Search tips
Search criteria

Results 1-25 (652721)

Clipboard (0)

Related Articles

1.  PilA localization affects extracellular polysaccharide production and fruiting body formation in Myxococcus xanthus 
Molecular microbiology  2010;76(6):1500-1513.
Myxococcus xanthus is a gram-negative bacterium capable of complex developmental processes involving vegetative swarming and fruiting body formation. Social (S-) gliding motility, one of the two motility systems employed by M. xanthus, requires at least two cell surface structures: type IV pili (TFP) and extracellular polysaccharides (EPS). Extended TFP which are composed of thousands of copies of PilA retract upon binding to EPS and thereby pull the cell forward. TFP also act as external sensor to regulate EPS production. In this study, we generated a random PilA mutant library and identified one derivative, SW1066, which completely failed to undergo developmental processes. Detailed characterization revealed that SW1066 produced very little EPS but wild-type amounts of PilA. These mutated PilA subunits, however, are unable to assemble into functional TFP despite their ability to localize to the membrane. By preventing the mutated PilA of SW1066 to translocate from the cytoplasm to the membrane, fruiting body formation and EPS production was restored to the levels observed in mutant strains lacking PilA. This apparent connection between PilA membrane accumulation and reduction in surface EPS implies that specific cellular PilA localization are required to maintain the EPS level necessary to sustain normal S-motilityin M. xanthus.
PMCID: PMC2935901  PMID: 20444090
Myxococcus xanthus; type four pili; PilA; extracellular polysaccharide
2.  Regulation of expression of the pilA gene in Myxococcus xanthus. 
Journal of Bacteriology  1997;179(24):7748-7758.
Type IV pili are required for social gliding motility in Myxococcus xanthus. In this work, the expression of pilin (the pilA gene product) during vegetative growth and fruiting-body development was examined. A polyclonal antibody against the pilA gene product (prepilin) was prepared, along with a pilA-lacZ fusion, and was used to assay expression of pilA in M. xanthus in different mutant backgrounds. pilA expression required the response regulator pilR but was negatively regulated by the putative sensor kinase pilS. pilA expression did not require pilB, pilC, or pilT. pilA was also autoregulated; a mutation which altered an invariant glutamate five residues from the presumed prepilin processing site eliminated this autoregulation, as did a deletion of the pilA gene. Primer extension and S1 nuclease analysis identified a sigma54 promoter upstream of pilA, consistent with the homology of pilR to the NtrC family of response regulators. Expression of pilA was found to be developmentally regulated; however, the timing of this expression pattern was not entirely dependent on pilS or pilR. Finally, pilA expression was induced by high nutrient concentrations, an effect that was also not dependent on pilS or pilR.
PMCID: PMC179738  PMID: 9401034
3.  Characterization of Four Type IV Pilin Homologues in Stigmatella aurantiaca DSM17044 by Heterologous Expression in Myxococcus xanthus 
PLoS ONE  2013;8(9):e75105.
As prokaryotic models for multicellular development, Stigmatellaaurantiaca and Myxococcus xanthus share many similarities in terms of social behaviors, such as gliding motility. Our current understanding of myxobacterial grouped-cell motilities comes mainly from the research on M. xanthus, which shows that filamentous type IV pili (TFP), composed of type IV pilin (also called PilA protein) subunits, are the key apparatus for social motility (S-motility). However, little is known about the pilin protein in S. aurantiaca. We cloned and sequenced four genes (pilASa1~4) from S. aurantiaca DSM17044 that are homologous to pilAMx (pilA gene in M. xanthus DK1622). The homology and similarities among PilASa proteins and other myxobacterial homologues were systematically analyzed. To determine their potential biological functions, the four pilASa genes were expressed in M. xanthus DK10410 (ΔpilAMx), which did not restore S-motility on soft agar or EPS production to host cells. After further analysis of the motile behaviors in a methylcellulose solution, the M. xanthus strains were categorized into three types. YL6101, carrying pilASa1, and YL6104, carrying pilASa4, produced stable but unretractable surface pili; YL6102, carrying pilASa2, produced stable surface pili and exhibited reduced TFP-dependent motility in methylcellulose; YL6103, carrying pilASa3, produced unstable surface pili. Based on these findings, we propose that pilASa2 might be responsible for the type IV pilin production involved in group motility in S. aurantiaca DSM17044. After examining the developmental processes, it was suggested that the expression of PilASa4 protein might have positive effects on the fruiting body formation of M. xanthus DK10410 cells. Moreover, the formation of fruiting body in M. xanthus cells with stable exogenous TFPSa were compensated by mixing them with S. aurantiaca DSM17044 cells. Our results shed some light on the features and functions of type IV pilin homologues in S. aurantiaca.
PMCID: PMC3776727  PMID: 24058653
4.  Direct visualization of the interaction between pilin and exopolysaccharides of Myxococcus xanthus with eGFP fused PilA protein 
FEMS microbiology letters  2011;326(1):23-30.
Type IV pili (TFP) and exopolysaccharides (EPS) are important components for social behaviors in Myxococcus xanthus, including gliding motility and fruiting body formation. Although specific interactions between TFP and EPS have been proposed, direct observations of these interactions under native condition have not yet been made. In this study, we found that a truncated PilA protein (PilACt) which only contains the C-terminal domain (amino acids 32-208) is sufficient for EPS binding in vitro. Furthermore, an enhanced green fluorescent protein (eGFP) and PilACt fusion protein was constructed and used to label the native EPS in M. xanthus. Under confocal laser scanning microscope, the eGFP-PilACt-bound fruiting bodies, trail structures and biofilms exhibited similar patterns as the wheat germ agglutinin lectin (WGA)-labeled EPS structures. This study showed that eGFP-PilACt fusion protein was able to efficiently label the EPS of M. xanthus and for the first time provided evidence for the direct interaction between the PilA protein and EPS under native conditions.
PMCID: PMC3454480  PMID: 22092602
Type IV Pilin; Exopolysaccharides; Biofilm; Fruiting body; Confocal laser scanning microscopy; eGFP
5.  Acinetobacter baumannii Strain M2 Produces Type IV Pili Which Play a Role in Natural Transformation and Twitching Motility but Not Surface-Associated Motility 
mBio  2013;4(4):e00360-13.
Acinetobacter baumannii is a Gram-negative, opportunistic pathogen. Recently, multiple A. baumannii genomes have been sequenced; these data have led to the identification of many genes predicted to encode proteins required for the biogenesis of type IV pili (TFP). However, there is no experimental evidence demonstrating that A. baumannii strains actually produce functional TFP. Here, we demonstrated that A. baumannii strain M2 is naturally transformable and capable of twitching motility, two classical TFP-associated phenotypes. Strains were constructed with mutations in pilA, pilD, and pilT, genes whose products have been well characterized in other systems. These mutants were no longer naturally transformable and did not exhibit twitching motility. These TFP-associated phenotypes were restored when these mutations were complemented. More PilA was detected on the surface of the pilT mutant than the parental strain, and TFP were visualized on the pilT mutant by transmission electron microscopy. Thus, A. baumannii produces functional TFP and utilizes TFP for both natural transformation and twitching motility. Several investigators have hypothesized that TFP might be responsible, in part, for the flagellum-independent surface-associated motility exhibited by many A. baumannii clinical isolates. We demonstrated that surface-associated motility was not dependent on the products of the pilA, pilD, and pilT genes and, by correlation, TFP. The identification of functional TFP in A. baumannii lays the foundation for future work determining the role of TFP in models of virulence that partially recapitulate human disease.
IMPORTANCE   Several investigators have documented the presence of genes predicted to encode proteins required for the biogenesis of TFP in many A. baumannii genomes. Furthermore, some have speculated that TFP may play a role in the unique surface-associated motility phenotype exhibited by many A. baumannii clinical isolates, yet there has been no experimental evidence to prove this. Unfortunately, progress in understanding the biology and virulence of A. baumannii has been slowed by the difficulty of constructing and complementing mutations in this species. Strain M2, a recently characterized clinical isolate, is amenable to genetic manipulation. We have established a reproducible system for the generation of marked and/or unmarked mutations using a modified recombineering strategy as well as a genetic complementation system utilizing a modified mini-Tn7 element in strain M2. Using this strategy, we demonstrated that strain M2 produces TFP and that TFP are not required for surface-associated motility exhibited by strain M2.
Several investigators have documented the presence of genes predicted to encode proteins required for the biogenesis of TFP in many A. baumannii genomes. Furthermore, some have speculated that TFP may play a role in the unique surface-associated motility phenotype exhibited by many A. baumannii clinical isolates, yet there has been no experimental evidence to prove this. Unfortunately, progress in understanding the biology and virulence of A. baumannii has been slowed by the difficulty of constructing and complementing mutations in this species. Strain M2, a recently characterized clinical isolate, is amenable to genetic manipulation. We have established a reproducible system for the generation of marked and/or unmarked mutations using a modified recombineering strategy as well as a genetic complementation system utilizing a modified mini-Tn7 element in strain M2. Using this strategy, we demonstrated that strain M2 produces TFP and that TFP are not required for surface-associated motility exhibited by strain M2.
PMCID: PMC3735195  PMID: 23919995
6.  Expression, purification, crystallization and preliminary crystallographic analysis of PilA from the nontypeable Haemophilus influenzae type IV pilus 
In order to characterize the type IV pili of nontypeable Haemophilus influenzae, an attempt to solve the atomic structure of the major pilin subunit PilA was initiated. A 1.73 Å resolution X-ray diffraction data set was collected from native N-terminally truncated PilA (ΔN-PilA).
The type IV pili of nontypeable Haemophilus influenzae (NTHi) are involved in twitching motility, adherence, competence and biofilm formation. They are potential virulence factors for this important human pathogen and are thus considered to be vaccine targets. To characterize these pili, an attempt to solve the atomic structure of the major pilin subunit PilA was initiated. A 1.73 Å resolution X-ray diffraction data set was collected from native N-terminally truncated PilA (ΔN-PilA). Data processing indicated a hexagonal crystal system, which was determined to belong to space group P61 or P65 based on the systematic absences and near-perfect twinning of the crystal. The unit-cell parameters were a = b = 68.08, c = 197.03 Å with four molecules in the asymmetric unit, giving a solvent content of 50%. Attempts to solve the ΔN-­PilA structure by molecular replacement with existing type IV pilin and type II secretion pseudopilin structures are in progress.
PMCID: PMC3310531  PMID: 22442223
nontypeable Haemophilus influenzae; type IV pili; otitis media
7.  The type IV pilin, PilA, is required for full virulence of Francisella tularensis subspecies tularensis 
BMC Microbiology  2010;10:227.
All four Francisella tularensis subspecies possess gene clusters with potential to express type IV pili (Tfp). These clusters include putative pilin genes, as well as pilB, pilC and pilQ, required for secretion and assembly of Tfp. A hallmark of Tfp is the ability to retract the pilus upon surface contact, a property mediated by the ATPase PilT. Interestingly, out of the two major human pathogenic subspecies only the highly virulent type A strains have a functional pilT gene.
In a previous study, we were able to show that one pilin gene, pilA, was essential for virulence of a type B strain in a mouse infection model. In this work we have examined the role of several Tfp genes in the virulence of the pathogenic type A strain SCHU S4. pilA, pilC, pilQ, and pilT were mutated by in-frame deletion mutagenesis. Interestingly, when mice were infected with a mixture of each mutant strain and the wild-type strain, the pilA, pilC and pilQ mutants were out-competed, while the pilT mutant was equally competitive as the wild-type.
This suggests that expression and surface localisation of PilA contribute to virulence in the highly virulent type A strain, while PilT was dispensable for virulence in the mouse infection model.
PMCID: PMC2941502  PMID: 20796283
8.  Disparate Subcellular Localization Patterns of Pseudomonas aeruginosa Type IV Pilus ATPases Involved in Twitching Motility 
Journal of Bacteriology  2005;187(3):829-839.
The opportunistic pathogen Pseudomonas aeruginosa expresses polar type IV pili (TFP), which are responsible for adhesion to various materials and twitching motility on surfaces. Twitching occurs by alternate extension and retraction of TFP, which arise from assembly and disassembly of pilin subunits at the base of the pilus. The ATPase PilB promotes pilin assembly, while the ATPase PilT or PilU or both promote pilin dissociation. Fluorescent fusions to two of the three ATPases (PilT and PilU) were functional, as shown by complementation of the corresponding mutants. PilB and PilT fusions localized to both poles, while PilU fusions localized only to the piliated pole. To identify the portion of the ATPases required for localization, sequential C-terminal deletions of PilT and PilU were generated. The conserved His and Walker B boxes were dispensable for polar localization but were required for twitching motility, showing that localization and function could be uncoupled. Truncated fusions that retained polar localization maintained their distinctive distribution patterns. To dissect the cellular factors involved in establishing polarity, fusion protein localization was monitored with a panel of TFP mutants. The localization of yellow fluorescent protein (YFP)-PilT and YFP-PilU was independent of the subunit PilA, other TFP ATPases, and TFP-associated proteins previously shown to be associated with the membrane or exhibiting polar localization. In contrast, YFP-PilB exhibited diffuse cytoplasmic localization in a pilC mutant, suggesting that PilC is required for polar localization of PilB. Finally, localization studies performed with fluorescent ATPase chimeras of PilT and PilU demonstrated that information responsible for the characteristic localization patterns of the ATPases likely resides in their N termini.
PMCID: PMC545728  PMID: 15659660
9.  Type IV Pili in Francisella – A Virulence Trait in an Intracellular Pathogen 
Francisella tularensis is a highly virulent intracellular human pathogen that is capable of rapid proliferation in the infected host. Mutants affected in intracellular survival and growth are highly attenuated which highlights the importance of the intracellular phase of the infection. Genomic analysis has revealed that Francisella encodes all genes required for expression of functional type IV pili (Tfp), and in this focused review we summarize recent findings regarding this system in the pathogenesis of tularemia. Tfp are dynamic adhesive structures that have been identified as major virulence determinants in several human pathogens, but it is not obvious what role these structures could have in an intracellular pathogen like Francisella. In the human pathogenic strains, genes required for secretion and assembly of Tfp and one pilin, PilA, have shown to be required for full virulence. Importantly, specific genetic differences have been identified between the different Francisella subspecies where in the most pathogenic type A variants all genes are intact while several Tfp genes are pseudogenes in the less pathogenic type B strains. This suggests that there has been a selection for expression of Tfp with different properties in the different subspecies. There is also a possibility that the genetic differences reflect adaptation to different environmental niches of the subspecies and plays a role in transmission of tularemia. This is also in line with recent findings where Tfp pilins are found to be glycosylated which could reflect a role for Tfp in the environment to promote survival and transmission. We are still far from understanding the role of Tfp in virulence and transmission of tularemia, but with the genomic information and genetic tools available we are in a good position to address these issues in the future.
PMCID: PMC3109291  PMID: 21687421
Francisella tularensis; type IV pili; virulence; type II secretion
10.  Single-Residue Changes in the C-Terminal Disulfide-Bonded Loop of the Pseudomonas aeruginosa Type IV Pilin Influence Pilus Assembly and Twitching Motility▿  
Journal of Bacteriology  2009;191(21):6513-6524.
PilA, the major pilin subunit of Pseudomonas aeruginosa type IV pili (T4P), is a principal structural component. PilA has a conserved C-terminal disulfide-bonded loop (DSL) that has been implicated as the pilus adhesinotope. Structural studies have suggested that DSL is involved in intersubunit interactions within the pilus fiber. PilA mutants with single-residue substitutions, insertions, or deletions in the DSL were tested for pilin stability, pilus assembly, and T4P function. Mutation of either Cys residue of the DSL resulted in pilins that were unable to assemble into fibers. Ala replacements of the intervening residues had a range of effects on assembly or function, as measured by changes in surface pilus expression and twitching motility. Modification of the C-terminal P-X-X-C type II beta-turn motif, which is one of the few highly conserved features in pilins across various species, caused profound defects in assembly and twitching motility. Expression of pilins with suspected assembly defects in a pilA pilT double mutant unable to retract T4P allowed us to verify which subunits were physically unable to assemble. Use of two different PilA antibodies showed that the DSL may be an immunodominant epitope in intact pili compared with pilin monomers. Sequence diversity of the type IVa pilins likely reflects an evolutionary compromise between retention of function and antigenic variation. The consequences of DSL sequence changes should be evaluated in the intact protein since it is technically feasible to generate DSL-mimetic peptides with mutations that will not appear in the natural repertoire due to their deleterious effects on assembly.
PMCID: PMC2795284  PMID: 19717595
11.  Expression of Type IV Pili by Moraxella catarrhalis Is Essential for Natural Competence and Is Affected by Iron Limitation  
Infection and Immunity  2004;72(11):6262-6270.
Type IV pili, filamentous surface appendages primarily composed of a single protein subunit termed pilin, play a crucial role in the initiation of disease by a wide range of pathogenic bacteria. Although previous electron microscopic studies suggested that pili might be present on the surface of Moraxella catarrhalis isolates, detailed molecular and phenotypic analyses of these structures have not been reported to date. We identified and cloned the M. catarrhalis genes encoding PilA, the major pilin subunit, PilQ, the outer membrane secretin through which the pilus filament is extruded, and PilT, the NTPase that mediates pilin disassembly and retraction. To initiate investigation of the role of this surface organelle in pathogenesis, isogenic pilA, pilT, and pilQ mutants were constructed in M. catarrhalis strain 7169. Comparative analyses of the wild-type 7169 strain and three isogenic pil mutants demonstrated that M. catarrhalis expresses type IV pili that are essential for natural genetic transformation. Our studies suggest type IV pilus production by M. catarrhalis is constitutive and ubiquitous, although pilin expression was demonstrated to be iron responsive and Fur regulated. These data indicate that additional studies aimed at elucidating the prevalence and role of type IV pili in the pathogenesis and host response to M. catarrhalis infections are warranted.
PMCID: PMC523052  PMID: 15501752
12.  Regulating Pilin Expression Reveals a Threshold for S Motility in Myxococcus xanthus 
Journal of Bacteriology  2005;187(6):2105-2112.
An isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible promoter was constructed in Myxococcus xanthus. The single-copy pilA gene encodes pilin, the monomer unit of M. xanthus type IV pili. To vary the level of pilA expression, we cloned its promoter in front of the lac operator, and a plasmid containing the construct was inserted into the chromosome of a ΔpilA strain. Induction of pilin expression increased smoothly as the dose of IPTG added to the culture was increased. IPTG-induced pilin rescued S motility of the ΔpilA strain to wild-type levels. The rate of S-motile swarming was found to be proportional to the number of pili (shear-sensitive pilin) produced rather than to the level of total pilin. In fact, S motility was not rescued until the total level of pilin was more than 50% of the wild-type level. This observation implies that a threshold concentration of pilin must be exceeded before the shear-sensitive material (pili) is polymerized in M. xanthus.
PMCID: PMC1064035  PMID: 15743959
13.  Expression of a Clostridium perfringens Type IV Pilin by Neisseria gonorrhoeae Mediates Adherence to Muscle Cells ▿ †  
Infection and Immunity  2011;79(8):3096-3105.
Clostridium perfringens is an anaerobic, Gram-positive bacterium that causes a range of diseases in humans, including lethal gas gangrene. We have recently shown that strains of C. perfringens move across the surface of agar plates by a unique type IV pilus (TFP)-mediated social motility that had not been previously described. Based on sequence homology to pilins in Gram-negative bacteria, C. perfringens appears to have two pilin subunits, PilA1 and PilA2. Structural prediction analysis indicated PilA1 is similar to the pseudopilin found in Klebsiella oxytoca, while PilA2 is more similar to true pilins found in the Gram-negative pathogens Pseudomonas aeruginosa and Neisseria gonorrhoeae. Strains of N. gonorrhoeae that were genetically deficient in the native pilin, PilE, but supplemented with inducible expression of PilA1 and PilA2 of C. perfringens were constructed. Genetic competence, wild-type twitching motility, and attachment to human urogenital epithelial cells were not restored by expression of either pilin. However, attachment to mouse and rat myoblast (muscle) cell lines was observed with the N. gonorrhoeae strain expressing PilA2. Significantly, wild-type C. perfringens cells adhered to mouse myoblasts under anaerobic conditions, and adherence was 10-fold lower in a pilT mutant that lacked functional TFP. These findings implicate C. perfringens TFP in the ability of C. perfringens to adhere to and move along muscle fibers in vivo, which may provide a therapeutic approach to limiting this rapidly spreading and highly lethal infection.
PMCID: PMC3147591  PMID: 21646450
14.  Pseudomonas aeruginosa Type IV Pilus Expression in Neisseria gonorrhoeae: Effects of Pilin Subunit Composition on Function and Organelle Dynamics▿ †  
Journal of Bacteriology  2007;189(18):6676-6685.
Type IV pili (TFP) play central roles in the expression of many phenotypes including motility, multicellular behavior, sensitivity to bacteriophages, natural genetic transformation, and adherence. In Neisseria gonorrhoeae, these properties require ancillary proteins that act in conjunction with TFP expression and influence organelle dynamics. Here, the intrinsic contributions of the pilin protein itself to TFP dynamics and associated phenotypes were examined by expressing the Pseudomonas aeruginosa PilAPAK pilin subunit in N. gonorrhoeae. We show here that, although PilAPAK pilin can be readily assembled into TFP in this background, steady-state levels of purifiable fibers are dramatically reduced relative those of endogenous pili. This defect is due to aberrant TFP dynamics as it is suppressed in the absence of the PilT pilus retraction ATPase. Functionally, PilAPAK pilin complements gonococcal adherence for human epithelial cells but only in a pilT background, and this property remains dependent on the coexpression of both the PilC adhesin and the PilV pilin-like protein. Since P. aeruginosa pilin only moderately supports neisserial sequence-specific transformation despite its assembly proficiency, these results together suggest that PilAPAK pilin functions suboptimally in this environment. This appears to be due to diminished compatibility with resident proteins essential for TFP function and dynamics. Despite this, PilAPAK pili support retractile force generation in this background equivalent to that reported for endogenous pili. Furthermore, PilAPAK pili are both necessary and sufficient for bacteriophage PO4 binding, although the strain remains phage resistant. Together, these findings have significant implications for TFP biology in both N. gonorrhoeae and P. aeruginosa.
PMCID: PMC2045180  PMID: 17573479
15.  Loss of Meningococcal PilU Delays Microcolony Formation and Attenuates Virulence In Vivo 
Infection and Immunity  2012;80(7):2538-2547.
Neisseria meningitidis is a major cause of sepsis and bacterial meningitis worldwide. This bacterium expresses type IV pili (Tfp), which mediate important virulence traits such as the formation of bacterial aggregates, host cell adhesion, twitching motility, and DNA uptake. The meningococcal PilT protein is a hexameric ATPase that mediates pilus retraction. The PilU protein is produced from the pilT-pilU operon and shares a high degree of homology with PilT. The function of PilT in Tfp biology has been studied extensively, whereas the role of PilU remains poorly understood. Here we show that pilU mutants have delayed microcolony formation on host epithelial cells compared to the wild type, indicating that bacterium-bacterium interactions are affected. In normal human serum, the pilU mutant survived at a higher rate than that for wild-type bacteria. However, in a murine model of disease, mice infected with the pilT mutant demonstrated significantly reduced bacterial blood counts and survived at a higher rate than that for mice infected with the wild type. Infection of mice with the pilU mutant resulted in a trend of lower bacteremia, and still a significant increase in survival, than that of the wild type. In conclusion, these data suggest that PilU promotes timely microcolony formation and that both PilU and PilT are required for full bacterial virulence.
PMCID: PMC3416451  PMID: 22508857
16.  Exopolysaccharide-Independent Social Motility of Myxococcus xanthus 
PLoS ONE  2011;6(1):e16102.
Social motility (S motility), the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP) and exopolysaccharides (EPS). Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS. However, the curious observation that M. xanthus can perform TFP-dependent motility at a single-cell level when placed onto polystyrene surfaces in a highly viscous medium containing 1% methylcellulose indicated that “S motility” is not limited to group movements. In an apparent further challenge of the previous findings for S motility, mutants defective in EPS production were found to perform TFP-dependent motility on polystyrene surface in methylcellulose-containing medium. By exploring the interactions between pilin and surface materials, we found that the binding of TFP onto polystyrene surfaces eliminated the requirement for EPS in EPS- cells and thus enabled TFP-dependent motility on a single cell level. However, the presence of a general anchoring surface in a viscous environment could not substitute for the role of cell surface EPS in group movement. Furthermore, EPS was found to serve as a self-produced anchoring substrate that can be shed onto surfaces to enable cells to conduct TFP-dependent motility regardless of surface properties. These results suggested that in certain environments, such as in methylcellulose solution, the cells could bypass the need for EPS to anchor their TPF and conduct single-cell S motility to promote exploratory movement of colonies over new specific surfaces.
PMCID: PMC3016331  PMID: 21245931
17.  Aromatic Amino Acids Required for Pili Conductivity and Long-Range Extracellular Electron Transport in Geobacter sulfurreducens 
mBio  2013;4(2):e00105-13.
It has been proposed that Geobacter sulfurreducens requires conductive pili for long-range electron transport to Fe(III) oxides and for high-density current production in microbial fuel cells. In order to investigate this further, we constructed a strain of G. sulfurreducens, designated Aro-5, which produced pili with diminished conductivity. This was accomplished by modifying the amino acid sequence of PilA, the structural pilin protein. An alanine was substituted for each of the five aromatic amino acids in the carboxyl terminus of PilA, the region in which G. sulfurreducens PilA differs most significantly from the PilAs of microorganisms incapable of long-range extracellular electron transport. Strain Aro-5 produced pili that were properly decorated with the multiheme c-type cytochrome OmcS, which is essential for Fe(III) oxide reduction. However, pili preparations of the Aro-5 strain had greatly diminished conductivity and Aro-5 cultures were severely limited in their capacity to reduce Fe(III) compared to the control strain. Current production of the Aro-5 strain, with a graphite anode serving as the electron acceptor, was less than 10% of that of the control strain. The conductivity of the Aro-5 biofilms was 10-fold lower than the control strain’s. These results demonstrate that the pili of G. sulfurreducens must be conductive in order for the cells to be effective in extracellular long-range electron transport.
Extracellular electron transfer by Geobacter species plays an important role in the biogeochemistry of soils and sediments and has a number of bioenergy applications. For example, microbial reduction of Fe(III) oxide is one of the most geochemically significant processes in anaerobic soils, aquatic sediments, and aquifers, and Geobacter organisms are often abundant in such environments. Geobacter sulfurreducens produces the highest current densities of any known pure culture, and close relatives are often the most abundant organisms colonizing anodes in microbial fuel cells that harvest electricity from wastewater or aquatic sediments. The finding that a strain of G. sulfurreducens that produces pili with low conductivity is limited in these extracellular electron transport functions provides further insight into these environmentally significant processes.
PMCID: PMC3604773  PMID: 23481602
18.  Role of the Eikenella corrodens pilA Locus in Pilus Function and Phase Variation 
Journal of Bacteriology  2001;183(1):55-62.
The human pathogen Eikenella corrodens expresses type IV pili and exhibits a phase variation involving the irreversible transition from piliated to nonpiliated variants. On solid medium, piliated variants form small (S-phase), corroding colonies whereas nonpiliated variants form large (L-phase), noncorroding colonies. We are studying pilus structure and function in the clinical isolate E. corrodens VA1. Earlier work defined the pilA locus which includes pilA1, pilA2, pilB, and hagA. Both pilA1 and pilA2 predict a type IV pilin, whereas pilB predicts a putative pilus assembly protein. The role of hagA has not been clearly established. That work also confirmed that pilA1 encodes the major pilus protein in this strain and showed that the phase variation involves a posttranslational event in pilus formation. In this study, the function of the individual genes comprising the pilA locus was examined using a recently developed protocol for targeted interposon mutagenesis of S-phase variant VA1-S1. Different pilA mutants were compared to S-phase and L-phase variants for several distinct aspects of phase variation and type IV pilus biosynthesis and function. S-phase cells were characterized by surface pili, competence for natural transformation, and twitching motility, whereas L-phase cells lacked these features. Inactivation of pilA1 yielded a mutant that was phenotypically indistinguishable from L-phase variants, showing that native biosynthesis of the type IV pilus in strain VA1 is dependent on expression of pilA1 and proper export and assembly of PilA1. Inactivation of pilA2 yielded a mutant that was phenotypically indistinguishable from S-phase variants, indicating that pilA2 is not essential for biosynthesis of functionally normal pili. A mutant inactivated for pilB was deficient for twitching motility, suggesting a role for PilB in this pilus-related phenomenon. Inactivation of hagA, which may encode a tellurite resistance protein, had no effect on pilus structure or function.
PMCID: PMC94849  PMID: 11114900
19.  FrzS Regulates Social Motility in Myxococcus xanthus by Controlling Exopolysaccharide Production 
PLoS ONE  2011;6(8):e23920.
Myxococcus xanthus Social (S) motility occurs at high cell densities and is powered by the extension and retraction of Type IV pili which bind ligands normally found in matrix exopolysaccharides (EPS). Previous studies showed that FrzS, a protein required for S-motility, is organized in polar clusters that show pole-to-pole translocation as cells reverse their direction of movement. Since the leading cell pole is the site of both the major FrzS cluster and type IV pilus extension/retraction, it was suggested that FrzS might regulate S-motility by activating pili at the leading cell pole. Here, we show that FrzS regulates EPS production, rather than type IV pilus function. We found that the frzS phenotype is distinct from that of Type IV pilus mutants such as pilA and pilT, but indistinguishable from EPS mutants, such as epsZ. Indeed, frzS mutants can be rescued by the addition of purified EPS, 1% methylcellulose, or co-culturing with wildtype cells. Our data also indicate that the cell density requirement in S-motility is likely a function of the ability of cells to construct functional multicellular clusters surrounding an EPS core.
PMCID: PMC3158785  PMID: 21886839
20.  PilB and PilT Are ATPases Acting Antagonistically in Type IV Pilus Function in Myxococcus xanthus▿  
Journal of Bacteriology  2008;190(7):2411-2421.
Type IV pili (T4P) are dynamic surface structures that undergo cycles of extension and retraction. T4P dynamics center on the PilB and PilT proteins, which are members of the secretion ATPase superfamily of proteins. Here, we show that PilB and PilT of the T4P system in Myxococcus xanthus have ATPase activity in vitro. Using a structure-guided approach, we systematically mutagenized PilB and PilT to resolve whether both ATP binding and hydrolysis are important for PilB and PilT function in vivo. PilB as well as PilT ATPase activity was abolished in vitro by replacement of conserved residues in the Walker A and Walker B boxes that are involved in ATP binding and hydrolysis, respectively. PilB proteins containing mutant Walker A or Walker B boxes were nonfunctional in vivo and unable to support T4P extension. PilT proteins containing mutant Walker A or Walker B boxes were also nonfunctional in vivo and unable to support T4P retraction. These data provide genetic evidence that both ATP binding and hydrolysis by PilB are essential for T4P extension and that both ATP binding and hydrolysis by PilT are essential for T4P retraction. Thus, PilB and PilT are ATPases that act at distinct steps in the T4P extension/retraction cycle in vivo.
PMCID: PMC2293208  PMID: 18223089
21.  Novel Proteins That Modulate Type IV Pilus Retraction Dynamics in Pseudomonas aeruginosa▿  
Journal of Bacteriology  2008;190(21):7022-7034.
Pseudomonas aeruginosa uses type IV pili to colonize various materials and for surface-associated twitching motility. We previously identified five phylogenetically distinct alleles of pilA in P. aeruginosa, four of which occur in genetic cassettes with specific accessory genes (J. V. Kus, E. Tullis, D. G. Cvitkovitch, and L. L. Burrows, Microbiology 150:1315-1326, 2004). Each of the five pilin alleles, with and without its associated pilin accessory gene, was used to complement a group II PAO1 pilA mutant. Expression of group I or IV pilA genes restored twitching motility to the same extent as the PAO1 group II pilin. In contrast, poor twitching resulted from complementation with group III or group V pilA genes but increased significantly when the cognate tfpY or tfpZ accessory genes were cointroduced. The enhanced motility was linked to an increase in recoverable surface pili and not to alterations in total pilin pools. Expression of the group III or V pilins in a PAO1 pilA-pilT double mutant yielded large amounts of surface pili, regardless of the presence of the accessory genes. Therefore, poor piliation in the absence of the TfpY and TfpZ accessory proteins results from a net increase in PilT-mediated retraction. Similar phenotypes were observed for tfpY single and tfpY-pilT double knockout mutants of group III strain PA14. A PilAV-TfpY chimera produced few surface pili, showing that the accessory proteins are specific for their cognate pilin. The genetic linkage between specific pilin and accessory genes may be evolutionarily conserved because the accessory proteins increase pilus expression on the cell surface, thereby enhancing function.
PMCID: PMC2580705  PMID: 18776014
22.  Structure/Function Analysis of Neisseria meningitidis PilW, a Conserved Protein That Plays Multiple Roles in Type IV Pilus Biology ▿  
Infection and Immunity  2011;79(8):3028-3035.
Type IV pili (Tfp) are widespread filamentous bacterial organelles that mediate multiple functions and play a key role in pathogenesis in several important human pathogens, including Neisseria meningitidis. Tfp biology remains poorly understood at a molecular level because the roles of the numerous proteins that are involved remain mostly obscure. Guided by the high-resolution crystal structure we recently reported for N. meningitidis PilW, a widely conserved protein essential for Tfp biogenesis, we have performed a structure/function analysis by targeting a series of key residues through site-directed mutagenesis and analyzing the corresponding variants using an array of phenotypic assays. Here we show that PilW's involvement in the functionality of Tfp can be genetically uncoupled from its concurrent role in the assembly/stabilization of the secretin channels through which Tfp emerge on the bacterial surface. These findings suggest that PilW is a multifunctional protein.
PMCID: PMC3147589  PMID: 21646452
23.  Identification of Surprisingly Diverse Type IV Pili, across a Broad Range of Gram-Positive Bacteria 
PLoS ONE  2011;6(12):e28919.
In Gram-negative bacteria, type IV pili (TFP) have long been known to play important roles in such diverse biological phenomena as surface adhesion, motility, and DNA transfer, with significant consequences for pathogenicity. More recently it became apparent that Gram-positive bacteria also express type IV pili; however, little is known about the diversity and abundance of these structures in Gram-positives. Computational tools for automated identification of type IV pilins are not currently available.
To assess TFP diversity in Gram-positive bacteria and facilitate pilin identification, we compiled a comprehensive list of putative Gram-positive pilins encoded by operons containing highly conserved pilus biosynthetic genes (pilB, pilC). A surprisingly large number of species were found to contain multiple TFP operons (pil, com and/or tad). The N-terminal sequences of predicted pilins were exploited to develop PilFind, a rule-based algorithm for genome-wide identification of otherwise poorly conserved type IV pilins in any species, regardless of their association with TFP biosynthetic operons ( Using PilFind to scan 53 Gram-positive genomes (encoding >187,000 proteins), we identified 286 candidate pilins, including 214 in operons containing TFP biosynthetic genes (TBG+ operons). Although trained on Gram-positive pilins, PilFind identified 55 of 58 manually curated Gram-negative pilins in TBG+ operons, as well as 53 additional pilin candidates in operons lacking biosynthetic genes in ten species (>38,000 proteins), including 27 of 29 experimentally verified pilins. False positive rates appear to be low, as PilFind predicted only four pilin candidates in eleven bacterial species (>13,000 proteins) lacking TFP biosynthetic genes.
We have shown that Gram-positive bacteria contain a highly diverse set of type IV pili. PilFind can be an invaluable tool to study bacterial cellular processes known to involve type IV pilus-like structures. Its use in combination with other currently available computational tools should improve the accuracy of predicting the subcellular localization of bacterial proteins.
PMCID: PMC3244431  PMID: 22216142
24.  Type IV Pili in Francisella tularensis: Roles of pilF and pilT in Fiber Assembly, Host Cell Adherence, and Virulence ▿  
Infection and Immunity  2008;76(7):2852-2861.
Francisella tularensis, a highly virulent facultative intracellular bacterium, is the causative agent of tularemia. Genome sequencing of all F. tularensis subspecies revealed the presence of genes that could encode type IV pili (Tfp). The live vaccine strain (LVS) expresses surface fibers resembling Tfp, but it was not established whether these fibers were indeed Tfp encoded by the pil genes. We show here that deletion of the pilF putative Tfp assembly ATPase in the LVS resulted in a complete loss of surface fibers. Disruption of the pilT putative disassembly ATPase also caused a complete loss of pili, indicating that pilT functions differently in F. tularensis than in model Tfp systems such as those found in Pseudomonas aeruginosa and Neisseria spp. The LVS pilF and pilT mutants were attenuated for virulence in a mouse model of tularemia by the intradermal route. Furthermore, although absence of pili had no effect on the ability of the LVS to replicate intracellularly, the pilF and pilT mutants were defective for adherence to macrophages, pneumocytes, and hepatocytes. This work confirms that the surface fibers expressed by the LVS are encoded by the pil genes and provides evidence that the Francisella pili contribute to host cell adhesion and virulence.
PMCID: PMC2446743  PMID: 18426883
25.  Two Isoforms of Geobacter sulfurreducens PilA Have Distinct Roles in Pilus Biogenesis, Cytochrome Localization, Extracellular Electron Transfer, and Biofilm Formation 
Journal of Bacteriology  2012;194(10):2551-2563.
Type IV pili of Geobacter sulfurreducens are composed of PilA monomers and are essential for long-range extracellular electron transfer to insoluble Fe(III) oxides and graphite anodes. A previous analysis of pilA expression indicated that transcription was initiated at two positions, with two predicted ribosome-binding sites and translation start codons, potentially producing two PilA preprotein isoforms. The present study supports the existence of two functional translation start codons for pilA and identifies two isoforms (short and long) of the PilA preprotein. The short PilA isoform is found predominantly in an intracellular fraction. It seems to stabilize the long isoform and to influence the secretion of several outer-surface c-type cytochromes. The long PilA isoform is required for secretion of PilA to the outer cell surface, a process that requires coexpression of pilA with nine downstream genes. The long isoform was determined to be essential for biofilm formation on certain surfaces, for optimum current production in microbial fuel cells, and for growth on insoluble Fe(III) oxides.
PMCID: PMC3347174  PMID: 22408162

Results 1-25 (652721)