathogen that causes severe infections in compromised patients. However, little is known about the genes and factors involved in its basic physiology and virulence properties. Insertion mutagenesis was used to initiate the identification and characterization of some of these factors and genes in the prototype strain 19606. The utilization of the pLOFKm suicide delivery vector, which harbors a suicide mini-Tn10 derivative, proved to be unsuccessful for this purpose. The EZ::TN 〈R6Kγori/KAN-2〉 Tnp transposome system available from Epicentre was then used in conjunction with electroporation to generate isogenic insertional derivatives of A. baumannii 19606. Replica plating showed that 2% of the colonies that grew after electroporation on agar plates without antibiotics also grew in the presence of 40 μg of kanamycin per ml. DNA hybridization proved that all of the kanamycin-resistant derivatives contained the EZ::TN 〈R6Kγori/KAN-2〉 insertion element, which was mapped to different genomic locations. Replica plating on Simmons citrate agar and microtiter plate-plastic tube assays identified growth- and biofilm-defective derivatives, respectively. The location of the insertion in several of these derivatives was determined by self-ligation of NdeI- or EcoRI-digested genomic DNA and electroporation of Escherichia coli TransforMax EC100D (pir+). Sequence analysis of the recovered plasmids showed that some of the A. baumannii 19606 growth-defective derivatives contain insertions within genes encoding activities required for the generation of energy and cell wall components and for the biosynthesis of amino acids and purines. A gene encoding a protein similar to the GacS sensor kinase was interrupted in four derivatives, while another had an insertion in a gene coding for a hypothetical sensor kinase. A. baumannii 19606 derivatives with defective attachment or biofilm phenotypes had insertions within genes that appear to be part of a chaperone-usher transport system described for other bacteria. DNA hybridization experiments showed that the presence of strain 19606 genes encoding regulatory and attachment or biofilm functions is widespread among other A. baumannii clinical isolates.
doi:10.1128/AEM.68.12.6353-6360.2002
PMCID: PMC134429  PMID: 12450860
7.  Immunization with Lipopolysaccharide-Deficient Whole Cells Provides Protective Immunity in an Experimental Mouse Model of Acinetobacter baumannii Infection 
PLoS ONE  2014;9(12):e114410.
The increasing clinical importance of infections caused by multidrug resistant Acinetobacter baumannii warrants the development of novel approaches for prevention and treatment. In this context, vaccination of certain patient populations may contribute to reducing the morbidity and mortality caused by this pathogen. Vaccines against Gram-negative bacteria based on inactivated bacterial cells are highly immunogenic and have been shown to produce protective immunity against a number of bacterial species. However, the high endotoxin levels present in these vaccines due to the presence of lipopolysaccharide complicates their use in human vaccination. In the present study, we used a laboratory-derived strain of A. baumannii that completely lacks lipopolysaccharide due to a mutation in the lpxD gene (IB010), one of the genes involved in the first steps of lipopolysaccharide biosynthesis, for vaccination. We demonstrate that IB010 has greatly reduced endotoxin content (<1.0 endotoxin unit/106 cells) compared to wild type cells. Immunization with formalin inactivated IB010 produced a robust antibody response consisting of both IgG1 and IgG2c subtypes. Mice immunized with IB010 had significantly lower post-infection tissue bacterial loads and significantly lower serum levels of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6 compared to control mice in a mouse model of disseminated A. baumannii infection. Importantly, immunized mice were protected from infection with the ATCC 19606 strain and an A. baumannii clinical isolate. These data suggest that immunization with inactivated A. baumannii whole cells deficient in lipopolysaccharide could serve as the basis for a vaccine for the prevention of infection caused by A. baumannii.
doi:10.1371/journal.pone.0114410
PMCID: PMC4259314  PMID: 25485716
8.  Molecular Mechanisms of Ethanol-Induced Pathogenesis Revealed by RNA-Sequencing 
PLoS Pathogens  2010;6(4):e1000834.
Acinetobacter baumannii is a common pathogen whose recent resistance to drugs has emerged as a major health problem. Ethanol has been found to increase the virulence of A. baumannii in Dictyostelium discoideum and Caenorhabditis elegans models of infection. To better understand the causes of this effect, we examined the transcriptional profile of A. baumannii grown in the presence or absence of ethanol using RNA-Seq. Using the Illumina/Solexa platform, a total of 43,453,960 reads (35 nt) were obtained, of which 3,596,474 mapped uniquely to the genome. Our analysis revealed that ethanol induces the expression of 49 genes that belong to different functional categories. A strong induction was observed for genes encoding metabolic enzymes, indicating that ethanol is efficiently assimilated. In addition, we detected the induction of genes encoding stress proteins, including upsA, hsp90, groEL and lon as well as permeases, efflux pumps and a secreted phospholipase C. In stationary phase, ethanol strongly induced several genes involved with iron assimilation and a high-affinity phosphate transport system, indicating that A. baumannii makes a better use of the iron and phosphate resources in the medium when ethanol is used as a carbon source. To evaluate the role of phospholipase C (Plc1) in virulence, we generated and analyzed a deletion mutant for plc1. This strain exhibits a modest, but reproducible, reduction in the cytotoxic effect caused by A. baumannii on epithelial cells, suggesting that phospholipase C is important for virulence. Overall, our results indicate the power of applying RNA-Seq to identify key modulators of bacterial pathogenesis. We suggest that the effect of ethanol on the virulence of A. baumannii is multifactorial and includes a general stress response and other specific components such as phospholipase C.
Author Summary
Acinetobacter baumannii has recently emerged as a frequent opportunistic pathogen. In the presence of ethanol A. baumannii increases its pathogenicity towards Dictyostelium discoideum and Caenorhabditis elegans, and community-acquired infections of A. baumannii are associated with alcoholism. Ethanol negatively affects both epithelial cells and alters the bacterial physiology. To explore the underlying basis for the increased virulence of A. baumannii in the presence of ethanol we examined the transcriptional profile of this bacterium using the novel methodology known as RNA-Seq. We show that ethanol induces the expression of a phospholipase C, which contributes to A. baumannii cytotoxicity. We also show that many proteins related to stress were induced and that ethanol is efficiently assimilated as a carbon source leading to induction in stationary phase of two different Fe uptake systems and a phosphate transport system. Interestingly, a previous study showed that a mutant in the high-affinity phosphate uptake system was avirulent. Our work contributes to the understanding of A. baumannii pathogenesis and provides a powerful approach that can be extended to other pathogenic bacteria.
doi:10.1371/journal.ppat.1000834
PMCID: PMC2848557  PMID: 20368969
9.  Biological Cost of Different Mechanisms of Colistin Resistance and Their Impact on Virulence in Acinetobacter baumannii 
Two mechanisms of resistance to colistin have been described in Acinetobacter baumannii. One involves complete loss of lipopolysaccharide (LPS), resulting from mutations in lpxA, lpxC, or lpxD, and the second is associated with phosphoethanolamine addition to LPS, mediated through mutations in pmrAB. In order to assess the clinical impacts of both resistance mechanisms, A. baumannii ATCC 19606 and its isogenic derivatives, AL1851 ΔlpxA, AL1852 ΔlpxD, AL1842 ΔlpxC, and ATCC 19606 pmrB, were analyzed for in vitro growth rate, in vitro and in vivo competitive growth, infection of A549 respiratory alveolar epithelial cells, virulence in the Caenorhabditis elegans model, and virulence in a systemic mouse infection model. The in vitro growth rate of the lpx mutants was clearly diminished; furthermore, in vitro and in vivo competitive-growth experiments revealed a reduction in fitness for both mutant types. Infection of A549 cells with ATCC 19606 or the pmrB mutant resulted in greater loss of viability than with lpx mutants. Finally, the lpx mutants were highly attenuated in both the C. elegans and mouse infection models, while the pmrB mutant was attenuated only in the C. elegans model. In summary, while colistin resistance in A. baumannii confers a clear selective advantage in the presence of colistin treatment, it causes a noticeable cost in terms of overall fitness and virulence, with a more striking reduction associated with LPS loss than with phosphoethanolamine addition. Therefore, we hypothesize that colistin resistance mediated by changes in pmrAB will be more likely to arise in clinical settings in patients treated with colistin.
doi:10.1128/AAC.01597-13
PMCID: PMC3910726  PMID: 24189257
10.  Effect of colistin exposure and growth phase on the surface properties of live Acinetobacter baumannii cells examined by atomic force microscopy 
The diminishing antimicrobial development pipeline has forced the revival of colistin as a last line of defence against infections caused by multidrug-resistant Gram-negative ‘superbugs’ such as Acinetobacter baumannii. The complete loss of lipopolysaccharide (LPS) mediates colistin resistance in some A. baumannii strains. Atomic force microscopy was used to examine the surface properties of colistin-susceptible and -resistant A. baumannii strains at mid-logarithmic and stationary growth phases in liquid and in response to colistin treatment. The contribution of LPS to surface properties was investigated using A. baumannii strains constructed with and without the lpxA gene. Bacterial spring constant measurements revealed that colistin-susceptible cells were significantly stiffer than colistin-resistant cells at both growth phases (P < 0.01), whilst colistin treatment at high concentrations (32 mg/L) resulted in more rigid surfaces for both phenotypes. Multiple, large adhesive peaks frequently noted in force curves captured on colistin-susceptible cells were not evident for colistin-resistant cells. Adhesion events were markedly reduced following colistin exposure. The cell membranes of strains of both phenotypes remained intact following colistin treatment, although fine topographical details were illustrated. These studies, conducted for the first time on live A. baumannii cells in liquid, have contributed to our understanding of the action of colistin in this problematic pathogen.
doi:10.1016/j.ijantimicag.2011.07.014
PMCID: PMC3433558  PMID: 21925844
Atomic force microscopy; Colistin; Acinetobacter baumannii; Morphology; Surface properties
11.  Inhibition of LpxC Protects Mice from Resistant Acinetobacter baumannii by Modulating Inflammation and Enhancing Phagocytosis 
mBio  2012;3(5):e00312-12.
ABSTRACT
New treatments are needed for extensively drug-resistant (XDR) Gram-negative bacilli (GNB), such as Acinetobacter baumannii. Toll-like receptor 4 (TLR4) was previously reported to enhance bacterial clearance of GNB, including A. baumannii. However, here we have shown that 100% of wild-type mice versus 0% of TLR4-deficient mice died of septic shock due to A. baumannii infection, despite having similar tissue bacterial burdens. The strain lipopolysaccharide (LPS) content and TLR4 activation by extracted LPS did not correlate with in vivo virulence, nor did colistin resistance due to LPS phosphoethanolamine modification. However, more-virulent strains shed more LPS during growth than less-virulent strains, resulting in enhanced TLR4 activation. Due to the role of LPS in A. baumannii virulence, an LpxC inhibitor (which affects lipid A biosynthesis) antibiotic was tested. The LpxC inhibitor did not inhibit growth of the bacterium (MIC > 512 µg/ml) but suppressed A. baumannii LPS-mediated activation of TLR4. Treatment of infected mice with the LpxC inhibitor enhanced clearance of the bacteria by enhancing opsonophagocytic killing, reduced serum LPS concentrations and inflammation, and completely protected the mice from lethal infection. These results identify a previously unappreciated potential for the new class of LpxC inhibitor antibiotics to treat XDR A. baumannii infections. Furthermore, they have far-reaching implications for pathogenesis and treatment of infections caused by GNB and for the discovery of novel antibiotics not detected by standard in vitro screens.
IMPORTANCE
Novel treatments are needed for infections caused by Acinetobacter baumannii, a Gram-negative bacterium that is extremely antibiotic resistant. The current study was undertaken to understand the immunopathogenesis of these infections, as a basis for defining novel treatments. The primary strain characteristic that differentiated virulent from less-virulent strains was shedding of Gram-negative lipopolysaccharide (LPS) during growth. A novel class of antibiotics, called LpxC inhibitors, block LPS synthesis, but these drugs do not demonstrate the ability to kill A. baumannii in vitro. We found that an LpxC inhibitor blocked the ability of bacteria to activate the sepsis cascade, enhanced opsonophagocytic killing of the bacteria, and protected mice from lethal infection. Thus, an entire new class of antibiotics which is already in development has heretofore-unrecognized potential to treat A. baumannii infections. Furthermore, standard antibiotic screens based on in vitro killing failed to detect this treatment potential of LpxC inhibitors for A. baumannii infections.
doi:10.1128/mBio.00312-12
PMCID: PMC3518917  PMID: 23033474
12.  The Acinetobacter baumannii entA Gene Located Outside the Acinetobactin Cluster Is Critical for Siderophore Production, Iron Acquisition and Virulence 
PLoS ONE  2012;7(5):e36493.
Acinetobacter baumannii causes severe infections in compromised patients, who present an iron-limited environment that controls bacterial growth. This pathogen has responded to this restriction by expressing high-affinity iron acquisition systems including that mediated by the siderophore acinetobactin. Gene cloning, functional assays and biochemical tests showed that the A. baumannii genome contains a single functional copy of an entA ortholog. This gene, which is essential for the biosynthesis of the acinetobactin precursor 2,3-dihydroxybenzoic acid (DHBA), locates outside of the acinetobactin gene cluster, which otherwise harbors all genes needed for acinetobactin biosynthesis, export and transport. In silico analyses and genetic complementation tests showed that entA locates next to an entB ortholog, which codes for a putative protein that contains the isochorismatase lyase domain, which is needed for DHBA biosynthesis from isochorismic acid, but lacks the aryl carrier protein domain, which is needed for tethering activated DHBA and completion of siderophore biosynthesis. Thus, basF, which locates within the acinetobactin gene cluster, is the only fully functional entB ortholog present in ATCC 19606T. The differences in amino acid length and sequences between these two EntB orthologs and the differences in the genetic context within which the entA and entB genes are found in different A. baumannii isolates indicate that they were acquired from different sources by horizontal transfer. Interestingly, the AYE strain proved to be a natural entA mutant capable of acquiring iron via an uncharacterized siderophore-mediated system, an observation that underlines the ability of different A. baumannii isolates to acquire iron using different systems. Finally, experimental infections using in vivo and ex vivo models demonstrate the role of DHBA and acinetobactin intermediates in the virulence of the ATCC 19606T cells, although to a lesser extent when compared to the responses obtained with bacteria producing and using fully matured acinetobactin to acquire iron.
doi:10.1371/journal.pone.0036493
PMCID: PMC3343012  PMID: 22570720
13.  Functional Features of TonB Energy Transduction Systems of Acinetobacter baumannii 
Infection and Immunity  2013;81(9):3382-3394.
Acinetobacter baumannii is an opportunistic pathogen that causes severe nosocomial infections. Strain ATCC 19606T utilizes the siderophore acinetobactin to acquire iron under iron-limiting conditions encountered in the host. Accordingly, the genome of this strain has three tonB genes encoding proteins for energy transduction functions needed for the active transport of nutrients, including iron, through the outer membrane. Phylogenetic analysis indicates that these tonB genes, which are present in the genomes of all sequenced A. baumannii strains, were acquired from different sources. Two of these genes occur as components of tonB-exbB-exbD operons and one as a monocistronic copy; all are actively transcribed in ATCC 19606T. The abilities of components of these TonB systems to complement the growth defect of Escherichia coli W3110 mutants KP1344 (tonB) and RA1051 (exbBD) under iron-chelated conditions further support the roles of these TonB systems in iron acquisition. Mutagenesis analysis of ATCC 19606T tonB1 (subscripted numbers represent different copies of genes or proteins) and tonB2 supports this hypothesis: their inactivation results in growth defects in iron-chelated media, without affecting acinetobactin biosynthesis or the production of the acinetobactin outer membrane receptor protein BauA. In vivo assays using Galleria mellonella show that each TonB protein is involved in, but not essential for, bacterial virulence in this infection model. Furthermore, we observed that TonB2 plays a role in the ability of bacteria to bind to fibronectin and to adhere to A549 cells by uncharacterized mechanisms. Taken together, these results indicate that A. baumannii ATCC 19606T produces three independent TonB proteins, which appear to provide the energy-transducing functions needed for iron acquisition and cellular processes that play a role in the virulence of this pathogen.
doi:10.1128/IAI.00540-13
PMCID: PMC3754232  PMID: 23817614
14.  Phosphoethanolamine Modification of Lipid A in Colistin-Resistant Variants of Acinetobacter baumannii Mediated by the pmrAB Two-Component Regulatory System▿ 
Colistin resistance is rare in Acinetobacter baumannii, and little is known about its mechanism. We investigated the role of PmrCAB in this trait, using (i) resistant and susceptible clinical strains, (ii) laboratory-selected mutants of the type strain ATCC 19606 and of the clinical isolate ABRIM, and (iii) a susceptible/resistant pair of isogenic clinical isolates, Ab15/133 and Ab15/132, isolated from the same patient. pmrAB sequences in all the colistin-susceptible isolates were identical to reference sequences, whereas resistant clinical isolates harbored one or two amino acid replacements variously located in PmrB. Single substitutions in PmrB were also found in resistant mutants of strains ATCC 19606 and ABRIM and in the resistant clinical isolate Ab15/132. No mutations in PmrA or PmrC were found. Reverse transcriptase (RT)-PCR identified increased expression of pmrA (4- to 13-fold), pmrB (2- to 7-fold), and pmrC (1- to 3-fold) in resistant versus susceptible organisms. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry showed the addition of phosphoethanolamine to the hepta-acylated form of lipid A in the resistant variants and in strain ATCC 19606 grown under low-Mg2+ induction conditions. pmrB gene knockout mutants of the colistin-resistant ATCC 19606 derivative showed >100-fold increased susceptibility to colistin and 5-fold decreased expression of pmrC; they also lacked the addition of phosphoethanolamine to lipid A. We conclude that the development of a moderate level of colistin resistance in A. baumannii requires distinct genetic events, including (i) at least one point mutation in pmrB, (ii) upregulation of pmrAB, and (iii) expression of pmrC, which lead to addition of phosphoethanolamine to lipid A.
doi:10.1128/AAC.00079-11
PMCID: PMC3122444  PMID: 21576434
15.  Genome-Wide Identification of Acinetobacter baumannii Genes Necessary for Persistence in the Lung 
mBio  2014;5(3):e01163-14.
ABSTRACT
Acinetobacter baumannii is a Gram-negative bacterium that causes diseases such as pneumonia, bacteremia, and soft tissue infections in hospitalized patients. Relatively little is known about how A. baumannii causes these infections. Thus, we used insertion sequencing (INSeq), a combination of transposon mutagenesis and massively parallel next-generation sequencing, to identify novel virulence factors of A. baumannii. To this end, we generated a random transposon mutant library containing 150,000 unique insertions in A. baumannii strain ATCC 17978. The INSeq analysis identified 453 genes required for growth in rich medium. The library was then used in a murine pneumonia model, and the relative levels of abundance of mutants before and after selection in the mouse were compared. When genes required for growth in rich medium were removed from the analysis, 157 genes were identified as necessary for persistence in the mouse lung. Several of these encode known virulence factors of A. baumannii, such as OmpA and ZnuB, which validated our approach. A large number of the genes identified were predicted to be involved in amino acid and nucleotide metabolism and transport. Other genes were predicted to encode an integration host factor, a transmembrane lipoprotein, and proteins involved in stress response and efflux pumps. Very few genes, when disrupted, resulted in an increase in A. baumannii numbers during host infection. The INSeq approach identified a number of novel virulence determinants of A. baumannii, which are candidate targets for therapeutic interventions.
IMPORTANCE
A. baumannii has emerged as a frequent cause of serious infections in hospitals and community settings. Due to increasing antibiotic resistance, alternative approaches, such as antivirulence strategies, are desperately needed to fight A. baumannii infections. Thorough knowledge of A. baumannii pathogenicity is essential for such approaches but is currently lacking. With the increasingly widespread use of massively parallel sequencing, a class of techniques known as transposon insertion sequencing has been developed to perform comprehensive virulence screens of bacterial genomes in vivo. We have applied one of these approaches (INSeq) to uncover novel virulence factors in A. baumannii. We identified several such factors, including those predicted to encode amino acid and nucleotide metabolism proteins, an integration host factor protein, stress response factors, and efflux pumps. These results greatly expand the number of A. baumannii virulence factors and uncover potential targets for antivirulence treatments.
doi:10.1128/mBio.01163-14
PMCID: PMC4049102  PMID: 24895306
16.  Phase Variation of Poly-N-Acetylglucosamine Expression in Staphylococcus aureus 
PLoS Pathogens  2014;10(7):e1004292.
Polysaccharide intercellular adhesin (PIA), also known as poly-N-acetyl-β-(1–6)-glucosamine (PIA/PNAG) is an important component of Staphylococcus aureus biofilms and also contributes to resistance to phagocytosis. The proteins IcaA, IcaD, IcaB, and IcaC are encoded within the intercellular adhesin (ica) operon and synthesize PIA/PNAG. We discovered a mechanism of phase variation in PIA/PNAG expression that appears to involve slipped-strand mispairing. The process is reversible and RecA-independent, and involves the expansion and contraction of a simple tetranucleotide tandem repeat within icaC. Inactivation of IcaC results in a PIA/PNAG-negative phenotype. A PIA/PNAG-hyperproducing strain gained a fitness advantage in vitro following the icaC mutation and loss of PIA/PNAG production. The mutation was also detected in two clinical isolates, suggesting that under certain conditions, loss of PIA/PNAG production may be advantageous during infection. There was also a survival advantage for an icaC-negative strain harboring intact icaADB genes relative to an isogenic icaADBC deletion mutant. Together, these results suggest that inactivation of icaC is a mode of phase variation for PIA/PNAG expression, that high-level production of PIA/PNAG carries a fitness cost, and that icaADB may contribute to bacterial fitness, by an unknown mechanism, in the absence of an intact icaC gene and PIA/PNAG production.
Author Summary
Staphylococcal polysaccharide intercellular adhesin (PIA), also known as β-1-6-linked N-acetylglucosamine (PNAG) plays a role in immune evasion and biofilm formation. Evidence suggests that under certain circumstances PIA/PNAG production is beneficial, whereas at times, it may be advantageous for the bacteria to turn production off. In S. epidermidis, PIA/PNAG can be switched off when an insertion sequence recombines into the intercellular adhesin locus (ica). In this study, we have found a short tandem repeat sequence in the ica locus of S. aureus that can undergo expansion and contraction. The addition or subtraction of non-multiples of three of this repeat shifts the reading frame of the icaC gene, resulting in the complete loss of PIA/PNAG production. We hypothesize that certain conditions that make the PIA/PNAG-negative phenotype advantageous during infection, such as the development of an effective immune response to PIA/PNAG on the bacterial surface, would select for repeat mutants. In support of this hypothesis, we found clinical isolates with expansion and deletion of the repeat. These findings reveal a new on-off switch for the expression of PIA/PNAG.
doi:10.1371/journal.ppat.1004292
PMCID: PMC4117637  PMID: 25077798
17.  Genetic Dissection of an Exogenously Induced Biofilm in Laboratory and Clinical Isolates of E. coli 
PLoS Pathogens  2009;5(5):e1000432.
Microbial biofilms are a dominant feature of many human infections. However, developing effective strategies for controlling biofilms requires an understanding of the underlying biology well beyond what currently exists. Using a novel strategy, we have induced formation of a robust biofilm in Escherichia coli by utilizing an exogenous source of poly-N-acetylglucosamine (PNAG) polymer, a major virulence factor of many pathogens. Through microarray profiling of competitive selections, carried out in both transposon insertion and over-expression libraries, we have revealed the genetic basis of PNAG-based biofilm formation. Our observations reveal the dominance of electrostatic interactions between PNAG and surface structures such as lipopolysaccharides. We show that regulatory modulation of these surface structures has significant impact on biofilm formation behavior of the cell. Furthermore, the majority of clinical isolates which produced PNAG also showed the capacity to respond to the exogenously produced version of the polymer.
Author Summary
Both in the wild and in the clinical setting many bacterial species live within surface-attached communities called biofilms. It is still unclear the extent to which the biofilm lifestyle and its associated phenotypes, such as hyper-tolerance to antimicrobial agents, can be attributed to structural characteristics of the biofilm community or to intrinsic biofilm-specific physiological programs. In order to address this longstanding question, we focused on poly-N-acetylglucosamine (PNAG)–based biofilms, a clinically relevant phenotype of many bacterial pathogens, including E. coli. Instead of working in a biofilm-permissive genetic background, in which the timescale of biofilm formation is slow, we applied the functionally active secreted version of the PNAG exo-polysaccharide (sPNAG) to wild-type E. coli cells, generating robust biofilms on the timescale of hours. In this way, we managed to uncouple upstream regulatory processes and matrix preparatory phase of biofilm formation, focusing specifically on the latter part. By using a powerful genome-wide technology, we identified the genes and pathways involved in sPNAG-based biofilm formation. Our results revealed that structural interactions between sPNAG and surface structures such as lipopolysaccharides are the crucial determinants of biofilm formation and that multiple pathways including acid-tolerance, capsule biosynthesis, and regulation of cell morphology modulate this phenotype.
doi:10.1371/journal.ppat.1000432
PMCID: PMC2675270  PMID: 19436718
18.  Identification of a General O-linked Protein Glycosylation System in Acinetobacter baumannii and Its Role in Virulence and Biofilm Formation 
PLoS Pathogens  2012;8(6):e1002758.
Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains resistant to multiple antibiotics is increasing at alarming rates. Although A. baumannii is considered as one of the more threatening “superbugs” for our healthcare system, little is known about the factors contributing to its pathogenesis. In this work we show that A. baumannii ATCC 17978 possesses an O-glycosylation system responsible for the glycosylation of multiple proteins. 2D-DIGE and mass spectrometry methods identified seven A. baumannii glycoproteins, of yet unknown function. The glycan structure was determined using a combination of MS and NMR techniques and consists of a branched pentasaccharide containing N-acetylgalactosamine, glucose, galactose, N-acetylglucosamine, and a derivative of glucuronic acid. A glycosylation deficient strain was generated by homologous recombination. This strain did not show any growth defects, but exhibited a severely diminished capacity to generate biofilms. Disruption of the glycosylation machinery also resulted in reduced virulence in two infection models, the amoebae Dictyostelium discoideum and the larvae of the insect Galleria mellonella, and reduced in vivo fitness in a mouse model of peritoneal sepsis. Despite A. baumannii genome plasticity, the O-glycosylation machinery appears to be present in all clinical isolates tested as well as in all of the genomes sequenced. This suggests the existence of a strong evolutionary pressure to retain this system. These results together indicate that O-glycosylation in A. baumannii is required for full virulence and therefore represents a novel target for the development of new antibiotics.
Author Summary
Multidrug resistant (MDR) Acinetobacter baumannii strains are an increasing cause of nosocomial infections worldwide. Due to the remarkable ability of A. baumannii to gain resistance to antibiotics, this bacterium is now considered to be a “superbug”. A. baumannii strains resistant to all clinically relevant antibiotics known have also been isolated. Although MDR A. baumannii continues to disseminate globally, very little is known about its pathogenesis mechanisms. Our experiments revealed that A. baumannii ATCC 17978 has a functional O-linked protein glycosylation system, which seems to be present in all strains of A. baumannii sequenced to date and several clinical isolates. We identified seven glycoproteins and elucidated the structure of the glycan moiety. A glycosylation-deficient strain was generated. This strain produced severely reduced biofilms, and exhibited attenuated virulence in amoeba, insect, and murine models. These experiments suggest that glycosylation may play an important role in virulence and may lay the foundation for new drug discovery strategies that could stop the dissemination of this emerging human pathogen, which has become a major threat for healthcare systems.
doi:10.1371/journal.ppat.1002758
PMCID: PMC3369928  PMID: 22685409
19.  Acinetobacter baumannii Increases Tolerance to Antibiotics in Response to Monovalent Cations▿ †  
Acinetobacter baumannii is well adapted to the hospital environment, where infections caused by this organism are associated with significant morbidity and mortality. Genetic determinants of antimicrobial resistance have been described extensively, yet the mechanisms by which A. baumannii regulates antibiotic resistance have not been defined. We sought to identify signals encountered within the hospital setting or human host that alter the resistance phenotype of A. baumannii. In this regard, we have identified NaCl as being an important signal that induces significant tolerance to aminoglycosides, carbapenems, quinolones, and colistin upon the culturing of A. baumannii cells in physiological NaCl concentrations. Proteomic analyses of A. baumannii culture supernatants revealed the release of outer membrane proteins in high NaCl, including two porins (CarO and a 33- to 36-kDa protein) whose loss or inactivation is associated with antibiotic resistance. To determine if NaCl affected expression at the transcriptional level, the transcriptional response to NaCl was determined by microarray analyses. These analyses highlighted 18 genes encoding putative efflux transporters that are significantly upregulated in response to NaCl. Consistent with this, the effect of NaCl on the tolerance to levofloxacin and amikacin was significantly reduced upon the treatment of A. baumannii with an efflux pump inhibitor. The effect of physiological concentrations of NaCl on colistin resistance was conserved in a panel of multidrug-resistant isolates of A. baumannii, underscoring the clinical significance of these observations. Taken together, these data demonstrate that A. baumannii sets in motion a global regulatory cascade in response to physiological NaCl concentrations, resulting in broad-spectrum tolerance to antibiotics.
doi:10.1128/AAC.00963-09
PMCID: PMC2825970  PMID: 20028819
20.  The Complete Genome and Phenome of a Community-Acquired Acinetobacter baumannii 
PLoS ONE  2013;8(3):e58628.
Many sequenced strains of Acinetobacter baumannii are established nosocomial pathogens capable of resistance to multiple antimicrobials. Community-acquired A. baumannii in contrast, comprise a minor proportion of all A. baumannii infections and are highly susceptible to antimicrobial treatment. However, these infections also present acute clinical manifestations associated with high reported rates of mortality. We report the complete 3.70 Mbp genome of A. baumannii D1279779, previously isolated from the bacteraemic infection of an Indigenous Australian; this strain represents the first community-acquired A. baumannii to be sequenced. Comparative analysis of currently published A. baumannii genomes identified twenty-four accessory gene clusters present in D1279779. These accessory elements were predicted to encode a range of functions including polysaccharide biosynthesis, type I DNA restriction-modification, and the metabolism of novel carbonaceous and nitrogenous compounds. Conversely, twenty genomic regions present in previously sequenced A. baumannii strains were absent in D1279779, including gene clusters involved in the catabolism of 4-hydroxybenzoate and glucarate, and the A. baumannii antibiotic resistance island, known to bestow resistance to multiple antimicrobials in nosocomial strains. Phenomic analysis utilising the Biolog Phenotype Microarray system indicated that A. baumannii D1279779 can utilise a broader range of carbon and nitrogen sources than international clone I and clone II nosocomial isolates. However, D1279779 was more sensitive to antimicrobial compounds, particularly beta-lactams, tetracyclines and sulphonamides. The combined genomic and phenomic analyses have provided insight into the features distinguishing A. baumannii isolated from community-acquired and nosocomial infections.
doi:10.1371/journal.pone.0058628
PMCID: PMC3602452  PMID: 23527001
21.  Cell surface hydrophobicity of colistin-susceptible versus -resistant Acinetobacter baumannii determined by contact angles: methodological considerations and implications 
Journal of applied microbiology  2012;113(4):940-951.
AIMS
Contact angle analysis of cell surface hydrophobicity (CSH) describes the tendency of a water droplet to spread across a lawn of filtered bacterial cells. Colistin-induced disruption of the Gram-negative outer membrane necessitates hydrophobic contacts with lipopolysaccharide (LPS). We aimed to characterize the CSH of Acinetobacter baumannii using contact angles, to provide insight into the mechanism of colistin resistance.
METHODS AND RESULTS
Contact angles were analysed for five paired colistin-susceptible and -resistant A. baumannii strains. Drainage of the water droplet through bacterial layers was demonstrated to influence results. Consequently, measurements were performed 0.66-sec after droplet deposition. Colistin-resistant cells exhibited lower contact angles (38.8±2.8° to 46.8±1.3°) compared to their paired-susceptible strains (40.7±3.0° to 48.0±1.4°; ANOVA; p<0.05). Contact angles increased at stationary phase (50.3±2.9° to 61.5±2.5° and 47.4±2.0° to 50.8±3.2°, susceptible and resistant, respectively, ANOVA; p<0.05), and in response to colistin 32-mgL−1 exposure (44.5±1.5° to 50.6±2.8° and 43.5±2.2° to 48.0±2.2°, susceptible and resistant, respectively; ANOVA; p<0.05). Analysis of complemented strains constructed with an intact lpxA gene, or empty vector, highlighted the contribution of LPS to CSH.
CONCLUSIONS
Compositional outer-membrane variations likely account for CSH differences between A. baumannii phenotypes, which influence the hydrophobic colistin-bacterium interaction.
SIGNIFICANCE AND IMPACT OF STUDY
Important insight into the mechanism of colistin resistance has been provided. Greater consideration of contact angle mehodology is nescessary to ensure accurate analyses are performed.
doi:10.1111/j.1365-2672.2012.05337.x
PMCID: PMC3434258  PMID: 22574702
Antimicrobials; Lipopolysaccharide; Mechanism of Action
22.  Characterisation of Pellicles Formed by Acinetobacter baumannii at the Air-Liquid Interface 
PLoS ONE  2014;9(10):e111660.
The clinical importance of Acinetobacter baumannii is partly due to its natural ability to survive in the hospital environment. This persistence may be explained by its capacity to form biofilms and, interestingly, A. baumannii can form pellicles at the air-liquid interface more readily than other less pathogenic Acinetobacter species. Pellicles from twenty-six strains were morphologically classified into three groups: I) egg-shaped (27%); II) ball-shaped (50%); and III) irregular pellicles (23%). One strain representative of each group was further analysed by Brewster’s Angle Microscopy to follow pellicle development, demonstrating that their formation did not require anchoring to a solid surface. Total carbohydrate analysis of the matrix showed three main components: Glucose, GlcNAc and Kdo. Dispersin B, an enzyme that hydrolyzes poly-N-acetylglucosamine (PNAG) polysaccharide, inhibited A. baumannii pellicle formation, suggesting that this exopolysaccharide contributes to pellicle formation. Also associated with the pellicle matrix were three subunits of pili assembled by chaperon-usher systems: the major CsuA/B, A1S_1510 (presented 45% of identity with the main pilin F17-A from enterotoxigenic Escherichia coli pili) and A1S_2091. The presence of both PNAG polysaccharide and pili systems in matrix of pellicles might contribute to the virulence of this emerging pathogen.
doi:10.1371/journal.pone.0111660
PMCID: PMC4216135  PMID: 25360550
23.  Poly-N-Acetyl-β-(1-6)-Glucosamine Is a Target for Protective Immunity against Acinetobacter baumannii Infections 
Infection and Immunity  2012;80(2):651-656.
Acinetobacter baumannii has emerged as a highly troublesome, global pathogen. Treatment is complicated by high levels of antibiotic resistance, necessitating alternative means to prevent or treat A. baumannii infections. We evaluated an immunotherapeutic approach against A. baumannii, focusing on the surface polysaccharide poly-N-acetyl-β-(1-6)-glucosamine (PNAG). We used a synthetic oligosaccharide of 9 monosaccharide units (9Glc-NH2) conjugated to tetanus toxoid (TT) to induce antibodies in rabbits. In the presence of complement and polymorphonuclear cells, antisera to 9Glc-NH2-TT mediated the killing of A. baumannii S1, a high-PNAG-producing strain, but not its isogenic PNAG-negative, in-frame deletion mutant strain, S1 Δpga. Complementing the pgaABCD locus in trans in the shuttle vector pBAD18kan-ori, plasmid Δpga-c, restored the high levels of killing mediated by antibody to PNAG observed with the wild-type S1 strain. No killing was observed when normal rabbit serum (NRS) or heat-inactivated complement was used. Antiserum to 9Glc-NH2-TT was highly opsonic against an additional four unrelated multidrug-resistant clinical isolates of A. baumannii that synthesize various levels of surface PNAG. Using two clinically relevant models of A. baumannii infection in mice, pneumonia and bacteremia, antisera to 9Glc-NH2-TT significantly reduced levels of A. baumannii in the lungs or blood 2 and 24 h postinfection, respectively, compared to levels of control groups receiving NRS. This was true for all four A. baumannii strains tested. Overall, these results highlight the potential of PNAG as a vaccine component for active immunization or as a target for passive antibody immunotherapy.
doi:10.1128/IAI.05653-11
PMCID: PMC3264292  PMID: 22104104
24.  Acinetobacter baumannii Response to Host-Mediated Zinc Limitation Requires the Transcriptional Regulator Zur 
Journal of Bacteriology  2014;196(14):2616-2626.
Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia in intensive care units, and the increasing rates of antibiotic resistance make treating these infections challenging. Consequently, there is an urgent need to develop new antimicrobials to treat A. baumannii infections. One potential therapeutic option is to target bacterial systems involved in maintaining appropriate metal homeostasis, processes that are critical for the growth of pathogens within the host. The A. baumannii inner membrane zinc transporter ZnuABC is required for growth under low-zinc conditions and for A. baumannii pathogenesis. The expression of znuABC is regulated by the transcriptional repressor Zur. To investigate the role of Zur during the A. baumannii response to zinc limitation, a zur deletion mutant was generated, and transcriptional changes were analyzed using RNA sequencing. A number of Zur-regulated genes were identified that exhibit increased expression both when zur is absent and under low-zinc conditions, and Zur binds to predicted Zur box sequences of several genes affected by zinc levels or the zur mutation. Furthermore, the zur mutant is impaired for growth in the presence of both high and low zinc levels compared to wild-type A. baumannii. Finally, the zur mutant exhibits a defect in dissemination in a mouse model of A. baumannii pneumonia, establishing zinc sensing as a critical process during A. baumannii infection. These results define Zur-regulated genes within A. baumannii and demonstrate a requirement for Zur in the A. baumannii response to the various zinc levels experienced within the vertebrate host.
doi:10.1128/JB.01650-14
PMCID: PMC4097591  PMID: 24816603
25.  Identification and Characterization of a Glycosyltransferase Involved in Acinetobacter baumannii Lipopolysaccharide Core Biosynthesis▿  
Infection and Immunity  2010;78(5):2017-2023.
Although Acinetobacter baumannii has emerged as a significant cause of nosocomial infections worldwide, there have been few investigations describing the factors important for A. baumannii persistence and pathogenesis. This paper describes the first reported identification of a glycosyltransferase, LpsB, involved in lipopolysaccharide (LPS) biosynthesis in A. baumannii. Mutational, structural, and complementation analyses indicated that LpsB is a core oligosaccharide glycosyl transferase. Using a genetic approach, lpsB was compared with the lpsB homologues of several A. baumannii strains. These analyses indicated that LpsB is highly conserved among A. baumannii isolates. Furthermore, we developed a monoclonal antibody, monoclonal antibody 13C11, which reacts to an LPS core epitope expressed by approximately one-third of the A. baumannii clinical isolates evaluated to date. Previous studies describing the heterogeneity of A. baumannii LPS were limited primarily to structural analyses; therefore, studies evaluating the correlation between these surface glycolipids and pathogenesis were warranted. Our data from an evaluation of LpsB mutant 307::TN17, which expresses a deeply truncated LPS glycoform consisting of only two 3-deoxy-d-manno-octulosonic acid residues and lipid A, suggest that A. baumannii LPS is important for resistance to normal human serum and confers a competitive advantage for survival in vivo. These results have important implications for the role of LPS in A. baumannii infections.
doi:10.1128/IAI.00016-10
PMCID: PMC2863528  PMID: 20194587

Results 1-25 (896832)