PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (806821)

Clipboard (0)
None

Related Articles

1.  Transcriptome analysis of alternative splicing events regulated by SRSF10 reveals position-dependent splicing modulation 
Nucleic Acids Research  2014;42(6):4019-4030.
Splicing factor SRSF10 is known to function as a sequence-specific splicing activator. Here, we used RNA-seq coupled with bioinformatics analysis to identify the extensive splicing network regulated by SRSF10 in chicken cells. We found that SRSF10 promoted both exon inclusion and exclusion. Motif analysis revealed that SRSF10 binding to cassette exons was associated with exon inclusion, whereas the binding of SRSF10 within downstream constitutive exons was associated with exon exclusion. This positional effect was further demonstrated by the mutagenesis of potential SRSF10 binding motifs in two minigene constructs. Functionally, many of SRSF10-verified alternative exons are linked to pathways of stress and apoptosis. Consistent with this observation, cells depleted of SRSF10 expression were far more susceptible to endoplasmic reticulum stress-induced apoptosis than control cells. Importantly, reconstituted SRSF10 in knockout cells recovered wild-type splicing patterns and considerably rescued the stress-related defects. Together, our results provide mechanistic insight into SRSF10-regulated alternative splicing events in vivo and demonstrate that SRSF10 plays a crucial role in cell survival under stress conditions.
doi:10.1093/nar/gkt1387
PMCID: PMC3973337  PMID: 24442672
2.  The structure and selectivity of the SR protein SRSF2 RRM domain with RNA 
Nucleic Acids Research  2011;40(7):3232-3244.
SRSF2 is a prototypical SR protein which plays important roles in the alternative splicing of pre-mRNA. It has been shown to be involved in regulatory pathways for maintaining genomic stability and play important roles in regulating key receptors in the heart. We report here the solution structure of the RNA recognition motifs (RRM) domain of free human SRSF2 (residues 9–101). Compared with other members of the SR protein family, SRSF2 structure has a longer L3 loop region. The conserved aromatic residue in the RNP2 motif is absent in SRSF2. Calorimetric titration shows that the RNA sequence 5′AGCAGAGUA3′ binds SRSF2 with a Kd of 61 ± 1 nM and a 1:1 stoichiometry. NMR and mutagenesis experiments reveal that for SFSF2, the canonical β1 and β3 interactions are themselves not sufficient for effective RNA binding; the additional loop L3 is crucial for RNA complex formation. A comparison is made between the structures of SRSF2–RNA complex with other known RNA complexes of SR proteins. We conclude that interactions involving the L3 loop, N- and C-termini of the RRM domain are collectively important for determining selectivity between the protein and RNA.
doi:10.1093/nar/gkr1164
PMCID: PMC3326313  PMID: 22140111
3.  Protein Kinase A–Dependent Phosphorylation of Serine 119 in the Proto-Oncogenic Serine/Arginine-Rich Splicing Factor 1 Modulates Its Activity as a Splicing Enhancer Protein 
Genes & Cancer  2011;2(8):841-851.
Serine/arginine-rich splicing factor 1 (SRSF1), previously designated SF2/ASF, belongs to a family of SR proteins that regulate constitutive and alternative splicing. SRSF1 expression is increased in tumors from several tissues and elicits changes in key target genes involved in tumor genesis. Several protein kinases phosphorylate SRSF1, which regulates its localization and function. It is previously reported that protein kinase A (PKA) phosphorylates SRSF1, but the importance of this modification is not well characterized. Here, we show that PKA phosphorylates SRSF1 on serine 119 in vitro. Phosphorylation of SRSF1 on this site enhanced the RNA binding capacity of SRSF1 in vivo and reduced the protein’s capacity to activate splicing of the Minx transcript in vitro. We also confirm an interaction between SRSF1 and PKA Cα1 and demonstrate that this interaction is not dependent on serine 119 phosphorylation but requires active PKA Cα1. We conclude that PKA phosphorylation of SRSF1 at serine 119 regulates SFRS1-dependent RNA binding and processing but not its interaction with PKA.
doi:10.1177/1947601911430226
PMCID: PMC3278900  PMID: 22393468
pre-mRNA splicing regulation; SRSF1; PKA; phosphorylation
4.  Psip1/Ledgf p52 Binds Methylated Histone H3K36 and Splicing Factors and Contributes to the Regulation of Alternative Splicing 
PLoS Genetics  2012;8(5):e1002717.
Increasing evidence suggests that chromatin modifications have important roles in modulating constitutive or alternative splicing. Here we demonstrate that the PWWP domain of the chromatin-associated protein Psip1/Ledgf can specifically recognize tri-methylated H3K36 and that, like this histone modification, the Psip1 short (p52) isoform is enriched at active genes. We show that the p52, but not the long (p75), isoform of Psip1 co-localizes and interacts with Srsf1 and other proteins involved in mRNA processing. The level of H3K36me3 associated Srsf1 is reduced in Psip1 mutant cells and alternative splicing of specific genes is affected. Moreover, we show altered Srsf1 distribution around the alternatively spliced exons of these genes in Psip1 null cells. We propose that Psip1/p52, through its binding to both chromatin and splicing factors, might act to modulate splicing.
Author Summary
The regulated processing of mRNAs by splicing of exons and introns has the potential to increase the information content of the genome. Various splicing factors have been identified whose binding to cis-acting sequences can influence whether an alternative exon is included or excluded (skipped) in the mature mRNA. However, increasing evidence suggests that the chromatin template also has an important role in modulating splicing. Here we identify a chromatin-associated protein Psip1/Ledgf that can bind to a histone modification enriched at active genes and that can also interact with other proteins involved in mRNA splicing. Loss of Psip1 reduces the chromatin association of specific splicing proteins and alters the pattern of alternative splicing. We propose that Psip1, through its binding to both chromatin and splicing factors, might act to modulate splicing.
doi:10.1371/journal.pgen.1002717
PMCID: PMC3355077  PMID: 22615581
5.  Proteasome-Mediated Proteolysis of SRSF5 Splicing Factor Intriguingly Co-occurs with SRSF5 mRNA Upregulation during Late Erythroid Differentiation 
PLoS ONE  2013;8(3):e59137.
SR proteins exhibit diverse functions ranging from their role in constitutive and alternative splicing, to virtually all aspects of mRNA metabolism. These findings have attracted growing interest in deciphering the regulatory mechanisms that control the tissue-specific expression of these SR proteins. In this study, we show that SRSF5 protein decreases drastically during erythroid cell differentiation, contrasting with a concomitant upregulation of SRSF5 mRNA level. Proteasome chemical inhibition provided strong evidence that endogenous SRSF5 protein, as well as protein deriving from stably transfected SRSF5 cDNA, are both targeted to proteolysis as the cells undergo terminal differentiation. Consistently, functional experiments show that overexpression of SRSF5 enhances a specific endogenous pre-mRNA splicing event in proliferating cells, but not in differentiating cells, due to proteasome-mediated targeting of both endogenous and transfection-derived SRSF5. Further investigation of the relationship between SRSF5 structure and its post-translation regulation and function, suggested that the RNA recognition motifs of SRSF5 are sufficient to activate pre-mRNA splicing, whereas proteasome-mediated proteolysis of SRSF5 requires the presence of the C-terminal RS domain of the protein. Phosphorylation of SR proteins is a key post-translation regulation that promotes their activity and subcellular availability. We here show that inhibition of the CDC2-like kinase (CLK) family and mutation of the AKT phosphorylation site Ser86 on SRSF5, have no effect on SRSF5 stability. We reasoned that at least AKT and CLK signaling pathways are not involved in proteasome-induced turnover of SRSF5 during late erythroid development.
doi:10.1371/journal.pone.0059137
PMCID: PMC3594168  PMID: 23536862
6.  Heat Shock-Induced SRSF10 Dephosphorylation Displays Thermotolerance Mediated by Hsp27▿  
Molecular and Cellular Biology  2010;31(3):458-465.
Gene regulation in response to environmental stress is critical for the survival of all organisms. From Saccharomyces cerevisiae to humans, it has been observed that splicing of mRNA precursors is repressed upon heat shock. However, a mild heat pretreatment often prevents splicing inhibition in response to a subsequent and more severe heat shock, a phenomenon called splicing thermotolerance. We have shown previously that the splicing regulator SRSF10 (formerly SRp38) is specifically dephosphorylated by the phosphatase PP1 in response to heat shock and that dephosphorylated SRSF10 is responsible for splicing repression caused by heat shock. Here we report that a mild heat shock protects SRSF10 from dephosphorylation during a second and more severe heat shock. Furthermore, this “thermotolerance” of SRSF10 phosphorylation, like that of splicing, requires de novo protein synthesis, specifically the synthesis of heat shock proteins. Indeed, overexpression of one of these proteins, Hsp27, inhibits SRSF10 dephosphorylation in response to heat shock and does so by interaction with SRSF10. Our data thus provide evidence that splicing thermotolerance is acquired through maintenance of SRSF10 phosphorylation and that this is mediated at least in part by Hsp27.
doi:10.1128/MCB.01123-10
PMCID: PMC3028621  PMID: 21135127
7.  THE SPLICING FACTOR SRSF1 REGULATES APOPTOSIS AND PROLIFERATION TO PROMOTE MAMMARY EPITHELIAL CELL TRANSFORMATION 
The splicing-factor oncoprotein SRSF1 (also known as SF2/ASF) is upregulated in breast cancers. We investigated SRSF1’s ability to transform human and mouse mammary epithelial cells in vivo and in vitro. SRSF1-overexpressing COMMA-1D cells formed tumors, following orthotopic transplantation to reconstitute the mammary gland. In 3-D culture, SRSF1-overexpressing MCF-10A cells formed larger acini than control cells, reflecting increased proliferation and delayed apoptosis during acinar morphogenesis. These effects required the first RNA-recognition motif and nuclear functions of SRSF1. SRSF1 overexpression promoted alternative splicing of BIM and BIN1 isoforms that lack pro-apoptotic functions and contribute to the phenotype. Finally, SRSF1 cooperated specifically with MYC to transform mammary epithelial cells, in part by potentiating eIF4E activation, and these cooperating oncogenes are significantly co-expressed in human breast tumors. Thus, SRSF1 can promote breast cancer, and SRSF1 itself or its downstream effectors may be valuable targets for therapeutics development.
doi:10.1038/nsmb.2207
PMCID: PMC3272117  PMID: 22245967
8.  hnRNP A1 and hnRNP F Modulate the Alternative Splicing of Exon 11 of the Insulin Receptor Gene 
PLoS ONE  2011;6(11):e27869.
Exon 11 of the insulin receptor gene (INSR) is alternatively spliced in a developmentally and tissue-specific manner. Linker scanning mutations in a 5′ GA-rich enhancer in intron 10 identified AGGGA sequences that are important for enhancer function. Using RNA-affinity purification and mass spectrometry, we identified hnRNP F and hnRNP A1 binding to these AGGGA sites and also to similar motifs at the 3′ end of the intron. The hnRNPs have opposite functional effects with hnRNP F promoting and hnRNP A1 inhibiting exon 11 inclusion, and deletion of the GA-rich elements eliminates both effects. We also observed specific binding of hnRNP A1 to the 5′ splice site of intron 11. The SR protein SRSF1 (SF2/ASF) co-purified on the GA-rich enhancer and, interestingly, also competes with hnRNP A1 for binding to the splice site. A point mutation -3U→C decreases hnRNP A1 binding, increases SRSF1 binding and renders the exon constitutive. Lastly, our data point to a functional interaction between hnRNP F and SRSF1 as a mutant that eliminates SRSF1 binding to exon 11, or a SRSF1 knockdown, which prevents the stimulatory effect of hnRNP F over expression.
doi:10.1371/journal.pone.0027869
PMCID: PMC3223206  PMID: 22132154
9.  The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes 
Genome Biology  2012;13(3):R17.
Background
The SR proteins comprise a family of essential, structurally related RNA binding proteins. The complexity of their RNA targets and specificity of RNA recognition in vivo is not well understood. Here we use iCLIP to globally analyze and compare the RNA binding properties of two SR proteins, SRSF3 and SRSF4, in murine cells.
Results
SRSF3 and SRSF4 binding sites mapped to largely non-overlapping target genes, and in vivo consensus binding motifs were distinct. Interactions with intronless and intron-containing mRNAs as well as non-coding RNAs were detected. Surprisingly, both SR proteins bound to the 3' ends of the majority of intronless histone transcripts, implicating SRSF3 and SRSF4 in histone mRNA metabolism. In contrast, SRSF3 but not SRSF4 specifically bound transcripts encoding numerous RNA binding proteins. Remarkably, SRSF3 was shown to modulate alternative splicing of its own as well as three other transcripts encoding SR proteins. These SRSF3-mediated splicing events led to downregulation of heterologous SR proteins via nonsense-mediated decay.
Conclusions
SRSF3 and SRSF4 display unique RNA binding properties underlying diverse cellular regulatory mechanisms, with shared as well as unique coding and non-coding targets. Importantly, CLIP analysis led to the discovery that SRSF3 cross-regulates the expression of other SR protein family members.
doi:10.1186/gb-2012-13-3-r17
PMCID: PMC3439968  PMID: 22436691
10.  Exon-centric regulation of pyruvate kinase M alternative splicing via mutually exclusive exons 
Alternative splicing of the pyruvate kinase M gene (PK-M) can generate the M2 isoform and promote aerobic glycolysis and tumor growth. However, the cancer-specific alternative splicing regulation of PK-M is not completely understood. Here, we demonstrate that PK-M is regulated by reciprocal effects on the mutually exclusive exons 9 and 10, such that exon 9 is repressed and exon 10 is activated in cancer cells. Strikingly, exonic, rather than intronic, cis-elements are key determinants of PK-M splicing isoform ratios. Using a systematic sub-exonic duplication approach, we identify a potent exonic splicing enhancer in exon 10, which differs from its homologous counterpart in exon 9 by only two nucleotides. We identify SRSF3 as one of the cognate factors, and show that this serine/arginine-rich protein activates exon 10 and mediates changes in glucose metabolism. These findings provide mechanistic insights into the complex regulation of alternative splicing of a key regulator of the Warburg effect, and also have implications for other genes with a similar pattern of alternative splicing.
doi:10.1093/jmcb/mjr030
PMCID: PMC3493165  PMID: 22044881
alternative splicing; cancer metabolism; pyruvate kinase; SRSF3
11.  HnRNP A1 controls a splicing regulatory circuit promoting mesenchymal-to-epithelial transition 
Nucleic Acids Research  2013;41(18):8665-8679.
Epithelial-to-mesenchymal transition (EMT) is an embryonic program used by cancer cells to acquire invasive capabilities becoming metastatic. ΔRon, a constitutively active isoform of the Ron tyrosine kinase receptor, arises from skipping of Ron exon 11 and provided the first example of an alternative splicing variant causatively linked to the activation of tumor EMT. Splicing of exon 11 is controlled by two adjacent regulatory elements, a silencer and an enhancer of splicing located in exon 12. The alternative splicing factor and oncoprotein SRSF1 directly binds to the enhancer, induces the production of ΔRon and activates EMT leading to cell locomotion. Interestingly, we now find an important role for hnRNP A1 in controlling the activity of the Ron silencer. HnRNP A1 is able to antagonize the binding of SRSF1 and prevent exon skipping. Notably, hnRNP A1, by inhibiting the production of ΔRon, activates the reversal program, namely the mesenchymal-to-epithelial transition, which instead occurs at the final metastasis sites. Also, hnRNP A1 affects Ron splicing by regulating the expression level of hnRNP A2/B1, which similarly to SRSF1 can promote ΔRon production. These results shed light on how splicing regulation contributes to the tumor progression and provide potential targets to develop anticancer therapies.
doi:10.1093/nar/gkt579
PMCID: PMC3794575  PMID: 23863836
12.  Polypyrimidine Track-binding Protein Binding Downstream of Caspase-2 Alternative Exon 9 Represses Its Inclusion* 
The Journal of biological chemistry  2000;276(11):8535-8543.
We have been using the caspase-2 pre-mRNA as a model system to study the importance of alternative splicing in the regulation of programmed cell death. Inclusion or skipping of a cassette-type exon in the 3′ portion of this pre-mRNA leads to the production of isoforms with antagonistic activity in apoptosis. We previously identified a negative regulatory element (In100) located in the intron downstream of alternative exon 9. The upstream portion of this element harbors a decoy 3′ acceptor site that engages in nonproductive commitment complex interactions with the 5′ splice site of exon 9. This in turn confers a competitive advantage to the exon-skipping splicing pattern. Further characterization of the In100 element reveals a second, functionally distinct, domain located downstream from the decoy 3′ acceptor site. This downstream domain harbors several polypyrimidine track-binding protein (PTB)-binding sites. We show that PTB binding to these sites correlates with the negative effect on exon 9 inclusion. Finally, we show that both domains of the In100 element can function independently to repress exon 9 inclusion, although PTB binding in the vicinity of the decoy 3′ splice site can modulate its activity. Our results thus reveal a complex composite element that regulates caspase-2 exon 9 alternative splicing through a novel mechanism.
doi:10.1074/jbc.M008924200
PMCID: PMC2140227  PMID: 11116151
13.  Regulation of Mcl-1 by SRSF1 and SRSF5 in Cancer Cells 
PLoS ONE  2012;7(12):e51497.
Up-regulation of the apoptosis-regulatory gene Mcl-1 (myeloid cell leukemia-1) occurs in different cancer types and is linked with drug resistance to cancer therapies. It is well known that Mcl-1 pre-mRNA undergoes alternative splicing events to produce two functionally distinct proteins, Mcl-1S (pro-apoptotic) and Mcl-lL (anti-apoptotic); the latter isoform is predominant in different cancers including breast and ovarian cancer cells. In the present study we report that the RNA-binding protein (RBP) and proto-oncogene SRSF1 (serine and arginine-rich splicing factor 1) influences splicing of Mcl-1 in both MCF-7 and MDA-MB-231 breast cancer cells and JAR choriocarcinoma cells; we also show for the first time that another RBP SRSF5 affects splicing of Mcl-1 in the MCF-7 cells. Moreover, we report that SRSF1 is involved in other aspects of Mcl-1 regulation with knockdown of SRSF1, by RNAi, resulting in a significant decrease in Mcl-1 protein levels in MCF-7 cells but an increase in JAR cells, respectively, by potentially affecting protein stability and translation of Mcl-l. The key findings from this study highlight the importance of the cellular context of different cancer cells for the function of multifunctional RBPs like SRSF1 and have implications for therapeutic approaches employed to target Mcl-1.
doi:10.1371/journal.pone.0051497
PMCID: PMC3524227  PMID: 23284704
14.  Structural, functional, and protein binding analyses of bovine papillomavirus type 1 exonic splicing enhancers. 
Journal of Virology  1997;71(12):9096-9107.
Alternative splicing plays an important role in regulation of bovine papillomavirus type 1 (BPV-1) gene expression. We have recently identified in BPV-1 late pre-mRNAs two purine-rich exonic splicing enhancers (SE1 and SE2) which also stimulate splicing of a Drosophila doublesex (dsx) pre-mRNA containing a suboptimal 3' splice site. In vivo studies now demonstrate that both SE1 and SE2 are required for preferential use of the BPV-1 nucleotide (nt) 3225 3' splice site in nonpermissive cells. Deletion or mutation of either element in a BPV-1 late pre-mRNA switches splicing to the late-specific alternative 3' splice site at nt 3605. To investigate the sequence specificity of these exonic splicing enhancers, various mutant SE1 or SE2 elements were connected to dsx pre-mRNAs and tested for their stimulatory effects on dsx pre-mRNA splicing in vitro. Substitution of U residues for either A or G residues in and around potential ASF/SF2 binding sites in SE1 or SE2 resulted in a significant reduction of splicing enhancer activity. However, the G-to-U substitutions in both enhancers had the largest effect, reducing splicing to near control levels. Further in vitro analyses showed that splicing enhancement by SE2 could be competed with excess unlabeled SE2 RNA, indicating that SE2 activity in HeLa nuclear extracts is mediated by trans-acting factors. UV cross-linking plus immunoprecipitation assays showed that both wild-type SE1 and SE2 RNAs could bind directly to purified HeLa SR proteins SRp30a (ASF/SF2), SRp55, and SRp75. UV cross-linking experiments also identified a 23-kDa protein which binds to SE2 but not SE1. This protein is present in both HeLa nuclear extracts and S100 extracts but absent from SR protein preparations, suggesting that it is not a classical SR protein. Mutant SE elements (containing G- to U-mutations) which had minimal splicing enhancer activity also had very weak binding capacity for these proteins, strongly suggesting that the binding of these proteins is required for splicing enhancer function.
PMCID: PMC230210  PMID: 9371566
15.  Expression of Tra2β in Cancer Cells as a Potential Contributory Factor to Neoplasia and Metastasis 
The splicing regulator proteins SRSF1 (also known as ASF/SF2) and SRSF3 (also known as SRP20) belong to the SR family of proteins and can be upregulated in cancer. The SRSF1 gene itself is amplified in some cancer cells, and cancer-associated changes in the expression of MYC also increase SRSF1 gene expression. Increased concentrations of SRSF1 protein promote prooncogenic splicing patterns of a number of key regulators of cell growth. Here, we review the evidence that upregulation of the SR-related Tra2β protein might have a similar role in cancer cells. The TRA2B gene encoding Tra2β is amplified in particular tumours including those of the lung, ovary, cervix, stomach, head, and neck. Both TRA2B RNA and Tra2β protein levels are upregulated in breast, cervical, ovarian, and colon cancer, and Tra2β expression is associated with cancer cell survival. The TRA2B gene is a transcriptional target of the protooncogene ETS-1 which might cause higher levels of expression in some cancer cells which express this transcription factor. Known Tra2β splicing targets have important roles in cancer cells, where they affect metastasis, proliferation, and cell survival. Tra2β protein is also known to interact directly with the RBMY protein which is implicated in liver cancer.
doi:10.1155/2013/843781
PMCID: PMC3723085  PMID: 23935626
16.  Co-regulation of alternative splicing by diverse splicing factors in Caenorhabditis elegans 
Nucleic Acids Research  2010;39(2):666-674.
Regulation of alternative splicing is controlled by pre-mRNA sequences (cis-elements) and trans-acting protein factors that bind them. The combinatorial interactions of multiple protein factors with the cis-elements surrounding a given alternative splicing event lead to an integrated splicing decision. The mechanism of multifactorial splicing regulation is poorly understood. Using a splicing-sensitive DNA microarray, we assayed 352 Caenorhabditis elegans alternative cassette exons for changes in embryonic splicing patterns between wild-type and 12 different strains carrying mutations in a splicing factor. We identified many alternative splicing events that are regulated by multiple splicing factors. Many splicing factors have the ability to behave as splicing repressors for some alternative cassette exons and as splicing activators for others. Unexpectedly, we found that the ability of a given alternative splicing factor to behave as an enhancer or repressor of a specific splicing event can change during development. Our observations that splicing factors can change their effects on a substrate during development support a model in which combinatorial effects of multiple factors, both constitutive and developmentally regulated ones, contribute to the overall splicing decision.
doi:10.1093/nar/gkq767
PMCID: PMC3025544  PMID: 20805248
17.  The SRSF1 linker induces semi-conservative ESE binding by cooperating with the RRMs 
Nucleic Acids Research  2011;39(21):9413-9421.
SR proteins promote spliceosome formation by recognizing exonic splicing enhancers (ESEs) during pre-mRNA splicing. Each SR protein binds diverse ESEs using strategies that are yet to be elucidated. Here, we show that the RNA-binding domain (RBD) of SRSF1 optimally binds to decameric purine rich ESE sequences although locations of purines are not stringently specified. The presence of uracils either within or outside of the recognition site is detrimental for binding with SRSF1. The entire RBD, comprised of two RRMs and a glycine-rich linker, is essential for ESE binding. Mutation within each segment reduced or nearly abolished binding, suggesting that these segments mediate cooperative binding. The linker plays a decisive role in organizing ESE binding. The flanking basic regions of the linker appear to communicate with each other in bringing the two RRMs close together to form the complex with RNA. Our study thus suggests semi-conservative adaptable interaction between ESE and SRSF1, and such binding mode is not only essential for the recognition of plethora of physiological ESE sequences but may also be essential for the interaction with various factors during the spliceosome assembly.
doi:10.1093/nar/gkr663
PMCID: PMC3241662  PMID: 21852328
18.  Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition 
Nucleic Acids Research  2007;35(19):6399-6413.
Auxiliary splicing signals play a major role in the regulation of constitutive and alternative pre-mRNA splicing, but their relative importance in selection of mutation-induced cryptic or de novo splice sites is poorly understood. Here, we show that exonic sequences between authentic and aberrant splice sites that were activated by splice-site mutations in human disease genes have lower frequencies of splicing enhancers and higher frequencies of splicing silencers than average exons. Conversely, sequences between authentic and intronic aberrant splice sites have more enhancers and less silencers than average introns. Exons that were skipped as a result of splice-site mutations were smaller, had lower SF2/ASF motif scores, a decreased availability of decoy splice sites and a higher density of silencers than exons in which splice-site mutation activated cryptic splice sites. These four variables were the strongest predictors of the two aberrant splicing events in a logistic regression model. Elimination or weakening of predicted silencers in two reporters consistently promoted use of intron-proximal splice sites if these elements were maintained at their original positions, with their modular combinations producing expected modification of splicing. Together, these results show the existence of a gradient in exon and intron definition at the level of pre-mRNA splicing and provide a basis for the development of computational tools that predict aberrant splicing outcomes.
doi:10.1093/nar/gkm680
PMCID: PMC2095810  PMID: 17881373
19.  SRSF1 and SRSF9 RNA binding proteins promote Wnt signalling-mediated tumorigenesis by enhancing β-catenin biosynthesis 
EMBO Molecular Medicine  2013;5(5):737-750.
Wnt/β-catenin signalling is widely implicated in embryogenesis, tissue homeostasis and tumorigenesis. The key event in Wnt signalling activation is β-catenin accumulation, which is controlled by both its production and degradation. However, much more emphasis has been placed on the understanding of its degradation. Here, we show that the synthesis of β-catenin protein, which requires a group of serine/arginine-rich splicing factors (SRSF), also contributes to its tumorigenic activity. Overexpression of SRSF1 and SRSF9 promote β-catenin accumulation via the recruitment of β-catenin mRNA and by enhancing its translation in an mTOR-dependent manner. We further demonstrate that, like SRSF1, SRSF9 is also an oncogene, and is frequently overexpressed in multiple types of human tumours. Finally, our results suggest that promoting degradation and blocking production of β-catenin synergistically reduce β-catenin levels under pathological conditions and that a combinational therapy could be a promising approach for the treatment of cancer patients.
doi:10.1002/emmm.201202218
PMCID: PMC3662316  PMID: 23592547
β-catenin synthesis; oncogene; SRSF1; SRSF9; Wnt signalling
20.  The centrosomal kinase NEK2 is a novel splicing factor kinase involved in cell survival 
Nucleic Acids Research  2013;42(5):3218-3227.
NEK2 is a serine/threonine kinase that promotes centrosome splitting and ensures correct chromosome segregation during the G2/M phase of the cell cycle, through phosphorylation of specific substrates. Aberrant expression and activity of NEK2 in cancer cells lead to dysregulation of the centrosome cycle and aneuploidy. Thus, a tight regulation of NEK2 function is needed during cell cycle progression. In this study, we found that NEK2 localizes in the nucleus of cancer cells derived from several tissues. In particular, NEK2 co-localizes in splicing speckles with SRSF1 and SRSF2. Moreover, NEK2 interacts with several splicing factors and phosphorylates some of them, including the oncogenic SRSF1 protein. Overexpression of NEK2 induces phosphorylation of endogenous SR proteins and affects the splicing activity of SRSF1 toward reporter minigenes and endogenous targets, independently of SRPK1. Conversely, knockdown of NEK2, like that of SRSF1, induces expression of pro-apoptotic variants from SRSF1-target genes and sensitizes cells to apoptosis. Our results identify NEK2 as a novel splicing factor kinase and suggest that part of its oncogenic activity may be ascribed to its ability to modulate alternative splicing, a key step in gene expression regulation that is frequently altered in cancer cells.
doi:10.1093/nar/gkt1307
PMCID: PMC3950702  PMID: 24369428
21.  Identification of motifs that function in the splicing of non-canonical introns 
Genome Biology  2008;9(6):R97.
The enrichment of specific intronic splicing enhancers upstream of weak PY tracts suggests a novel mechanism for intron recognition that compensates for a weakened canonical pre-mRNA splicing motif.
Background
While the current model of pre-mRNA splicing is based on the recognition of four canonical intronic motifs (5' splice site, branchpoint sequence, polypyrimidine (PY) tract and 3' splice site), it is becoming increasingly clear that splicing is regulated by both canonical and non-canonical splicing signals located in the RNA sequence of introns and exons that act to recruit the spliceosome and associated splicing factors. The diversity of human intronic sequences suggests the existence of novel recognition pathways for non-canonical introns. This study addresses the recognition and splicing of human introns that lack a canonical PY tract. The PY tract is a uridine-rich region at the 3' end of introns that acts as a binding site for U2AF65, a key factor in splicing machinery recruitment.
Results
Human introns were classified computationally into low- and high-scoring PY tracts by scoring the likely U2AF65 binding site strength. Biochemical studies confirmed that low-scoring PY tracts are weak U2AF65 binding sites while high-scoring PY tracts are strong U2AF65 binding sites. A large population of human introns contains weak PY tracts. Computational analysis revealed many families of motifs, including C-rich and G-rich motifs, that are enriched upstream of weak PY tracts. In vivo splicing studies show that C-rich and G-rich motifs function as intronic splicing enhancers in a combinatorial manner to compensate for weak PY tracts.
Conclusion
The enrichment of specific intronic splicing enhancers upstream of weak PY tracts suggests that a novel mechanism for intron recognition exists, which compensates for a weakened canonical pre-mRNA splicing motif.
doi:10.1186/gb-2008-9-6-r97
PMCID: PMC2481429  PMID: 18549497
22.  Regulation of Alternative Polyadenylation by U1 snRNPs and SRp20 
Molecular and Cellular Biology  1998;18(9):4977-4985.
Although considerable information is currently available about the factors involved in constitutive vertebrate polyadenylation, the factors and mechanisms involved in facilitating communication between polyadenylation and splicing are largely unknown. Even less is known about the regulation of polyadenylation in genes in which 3′-terminal exons are alternatively recognized. Here we demonstrate that an SR protein, SRp20, affects recognition of an alternative 3′-terminal exon via an effect on the efficiency of binding of a polyadenylation factor to an alternative polyadenylation site. The gene under study codes for the peptides calcitonin and calcitonin gene-related peptide. Its pre-mRNA is alternatively processed by the tissue-specific inclusion or exclusion of an embedded 3′-terminal exon, exon 4, via factors binding to an intronic enhancer element that contains both 3′ and 5′ splice site consensus sequence elements. In cell types that preferentially exclude exon 4, addition of wild-type SRp20 enhances exon 4 inclusion via recognition of the intronic enhancer. In contrast, in cell types that preferentially include exon 4, addition of a mutant form of SRp20 containing the RNA-binding domain but missing the SR domain inhibits exon 4 inclusion. Inhibition is likely at the level of polyadenylation, because the mutant SRp20 inhibits binding of CstF to the exon 4 poly(A) site. This is the first demonstration that an SR protein can influence alternative polyadenylation and suggests that this family of proteins may play a role in recognition of 3′-terminal exons and perhaps in the communication between polyadenylation and splicing.
PMCID: PMC109082  PMID: 9710581
23.  Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes 
Nucleic Acids Research  2005;33(16):5053-5062.
Exonic splicing enhancers (ESEs) are pre-mRNA cis-acting elements required for splice-site recognition. We previously developed a web-based program called ESEfinder that scores any sequence for the presence of ESE motifs recognized by the human SR proteins SF2/ASF, SRp40, SRp55 and SC35 (). Using ESEfinder, we have undertaken a large-scale analysis of ESE motif distribution in human protein-coding genes. Significantly higher frequencies of ESE motifs were observed in constitutive internal protein-coding exons, compared with both their flanking intronic regions and with pseudo exons. Statistical analysis of ESE motif frequency distributions revealed a complex relationship between splice-site strength and increased or decreased frequencies of particular SR protein motifs. Comparison of constitutively and alternatively spliced exons demonstrated slightly weaker splice-site scores, as well as significantly fewer ESE motifs, in the alternatively spliced group. Our results underline the importance of ESE-mediated SR protein function in the process of exon definition, in the context of both constitutive splicing and regulated alternative splicing.
doi:10.1093/nar/gki810
PMCID: PMC1201331  PMID: 16147989
24.  Computational analysis of candidate intron regulatory elements for tissue-specific alternative pre-mRNA splicing 
Nucleic Acids Research  2001;29(11):2338-2348.
Alternative pre-mRNA splicing is a major cellular process by which functionally diverse proteins can be generated from the primary transcript of a single gene, often in tissue-specific patterns. The current study investigates the hypothesis that splicing of tissue-specific alternative exons is regulated in part by control sequences in adjacent introns and that such elements may be recognized via computational analysis of exons sharing a highly specific expression pattern. We have identified 25 brain-specific alternative cassette exons, compiled a dataset of genomic sequences encompassing these exons and their adjacent introns and used word contrast algorithms to analyze key features of these nucleotide sequences. By comparison to a control group of constitutive exons, brain-specific exons were often found to possess the following: divergent 5′ splice sites; highly pyrimidine-rich upstream introns; a paucity of GGG motifs in the downstream intron; a highly statistically significant over-representation of the hexanucleotide UGCAUG in the proximal downstream intron. UGCAUG was also found at a high frequency downstream of a smaller group of muscle-specific exons. Intriguingly, UGCAUG has been identified previously in a few intron splicing enhancers. Our results indicate that this element plays a much wider role than previously appreciated in the regulated tissue-specific splicing of many alternative exons.
PMCID: PMC55704  PMID: 11376152
25.  An exonic splicing silencer in the testes-specific DNA ligase III β exon 
Nucleic Acids Research  2000;28(2):402-410.
Alternative pre-mRNA splicing of two terminal exons (α and β) regulates the expression of the human DNA ligase III gene. In most tissues, the α exon is expressed. In testes and during spermatogenesis, the β exon is used instead. The α exon encodes the interaction domain with a scaffold DNA repair protein, XRCC1, while the β exon-encoded C-terminal does not. Sequence elements regulating the alternative splicing pattern were mapped by in vitro splicing assays in HeLa nuclear extracts. Deletion of a region beginning in the β exon and extending into the downstream intron derepressed splicing to the β exon. Two silencing elements were found within this 101 nt region: a 16 nt exonic splicing silencer immediately upstream of the β exon polyadenylation signal and a 45 nt intronic splicing silencer. The exonic splicing silencer inhibited splicing, even when the polyadenylation signal was deleted or replaced by a 5′ splice site. This element also enhanced polyadenylation under conditions unfavourable to splicing. The splicing silencer partially inhibited assembly of spliceosomal complexes and functioned in an adenoviral pre-mRNA context. Silencing of splicing by the element was associated with cross-linking of a 37 kDa protein to the RNA substrate. The element exerts opposite functions in splicing and polyadenylation.
PMCID: PMC102500  PMID: 10606636

Results 1-25 (806821)