PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1078946)

Clipboard (0)
None

Related Articles

1.  Tropomodulin: a cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin 
The Journal of Cell Biology  1990;111(2):471-481.
Human erythrocytes contain a Mr 43,000 tropomyosin-binding protein that is unrelated to actin and that has been proposed to play a role in modulating the association of tropomyosin with spectrin-actin complexes based on its stoichiometry in the membrane skeleton of one Mr 43,000 monomer per short actin filament (Fowler, V. M. 1987. J. Biol. Chem. 262:12792-12800). Here, we describe an improved procedure to purify milligram quantities to 98% homogeneity and we show that this protein inhibits tropomyosin binding to actin by a novel mechanism. We have named this protein tropomodulin. Unlike other proteins that inhibit tropomyosin-actin interactions, tropomodulin itself does not bind to F- actin. EM of rotary-shadowed tropomodulin-tropomyosin complexes reveal that tropomodulin (14.5 +/- 2.4 nm [SD] in diameter) binds to one of the ends of the rod-like tropomyosin molecules (33 nm long). In agreement with this observation, Dixon plots of inhibition curves demonstrate that tropomodulin is a non-competitive inhibitor of tropomyosin binding to F-actin (Ki = 0.7 microM). Hill plots of the binding of the tropomodulin-tropomyosin complex to actin indicate that binding does not exhibit any positive cooperativity (n = 0.9), in contrast to tropomyosin (n = 1.9), and that the apparent affinity of the complex for actin is reduced 20-fold with respect to that of tropomyosin. These results suggest that binding of tropomodulin to tropomyosin may block the ability of tropomyosin to self-associate in a head-to-tail fashion along the actin filament, thereby weakening its binding to actin. Antibodies to tropomodulin cross-react strongly with striated muscle troponin I (but not with troponin T) as well as with a nontroponin Mr 43,000 polypeptide in muscle and in other nonerythroid cells and tissues, including brain, lens, neutrophils, and endothelial cells. Thus, erythrocyte tropomodulin may be one member of a family of tropomyosin-binding proteins that function to regulate tropomyosin- actin interactions in non-muscle cells and tissues.
PMCID: PMC2116216  PMID: 2380244
2.  Novel deletion of lysine 7 expands the clinical, histopathological and genetic spectrum of TPM2-related myopathies 
Brain  2013;136(2):508-521.
The β-tropomyosin gene encodes a component of the sarcomeric thin filament. Rod-shaped dimers of tropomyosin regulate actin-myosin interactions and β-tropomyosin mutations have been associated with nemaline myopathy, cap myopathy, Escobar syndrome and distal arthrogryposis types 1A and 2B. In this study, we expand the allelic spectrum of β-tropomyosin-related myopathies through the identification of a novel β-tropomyosin mutation in two clinical contexts not previously associated with β-tropomyosin. The first clinical phenotype is core-rod myopathy, with a β-tropomyosin mutation uncovered by whole exome sequencing in a family with autosomal dominant distal myopathy and muscle biopsy features of both minicores and nemaline rods. The second phenotype, observed in four unrelated families, is autosomal dominant trismus-pseudocamptodactyly syndrome (distal arthrogryposis type 7; previously associated exclusively with myosin heavy chain 8 mutations). In all four families, the mutation identified was a novel 3-bp in-frame deletion (c.20_22del) that results in deletion of a conserved lysine at the seventh amino acid position (p.K7del). This is the first mutation identified in the extreme N-terminus of β-tropomyosin. To understand the potential pathogenic mechanism(s) underlying this mutation, we performed both computational analysis and in vivo modelling. Our theoretical model predicts that the mutation disrupts the N-terminus of the α-helices of dimeric β-tropomyosin, a change predicted to alter protein–protein binding between β-tropomyosin and other molecules and to disturb head-to-tail polymerization of β-tropomyosin dimers. To create an in vivo model, we expressed wild-type or p.K7del β-tropomyosin in the developing zebrafish. p.K7del β-tropomyosin fails to localize properly within the thin filament compartment and its expression alters sarcomere length, suggesting that the mutation interferes with head-to-tail β-tropomyosin polymerization and with overall sarcomeric structure. We describe a novel β-tropomyosin mutation, two clinical-histopathological phenotypes not previously associated with β-tropomyosin and pathogenic data from the first animal model of β-tropomyosin-related myopathies.
doi:10.1093/brain/aws344
PMCID: PMC3572924  PMID: 23413262
nemaline; myopathies; muscle and nerve pathology; mutation; neuromuscular disorders
3.  A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics 
Scientific Reports  2016;6:19816.
The tropomyosin family of proteins form end-to-end polymers along the actin filament. Tumour cells rely on specific tropomyosin-containing actin filament populations for growth and survival. To dissect out the role of tropomyosin in actin filament regulation we use the small molecule TR100 directed against the C terminus of the tropomyosin isoform Tpm3.1. TR100 nullifies the effect of Tpm3.1 on actin depolymerisation but surprisingly Tpm3.1 retains the capacity to bind F-actin in a cooperative manner. In vivo analysis also confirms that, in the presence of TR100, fluorescently tagged Tpm3.1 recovers normally into stress fibers. Assembling end-to-end along the actin filament is thereby not sufficient for tropomyosin to fulfil its function. Rather, regulation of F-actin stability by tropomyosin requires fidelity of information communicated at the barbed end of the actin filament. This distinction has significant implications for perturbing tropomyosin-dependent actin filament function in the context of anti-cancer drug development.
doi:10.1038/srep19816
PMCID: PMC4726228  PMID: 26804624
4.  Effect of actin C-terminal modification on tropomyosin isoforms binding and thin filament regulation 
Biochimica et Biophysica Acta  2009;1794(2):237-243.
Tropomyosins, a family of actin-binding regulatory proteins, are present in muscle and non-muscle cells. Multiple tropomyosin (TM) isoforms differ in actin affinity and regulatory properties, but little is known about the molecular bases of these differences. The C-terminus of actin stabilizes contacts between actin subunits in the filament and interacts with myosin and regulatory proteins. The goal of this work was to reveal how structural changes in actin and differences between TM isoforms affect binding between these proteins and affect thin filament regulation. Actin proteolytically truncated by three C-terminal amino acids exhibited 1.2–1.5 fold reduced affinity for non-muscle and smooth muscle tropomyosin isoforms. The truncation increased the cooperativity of myosin S1-induced tropomyosin binding for short tropomyosins (TM5a and TM1b9a), but it was neutral for long isoforms (smTM and TM2). Actin modification affected regulation of actomyosin ATPase activity in the presence of all tropomyosins by shifting the filament into a more active state. We conclude that the integrity of the actin C-terminus is important for actin–tropomyosin interactions, however the increased affinity of tropomyosin binding in the S1-induced state of the filament appears not to be involved in the tropomyosin isoform-dependent mechanism of the actomyosin ATPase activation.
doi:10.1016/j.bbapap.2008.10.014
PMCID: PMC2628472  PMID: 19041430
Actin; Truncated actin; Tropomyosin; Smooth muscle; Non-muscle; Regulation
5.  Tropomyosin isoforms in chicken embryo fibroblasts: purification, characterization, and changes in Rous sarcoma virus-transformed cells 
The Journal of Cell Biology  1985;100(3):692-703.
Seven polypeptides (a, b, c, 1, 2, 3a, and 3b) have been previously identified as tropomyosin isoforms in chicken embryo fibroblasts (CEF) (Lin, J. J.-C., Matsumura, F., and Yamashiro-Matsumura, S., 1984, J. Cell. Biol., 98:116-127). Spots a and c had identical mobility on two- dimensional gels with the slow-migrating and fast-migrating components, respectively, of chicken gizzard tropomyosin. However, the remaining isoforms of CEF tropomyosin were distinct from chicken skeletal and cardiac tropomyosins on two-dimensional gels. The mixture of CEF tropomyosin has been isolated by the combination of Triton/glycerol extraction of monolayer cells, heat treatment, and ammonium sulfate fractionation. The yield of tropomyosin was estimated to be 1.4% of total CEF proteins. The identical set of tropomyosin isoforms could be found in the antitropomyosin immunoprecipitates after the cell-free translation products of total poly(A)+ RNAs isolated from CEF cells. This suggested that at least seven mRNAs coding for these tropomyosin isoforms existed in the cell. Purified tropomyosins (particularly 1, 2, and 3) showed different actin-binding abilities in the presence of 100 mM KCl and no divalent cation. Under this condition, the binding of tropomyosin 3 (3a + 3b) to actin filaments was significantly weaker than that of tropomyosin 1 or 2. CEF tropomyosin 1, and probably 3, could be cross-linked to form homodimers by treatment with 5,5'- dithiobis-(2-nitrobenzoate), whereas tropomyosin a and c formed a heterodimer. These dimer species may reflect the in vivo assembly of tropomyosin isoforms, since dimer formation occurred not only with purified tropomyosin but also with microfilament-associated tropomyosin. The expression of these tropomyosin isoforms in Rous sarcoma virus-transformed CEF cells has also been investigated. In agreement with the previous report by Hendricks and Weintraub (Proc. Natl. Acad. Sci. USA., 78:5633-5637), we found that major tropomyosin 1 was greatly reduced in transformed cells. We have also found that the relative amounts of tropomyosin 3a and 3b were increased in both the total cell lysate and the microfilament fraction of transformed cells. Because of the different actin-binding properties observed for CEF tropomyosins, changes in the expression of these isoforms may, in part, be responsible for the reduction of actin cables and the alteration of cell shape found in transformed cells.
PMCID: PMC2113520  PMID: 2982883
6.  Structure of the F–actin–tropomyosin complex 
Nature  2014;519(7541):114-117.
Filamentous actin (F-actin) is the major protein of muscle thin filaments, and actin microfilaments are the main component of the eukaryotic cytoskeleton. Mutations in different actin isoforms lead to early-onset autosomal dominant non-syndromic hearing loss1, familial thoracic aortic aneurysms and dissections2, and multiple variations of myopathies3. In striated muscle fibres, the binding of myosin motors to actin filaments is mainly regulated by tropomyosin and troponin4,5. Tropomyosin also binds to F-actin in smooth muscle and in non-muscle cells and stabilizes and regulates the filaments there in the absence of troponin6. Although crystal structures for monomeric actin (G-actin) are available7, a high-resolution structure of F-actin is still missing, hampering our understanding of how disease-causing mutations affect the function of thin muscle filaments and microfilaments. Here we report the three-dimensional structure of F-actin at a resolution of 3.7 ångstroms in complex with tropomyosin at a resolution of 6.5ångstroms, determined by electron cryomicroscopy. The structure reveals that the D-loop is ordered and acts as a central region for hydrophobic and electrostatic interactions that stabilize the F-actin filament. We clearly identify the density corresponding to ADP and Mg2+ and explain the possible effect of prominent disease-causing mutants. A comparison of F-actin with G-actin reveals the conformational changes during filament formation and identifies the D-loop as their key mediator. We also confirm that negatively charged tropomyosin interacts with a positively charged groove on F-actin. Comparison of the position of tropomyosin in F-actin–tropomyosin with its position in our previously determined actin–tropomyosin–myosin structure8 reveals a myosin-induced transition of tropomyosin. Our results allow us to understand the role of individual mutations in the genesis of actin- and tropomyosin-related diseases and will serve as a strong foundation for the targeted development of drugs.
doi:10.1038/nature14033
PMCID: PMC4477711  PMID: 25470062
7.  Molecular Mechanical Differences between Isoforms of Contractile Actin in the Presence of Isoforms of Smooth Muscle Tropomyosin 
PLoS Computational Biology  2013;9(10):e1003273.
The proteins involved in smooth muscle's molecular contractile mechanism – the anti-parallel motion of actin and myosin filaments driven by myosin heads interacting with actin – are found as different isoforms. While their expression levels are altered in disease states, their relevance to the mechanical interaction of myosin with actin is not sufficiently understood. Here, we analyzed in vitro actin filament propulsion by smooth muscle myosin for -actin (A), -actin-tropomyosin- (A-Tm), -actin-tropomyosin- (A-Tm), -actin (A), -actin-tropomyosin- (A-Tm), and -actin-tropomoysin- (A-Tm). Actin sliding analysis with our specifically developed video analysis software followed by statistical assessment (Bootstrapped Principal Component Analysis) indicated that the in vitro motility of A, A, and A-Tm is not distinguishable. Compared to these three ‘baseline conditions’, statistically significant differences () were: A-Tm – actin sliding velocity increased 1.12-fold, A-Tm – motile fraction decreased to 0.96-fold, stop time elevated 1.6-fold, A-Tm – run time elevated 1.7-fold. We constructed a mathematical model, simulated actin sliding data, and adjusted the kinetic parameters so as to mimic the experimentally observed differences: A-Tm – myosin binding to actin, the main, and the secondary myosin power stroke are accelerated, A-Tm – mechanical coupling between myosins is stronger, A-Tm – the secondary power stroke is decelerated and mechanical coupling between myosins is weaker. In summary, our results explain the different regulatory effects that specific combinations of actin and smooth muscle tropomyosin have on smooth muscle actin-myosin interaction kinetics.
Author Summary
Dependent on the required physiological function, smooth muscle executes relatively fast contraction-relaxation cycles or maintains long-term contraction. The proteins driving contraction – amongst them actin, tropomyosin, and the contraction-driving myosin motor – can show small changes in the way they are constructed, they can be expressed as different “isoforms”. The isoforms are supposedly tailored to support the specific contraction patterns, but for tropomyosin and actin it is unclear exactly how the isoforms' differences affect the interaction of actin and myosin that generates the muscle contraction. We measured actin movement outside the cellular environment, focusing on the effects of different isoform combinations of only actin, myosin, and tropomyosin. We found that the actin isoforms cause differences in the mechanical interaction only when tropomyosin is present, not without it. Also, all different actin-tropomyosin combinations affected the mechanical interactions in a different way. In our experiments we could not directly observe the mechanical interactions of actin, tropomyosin, and myosin, so we reconstructed them in a mathematical model. With this model, we could determine in detail how the different actin-tropomyosin combinations caused the differences that we observed in our experiments.
doi:10.1371/journal.pcbi.1003273
PMCID: PMC3812040  PMID: 24204225
8.  The structural dynamics of α-tropomyosin on F-actin shape the overlap complex between adjacent tropomyosin molecules 
Coiled-coil tropomyosin, localized on actin filaments in virtually all eukaryotic cells, serves as a gatekeeper regulating access of the motor protein myosin and other actin-binding proteins onto the thin filament surface. Tropomyosin's modular pseudo-repeating pattern of approximately 39 amino acid residues is designed to allow binding of the coiled-coil to successive actin subunits along thin filaments. Even though different tropomyosin isoforms contain varying numbers of repeat modules, the pseudo-repeat length, in all cases, matches that of a single actin subunit. Thus, the seven pseudo-repeats of 42 nm long muscle tropomyosin bind to seven successive actin subunits along thin filaments, while simultaneously bending into a super-helical conformation that is preshaped to the actin filament helix. In order to form a continuous cable on thin filaments that is free of gaps, adjacent tropomyosin molecules polymerize head-to-tail by means of a short (∼9 residue) overlap. Several laboratories have engineered peptides to mimic the N- and C-terminal tropomyosin association and to characterize the overlap structure. All overlapping domains examined show a compact N-terminal coiled-coil inserting into a partially opened C-terminal partner, where the opposing coiled-coils at the overlap junction face each other at up to ∼90° twist angles. Here, Molecular Dynamics (MD) simulations were carried out to determine constraints on the formation of the tropomyosin overlap complex and to assess the amount of twisting exhibited by full-length tropomyosin when bound to actin. With the exception of the last 20 to 40 C- and N-terminal residues, we find that the average tropomyosin structure closely resembles a “canonical” model proposed in the classic work of McLachlan and Stewart, displaying perfectly symmetrical supercoil geometry matching the F-actin helix with an integral number of coiled-coil turns, a coiled-coil helical pitch of 137 Å, a superhelical pitch of 770 Å, and no localized pseudo-rotation. Over the middle 70% of tropomyosin, the average twisting of the coiled-coil deviates only by 10° from the canonical model and the torsional freedom is very small (std. dev. of 7°). This small degree of twisting cannot yield the orthogonal N- and C-termini configuration observed experimentally. In marked contrast, considerable coiled-coil unfolding, splaying and twisting at N- and C-terminal ends is observed, providing the conformational plasticity needed for head-to-tail nexus formation.
doi:10.1016/j.abb.2013.09.011
PMCID: PMC3962804  PMID: 24071513
actin; coiled-coil; molecular dynamics; thin filaments; tropomyosin
9.  Regulation of Nonmuscle Myosin II by Tropomyosin 
Biochemistry  2014;53(24):4015-4024.
The actin cytoskeleton carries out cellular functions, including division, migration, adhesion, and intracellular transport, that require a variety of actin binding proteins, including myosins. Our focus here is on class II nonmuscle myosin isoforms, NMIIA, NMIIB, and NMIIC, and their regulation by the actin binding protein, tropomyosin. NMII myosins are localized to different populations of stress fibers and the contractile ring, structures involved in force generation required for cell migration, adhesion, and cytokinesis. The stress fibers and contractile ring that contain NMII myosins also contain tropomyosin. Four mammalian genes encode more than 40 tropomyosins. Tropomyosins inhibit or activate actomyosin MgATPase and motility depending on the myosin and tropomyosin isoform. In vivo, tropomyosins play a role in cell migration, adhesion, cytokinesis, and NMII isoform localization in an isoform-specific manner. We postulate that the isoform-specific tropomyosin localization and effect on NMII isoform localization reflect modulation of NMII actomyosin kinetics and motile function. In this study, we compare the ability of different tropomyosin isoforms to support actin filament motility with NMIIA, NMIIB, and NMIIC as well as skeletal muscle myosin. Tropomyosins activated, inhibited, or had no effect on motility depending on the myosin, indicating that the myosin isoform is the primary determinant of the isoform-specific effect of tropomyosin on actomyosin regulation. Activation of motility of nonmuscle tropomyosin–actin filaments by NMII myosin correlates with an increased Vmax of the myosin MgATPase, implying a direct effect on the myosin MgATPase, in contrast to the skeletal tropomyosin–actin filament that has no effect on the Vmax or maximal filament velocity.
doi:10.1021/bi500162z
PMCID: PMC4075986  PMID: 24873380
10.  Molecular basis of tropomyosin binding to tropomodulin, an actin capping protein 
Journal of molecular biology  2007;372(3):608-618.
Summary
The tropomodulins are a family of proteins that cap the pointed, slow-growing end of actin filaments and require tropomyosin for optimal function. Earlier studies identified two regions in Tmod1 that bind the N terminus of tropomyosin, though the ability of different isoforms to bind the two sites is controversial. We used model peptides to determine the affinity and define the specificity of the highly-conserved N termini of three short, non-muscle tropomyosins (α, γ, δ-TM) for the two Tmod1 binding sites using circular dichroism spectroscopy, native gel electrophoresis, and chemical crosslinking. All tropomyosin peptides have high affinity to the second Tmod1 binding site (within residues 109–144; α-TM, 2.5 nM; γ-TM, δ-TM, 40–90 nM), but differ >100- fold for the first site (residues 1–38; α-TM, 90 nM; undetectable at 10 µM, γ-TM, δ-TM). Residue 14 (R in α; Q in γ, δ), and to a lesser extent, residue 4 (S in α; T in γ, δ) are primarily responsible for the differences. The functional consequence of the sequence differences is reflected in the more effective inhibition of actin filament elongation by full-length α-TMs than γ-TM in the presence of Tmod1. The binding sites of the two Tmod1 peptides on a model tropomyosin peptide differ, as defined by comparing 15N¹H HSQC spectra of a 15N-labeled model tropomyosin peptide in the absence and presence of Tmod1 peptide. The NMR and circular dichroism studies show that there is an increase in α-helix upon Tmod1-tropomyosin complex formation, indicating that intrinsically disordered regions of the two proteins become ordered when they bind. A proposed model for the binding of Tmod to actin and tropomyosin at the pointed end of the filament shows how the tropomodulin-tropomyosin accentuates the asymmetry of the pointed end and suggests how subtle differences among tropomyosin isoforms may modulate actin filament dynamics.
doi:10.1016/j.jmb.2007.05.084
PMCID: PMC2134803  PMID: 17706248
tropomyosin; tropomodulin; actin filament; circular dichroism; nuclear magnetic resonance
11.  A systematic nomenclature for mammalian tropomyosin isoforms 
Tropomyosin, a ubiquitous protein in animals and fungi, is associated with the actin cytoskeleton and is involved with stabilising actin filaments and regulating the interaction of the filament with other actin binding proteins. The protein is best known for its role in regulating the interaction between actin and myosin in muscle contraction but in recent years its role as a major player in the organisation and dynamics of the cytoskeleton has been increasingly recognised. In mammals Tpm is expressed from four distinct genes and alternate splicing of each gene can produce a total of up to 40 different mRNA variants most of which are expressed as proteins. We are expecting a renaissance in the study of tropomyosins as the roles of these different isoforms are beginning to be deciphered. However, it is our belief that such a renaissance is being limited by confusion over the naming systems for the tropomyosin isoforms. These result in even experienced workers struggling to reconcile work done in different laboratories and at different times. We propose here a systematic nomenclature for tropomyosin based on the best current practice. We recommend the adoption of these names and a cross-reference to the table of alternate names and accession numbers for protein sequences is included here. The National Center for Biotechnology Information (NCBI) website has been amended to include the nomenclature for the human, mouse and rat genes.
doi:10.1007/s10974-014-9389-6
PMCID: PMC4426136  PMID: 25369766
Cytoskeleton; Actin binding protein; Muscle thin filament
12.  Characterization of 83-kilodalton nonmuscle caldesmon from cultured rat cells: stimulation of actin binding of nonmuscle tropomyosin and periodic localization along microfilaments like tropomyosin 
The Journal of Cell Biology  1988;106(6):1973-1983.
Nonmuscle caldesmon purified from cultured rat cells shows a molecular weight of 83,000 on SDS gels, Stokes radius of 60.5 A, and sedimentation coefficient (S20,w) of 3.5 in the presence of reducing agents. These values give a native molecular weight of 87,000 and a frictional ratio of 2.04, suggesting that the molecule is a monomeric, asymmetric protein. In the absence of reducing agents, the protein is self-associated, through disulfide bonds, into oligomers with a molecular weight of 230,000 on SDS gels. These S-S oligomers appear to be responsible for the actin-bundling activity of nonmuscle caldesmon in the absence of reducing agents. Actin binding is saturated at a molar ratio of one 83-kD protein to six actins with an apparent binding constant of 5 X 10(6) M-1. Because of 83-kD nonmuscle caldesmon and tropomyosin are colocalized in stress fibers of cultured cells, we have examined effects of 83-kD protein on the actin binding of cultured cell tropomyosin. Of five isoforms of cultured rat cell tropomyosin, tropomyosin isoforms with high molecular weight values (40,000 and 36,500) show higher affinity to actin than do tropomyosin isoforms with low molecular weight values (32,400 and 32,000) (Matsumura, F., and S. Yamashiro-Matsumura. 1986. J. Biol. Chem. 260:13851-13859). At physiological concentration of KCl (100 mM), 83-kD nonmuscle caldesmon stimulates binding of low molecular weight tropomyosins to actin and increases the apparent binding constant (Ka from 4.4 X 10(5) to 1.5 X 10(6) M-1. In contrast, 83-kD protein has slight stimulation of actin binding of high molecular weight tropomyosins because high molecular weight tropomyosins bind to actin strongly in this condition. As the binding of 83-kD protein to actin is regulated by calcium/calmodulin, 83-kD protein regulates the binding of low molecular weight tropomyosins to actin in a calcium/calmodulin-dependent way. Using monoclonal antibodies to visualize nonmuscle caldesmon along microfilaments or actin filaments reconstituted with purified 83-kD protein, we demonstrate that 83-kD nonmuscle caldesmon is localized periodically along microfilaments or actin filaments with similar periodicity (36 +/- 4 nm) as tropomyosin. These results suggest that 83- kD protein plays an important role in the organization of microfilaments, as well as the control of the motility, through the regulation of the binding of tropomyosin to actin.
PMCID: PMC2115152  PMID: 3384851
13.  Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle 
The Journal of Cell Biology  1993;120(2):411-420.
The length and spatial organization of thin filaments in skeletal muscle sarcomeres are precisely maintained and are essential for efficient muscle contraction. While the major structural components of skeletal muscle sarcomeres have been well characterized, the mechanisms that regulate thin filament length and spatial organization are not well understood. Tropomodulin is a new, 40.6-kD tropomyosin-binding protein from the human erythrocyte membrane skeleton that binds to one end of erythrocyte tropomyosin and blocks head-to-tail association of tropomyosin molecules along actin filaments. Here we show that rat psoas skeletal muscle contains tropomodulin based on immunoreactivity, identical apparent mobility on SDS gels, and ability to bind muscle tropomyosin. Results from immunofluorescence labeling of isolated myofibrils at resting and stretched lengths using anti-erythrocyte tropomodulin antibodies indicate that tropomodulin is localized at or near the free (pointed) ends of the thin filaments; this localization is not dependent on the presence of myosin thick filaments. Immunoblotting of supernatants and pellets obtained after extraction of myosin from myofibrils also indicates that tropomodulin remains associated with the thin filaments. 1.2-1.6 copies of muscle tropomodulin are present per thin filament in myofibrils, supporting the possibility that one or two tropomodulin molecules may be associated with the two terminal tropomyosin molecules at the pointed end of each thin filament. Although a number of proteins are associated with the barbed ends of the thin filaments at the Z disc, tropomodulin is the first protein to be specifically located at or near the pointed ends of the thin filaments. We propose that tropomodulin may cap the tropomyosin polymers at the pointed end of the thin filament and play a role in regulating thin filament length.
PMCID: PMC2119515  PMID: 8421055
14.  Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton 
PLoS ONE  2015;10(5):e0126214.
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.
doi:10.1371/journal.pone.0126214
PMCID: PMC4433179  PMID: 25978408
15.  Interior decoration 
Cell Adhesion & Migration  2011;5(2):181-186.
Cell migration and invasion requires the precise temporal and spatial orchestration of a variety of biological processes. Filaments of polymerized actin are critical players in these diverse processes, including the regulation of cell anchorage points (both cell-cell and cell-extracellular matrix), the uptake and delivery of molecules via endocytic pathways and the generation of force for both membrane protrusion and retraction. How the actin filaments are specialized for each of these discrete functions is yet to be comprehensively elucidated. The cytoskeletal tropomyosins are a family of actin associating proteins that form head-to-tail polymers which lay in the major groove of polymerized actin filaments. In the present review we summarize the emerging isoform-specific functions of tropomyosins in cell migration and invasion and discuss their potential roles in the specialization of actin filaments for the diverse cellular processes that together regulate cell migration and invasion.
doi:10.4161/cam.5.2.14438
PMCID: PMC3084984  PMID: 21173575
tropomyosin; actin; migration; invasion; cytoskeleton; actin dynamics; adhesion
16.  High Molecular Weight Tropomyosins Regulate Osteoclast Cytoskeletal Morphology 
Bone  2008;43(5):951-960.
Tropomyosins are coiled-coil dimers that bind to the major groove of F-actin and regulate its accessibility to actin-modifying proteins. Although approximately 40 tropomyosin isoforms have been identified in mammals, they can broadly be classified into two groups based on protein size, that is, high molecular weight and low molecular weight isoforms. Osteoclasts, which undergo rounds of polarization and depolarization as they progress through the resorptive cycle, possess an unusual and highly dynamic actin cytoskeleton. To further define some of the actin regulatory proteins involved in osteoclast activity, we previously performed a survey of tropomyosin isoforms in resting and resorbing osteoclasts. Osteoclasts were found to express two closely related tropomyosins of the high molecular weight type, which are not expressed in monocytic and macrophage precursors. These isoforms, Tm-2 and Tm-3, are not strongly associated with actin-rich adhesion structures, but are instead distributed diffusely throughout the cell. In this study, we found that Tm-2/3 expression occurs late in osteoclastogenesis and continues to increase as cells mature. Knockdown of these isoforms via RNA interference results in flattening and increased spreading of osteoclasts, accompanied by diminished motility and altered resorptive capacity. In contrast, overexpression of Tm-2, but not Tm-3, caused morphological changes that include decreased spreading of the cells and induction of actin patches or stress-fiber like actin filaments, also with effects on motility and resorption. Suppression of Tm-2/3 or overexpression of Tm-2 resulted in altered distribution of gelsolin and microfilament barbed ends. These data suggest that high molecular weight tropomyosins are expressed in fusing osteoclasts to regulate the cytoskeletal scaffolding of these large cells, due at least in part by moderating accessibility of gelsolin to these microfilaments.
doi:10.1016/j.bone.2008.06.017
PMCID: PMC2633438  PMID: 18674650
Osteoclasts; actin; tropomyosin; cytoskeleton; cell shape
17.  Tropomyosin isoform modulation of focal adhesion structure and cell migration 
Cell Adhesion & Migration  2010;4(2):226-234.
Orderly cell migration is essential for embryonic development, efficient wound healing and a functioning immune system and the dysregulation of this process leads to a number of pathologies. The speed and direction of cell migration is critically dependent on the structural organization of focal adhesions in the cell. While it is well established that contractile forces derived from the acto-myosin filaments control the structure and growth of focal adhesions, how this may be modulated to give different outcomes for speed and persistence is not well understood. The tropomyosin family of actin-associating proteins are emerging as important modulators of the contractile nature of associated actin filaments. The multiple non-muscle tropomyosin isoforms are differentially expressed between tissues and across development and are thought to be major regulators of actin filament functional specialization. In the present study we have investigated the effects of two splice variant isoforms from the same α-tropomyosin gene, TmBr1 and TmBr3, on focal adhesion structure and parameters of cell migration. These isoforms are normally switched on in neuronal cells during differentiation and we find that exogenous expression of the two isoforms in undifferentiated neuronal cells has discrete effects on cell migration parameters. While both isoforms cause reduced focal adhesion size and cell migration speed, they differentially effect actin filament phenotypes and migration persistence. Our data suggests that differential expression of tropomyosin isoforms may coordinate acto-myosin contractility and focal adhesion structure to modulate cell speed and persistence.
PMCID: PMC2900618  PMID: 20305380
focal adhesion; tropomyosin; actin; migration; persistence; speed; mesenchymal
18.  Differential localization of tropomyosin isoforms in cultured nonmuscle cells 
The Journal of Cell Biology  1988;107(2):563-572.
We have previously shown that chicken embryo fibroblast (CEF) cells and human bladder carcinoma (EJ) cells contain multiple isoforms of tropomyosin, identified as a, b, 1, 2, and 3 in CEF cells and 1, 2, 3, 4, and 5 in human EJ cells by one-dimensional SDS-PAGE (Lin, J. J.-C., D. M. Helfman, S. H. Hughes, and C.-S. Chou. 1985. J. Cell Biol. 100: 692-703; and Lin, J. J.-C., S. Yamashiro-Matsumura, and F. Matsumura. 1984. Cancer Cells 1:57-65). Both isoform 3 (TM-3) of CEF and isoforms 4,5 (TM-4,-5) of human EJ cells are the minor isoforms found respectively in normal chicken and human cells. They have a lower apparent molecular mass and show a weaker affinity to actin filaments when compared to the higher molecular mass isoforms. Using individual tropomyosin isoforms immobilized on nitrocellulose papers and sequential absorption of polyclonal antiserum on these papers, we have prepared antibodies specific to CEF TM-3 and to CEF TM-1,-2. In addition, two of our antitropomyosin mAbs, CG beta 6 and CG3, have now been demonstrated by Western blots, immunoprecipitation, and two- dimensional gel analysis to have specificities to human EJ TM-3 and TM- 5, respectively. By using these isoform-specific reagents, we are able to compare the intracellular localizations of the lower and higher molecular mass isoforms in both CEF and human EJ cells. We have found that both lower and higher molecular mass isoforms of tropomyosin are localized along stress fibers of cells, as one would expect. However, the lower molecular mass isoforms are also distributed in regions near ruffling membranes. Further evidence for this different localization of different tropomyosin isoforms comes from double-label immunofluorescence microscopy on the same CEF cells with affinity- purified antibody against TM-3, and monoclonal CG beta 6 antibody against TM-a, -b, -1, and -2 of CEF tropomyosin. The presence of the lower molecular mass isoform of tropomyosin in ruffling membranes may indicate a novel way for the nonmuscle cell to control the stability and organization of microfilaments, and to regulate the cell motility.
PMCID: PMC2115218  PMID: 3047141
19.  Tropomodulins and Tropomyosins: Working as a Team 
Actin filaments are major components of the cytoskeleton in eukaryotic cells and are involved in vital cellular functions such as cell motility and muscle contraction. Tropomyosin is an alpha-helical, coiled coil protein that covers the grooves of actin filaments and stabilizes them. Actin filament length is optimized by tropomodulin, which caps the slow growing (pointed end) of thin filaments to inhibit polymerization or depolymerization. Tropomodulin consists of two structurally distinct regions: the N-terminal and the C-terminal domains. The N-terminal domain contains two tropomyosin-binding sites and one tropomyosin-dependent actin-binding site, whereas the C-terminal domain contains a tropomyosin-independent actin-binding site. Tropomodulin binds to two tropomyosin molecules and at least one actin molecule during capping. The interaction of tropomodulin with tropomyosin is a key regulatory factor for actin filament organization. The binding efficacy of tropomodulin to tropomyosin is isoform-dependent. The affinities of tropomodulin/tropomyosin binding influence the proper localization and capping efficiency of tropomodulin at the pointed end of actin filaments in cells. Tropomodulin and tropomyosin are crucial constituents of the actin filament network, making their presence indispensable in living cells. Here we describe how a small difference in the sequence of the tropomyosin-binding sites of tropomodulin may result in dramatic change in localization of Tmod in muscle cells or morphology of non-muscle cells. We also suggest most promising directions to study and elucidate the role of Tmod-TM interaction in formation and maintenance of sarcomeric and cytoskeletal structure.
doi:10.1007/s10974-013-9349-6
PMCID: PMC4774520  PMID: 23828180
tropomodulin; tropomyosin; leiomodin; actin filament; pointed end; capping
20.  A novel tropomyosin isoform functions at the mitotic spindle and Golgi in Drosophila 
Molecular Biology of the Cell  2015;26(13):2491-2504.
Previous work identified a single nonmuscle tropomyosin isoform, but genetics suggests the existence of additional tropomyosins essential for proper development. Three nonmuscle tropomyosins in Drosophila are identified, and one of the newly identified isoforms plays an unexpected role in chromosome segregation.
Most eukaryotic cells express multiple isoforms of the actin-binding protein tropomyosin that help construct a variety of cytoskeletal networks. Only one nonmuscle tropomyosin (Tm1A) has previously been described in Drosophila, but developmental defects caused by insertion of P-elements near tropomyosin genes imply the existence of additional, nonmuscle isoforms. Using biochemical and molecular genetic approaches, we identified three tropomyosins expressed in Drosophila S2 cells: Tm1A, Tm1J, and Tm2A. The Tm1A isoform localizes to the cell cortex, lamellar actin networks, and the cleavage furrow of dividing cells—always together with myosin-II. Isoforms Tm1J and Tm2A colocalize around the Golgi apparatus with the formin-family protein Diaphanous, and loss of either isoform perturbs cell cycle progression. During mitosis, Tm1J localizes to the mitotic spindle, where it promotes chromosome segregation. Using chimeras, we identified the determinants of tropomyosin localization near the C-terminus. This work 1) identifies and characterizes previously unknown nonmuscle tropomyosins in Drosophila, 2) reveals a function for tropomyosin in the mitotic spindle, and 3) uncovers sequence elements that specify isoform-specific localizations and functions of tropomyosin.
doi:10.1091/mbc.E14-12-1619
PMCID: PMC4571303  PMID: 25971803
21.  New Insights intothe Regulation of the Actin Cytoskeleton by Tropomyosin 
The actin cytoskeleton is regulated by a variety of actin-binding proteins including those constituting the tropomyosin family. Tropomyosins are coiled-coil dimers that bind along the length of actin filaments. In muscles, tropomyosin regulates the interaction of actin-containing thin filaments with myosin-containing thick filaments to allow contraction. In nonmuscle cells where multiple tropomyosin isoforms are expressed, tropomyosins participate in a number of cellular events involving the cytoskeleton. This chapter reviews the current state of the literature regarding tropomyosin structure and function and discusses the evidence that tropomyosins play a role in regulating actin assembly.
doi:10.1016/S1937-6448(10)81003-2
PMCID: PMC2923581  PMID: 20460184
Tropomyosin; Actin dynamics; Cytoskeleton; Muscle; Caldesmon
22.  Nebulin interactions with actin and tropomyosin are altered by disease-causing mutations 
Skeletal Muscle  2014;4:15.
Background
Nemaline myopathy (NM) is a rare genetic muscle disorder, but one of the most common among the congenital myopathies. NM is caused by mutations in at least nine genes: Nebulin (NEB), α-actin (ACTA1), α-tropomyosin (TPM3), β-tropomyosin (TPM2), troponin T (TNNT1), cofilin-2 (CFL2), Kelch repeat and BTB (POZ) domain-containing 13 (KBTBD13), and Kelch-like family members 40 and 41 (KLHL40 and KLHL41). Nebulin is a giant (600 to 900 kDa) filamentous protein constituting part of the skeletal muscle thin filament. Around 90% of the primary structure of nebulin is composed of approximately 35-residue α-helical domains, which form super repeats that bind actin with high affinity. Each super repeat has been proposed to harbor one tropomyosin-binding site.
Methods
We produced four wild-type (WT) nebulin super repeats (S9, S14, S18, and S22), 283 to 347 amino acids long, and five corresponding repeats with a patient mutation included: three missense mutations (p.Glu2431Lys, p.Ser6366Ile, and p.Thr7382Pro) and two in-frame deletions (p.Arg2478_Asp2512del and p.Val3924_Asn3929del). We performed F-actin and tropomyosin-binding experiments for the nebulin super repeats, using co-sedimentation and GST (glutathione-S-transferase) pull-down assays. We also used the GST pull-down assay to test the affinity of WT nebulin super repeats for WT α- and β–tropomyosin, and for β-tropomyosin with six patient mutations: p.Lys7del, p.Glu41Lys, p.Lys49del, p.Glu117Lys, p.Glu139del and p.Gln147Pro.
Results
WT nebulin was shown to interact with actin and tropomyosin. Both the nebulin super repeats containing the p.Glu2431Lys mutation and nebulin super repeats lacking exon 55 (p.Arg2478_Asp2512del) showed weak affinity for F-actin compared with WT fragments. Super repeats containing the p.Ser6366Ile mutation showed strong affinity for actin. When tested for tropomyosin affinity, super repeats containing the p.Glu2431Lys mutation showed stronger binding than WT proteins to tropomyosin, and the super repeat containing the p.Thr7382Pro mutation showed weaker binding than WT proteins to tropomyosin. Super repeats containing the deletion p.Val3924_Asn3929del showed similar affinity for actin and tropomyosin as that seen with WT super repeats. Of the tropomyosin mutations, only p.Glu41Lys showed weaker affinity for nebulin (super repeat 18).
Conclusions
We demonstrate for the first time the existence of direct tropomyosin-nebulin interactions in vitro, and show that nebulin interactions with actin and tropomyosin are altered by disease-causing mutations in nebulin and tropomyosin.
doi:10.1186/2044-5040-4-15
PMCID: PMC4126377  PMID: 25110572
Nemaline (rod) myopathy; Congenital myopathy; Nebulin; Actin; Tropomyosin and protein binding
23.  The N-terminal tropomyosin- and actin-binding sites are important for leiomodin 2’s function 
Molecular Biology of the Cell  2016;27(16):2565-2575.
The precise arrangement of the N-terminal actin- and tropomyosin-binding sites within leiomodin-2 is determined. A novel model is given of the roles of leiomodin-2 at thin filament pointed ends.
Leiomodin is a potent actin nucleator related to tropomodulin, a capping protein localized at the pointed end of the thin filaments. Mutations in leiomodin-3 are associated with lethal nemaline myopathy in humans, and leiomodin-2–knockout mice present with dilated cardiomyopathy. The arrangement of the N-terminal actin- and tropomyosin-binding sites in leiomodin is contradictory and functionally not well understood. Using one-dimensional nuclear magnetic resonance and the pointed-end actin polymerization assay, we find that leiomodin-2, a major cardiac isoform, has an N-terminal actin-binding site located within residues 43–90. Moreover, for the first time, we obtain evidence that there are additional interactions with actin within residues 124–201. Here we establish that leiomodin interacts with only one tropomyosin molecule, and this is the only site of interaction between leiomodin and tropomyosin. Introduction of mutations in both actin- and tropomyosin-binding sites of leiomodin affected its localization at the pointed ends of the thin filaments in cardiomyocytes. On the basis of our new findings, we propose a model in which leiomodin regulates actin poly­merization dynamics in myocytes by acting as a leaky cap at thin filament pointed ends.
doi:10.1091/mbc.E16-03-0200
PMCID: PMC4985258  PMID: 27307584
24.  Tropomyosin Regulates Elongation by Formin at the Fast-Growing End of the Actin Filament† 
Biochemistry  2007;46(27):8146-8155.
The balance between dynamic and stable actin filaments is essential for the regulation of cellular functions including the determination of cell shape and polarity, cell migration, and cytokinesis. Proteins that regulate polymerization at the filament ends and filament stability confer specificity to actin filament structure and cellular function. The dynamics of the barbed, fast-growing end of the filament are controlled in space and time by both positive and negative regulators of actin polymerization. Capping proteins inhibit the addition and loss of subunits, whereas other proteins, including formins, bind at the barbed end and allow filament growth. In this work, we show that tropomyosin regulates dynamics at the barbed end. Tropomyosin binds to constructs of FRL1 and mDia2 that contain the FH2 domain and modulates formin-dependent capping of the barbed end by relieving inhibition of elongation by FRL1- FH1FH2, mDia1-FH2, and mDia2-FH2 in an isoform-dependent fashion. In this role, tropomyosin functions as an activator of formin. Tropomyosin also inhibits the binding of FRL1-FH1FH2 to the sides of actin filaments independent of the isoform. In contrast, tropomyosin does not affect the ability of capping protein to block the barbed end. We suggest that tropomyosin and formin act together to ensure the formation of unbranched actin filaments, protected from severing, that could be capped in stable cellular structures. This role, in addition to its cooperative control of myosin function, establishes tropomyosin as a universal regulator of the multifaceted actin cytoskeleton.
doi:10.1021/bi700686p
PMCID: PMC2581838  PMID: 17569543
25.  Assembly of different isoforms of actin and tropomyosin into the skeletal tropomyosin-enriched microfilaments during differentiation of muscle cells in vitro 
The Journal of Cell Biology  1986;103(6):2173-2183.
We have used a monoclonal antibody (CL2) directed against striated muscle isoforms of tropomyosin to selectively isolate a class of microfilaments (skeletal tropomyosin-enriched microfilaments) from differentiating muscle cells. This class of microfilaments differed from the one (tropomyosin-enriched microfilaments) isolated from the same cells by a monoclonal antibody (LCK16) recognizing all isoforms of muscle and nonmuscle tropomyosin. In myoblasts, the skeletal tropomyosin-enriched microfilaments had a higher content of alpha-actin and phosphorylated isoforms of tropomyosin as compared with the tropomyosin-enriched microfilaments. Moreover, besides muscle isoforms of actin and tropomyosin, significant amounts of nonmuscle isoforms of actin and tropomyosin were found in the skeletal tropomyosin-enriched microfilaments of myoblasts and myotubes. These results suggest that different isoforms of actin and tropomyosin can assemble into the same set of microfilaments, presumably pre-existing microfilaments, to form the skeletal tropomyosin-enriched microfilaments, which will eventually become the thin filaments of myofibrils. Therefore, the skeletal tropomyosin-enriched microfilaments detected here may represent an intermediate class of microfilaments formed during thin filament maturation. Electron microscopic studies of the isolated microfilaments from myoblasts and myotubes showed periodic localization of tropomyosin molecules along the microfilaments. The tropomyosin periodicity in the microfilaments of myoblasts and myotubes was 35 and 37 nm, respectively, whereas the nonmuscle tropomyosin along chicken embryo fibroblast microfilaments had a 34-nm repeat.
PMCID: PMC2114574  PMID: 3536961

Results 1-25 (1078946)