PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (909688)

Clipboard (0)
None

Related Articles

1.  Investigating drug repositioning opportunities in FDA drug labels through topic modeling 
BMC Bioinformatics  2012;13(Suppl 15):S6.
Background
Drug repositioning offers an opportunity to revitalize the slowing drug discovery pipeline by finding new uses for currently existing drugs. Our hypothesis is that drugs sharing similar side effect profiles are likely to be effective for the same disease, and thus repositioning opportunities can be identified by finding drug pairs with similar side effects documented in U.S. Food and Drug Administration (FDA) approved drug labels. The safety information in the drug labels is usually obtained in the clinical trial and augmented with the observations in the post-market use of the drug. Therefore, our drug repositioning approach can take the advantage of more comprehensive safety information comparing with conventional de novo approach.
Method
A probabilistic topic model was constructed based on the terms in the Medical Dictionary for Regulatory Activities (MedDRA) that appeared in the Boxed Warning, Warnings and Precautions, and Adverse Reactions sections of the labels of 870 drugs. Fifty-two unique topics, each containing a set of terms, were identified by using topic modeling. The resulting probabilistic topic associations were used to measure the distance (similarity) between drugs. The success of the proposed model was evaluated by comparing a drug and its nearest neighbor (i.e., a drug pair) for common indications found in the Indications and Usage Section of the drug labels.
Results
Given a drug with more than three indications, the model yielded a 75% recall, meaning 75% of drug pairs shared one or more common indications. This is significantly higher than the 22% recall rate achieved by random selection. Additionally, the recall rate grows rapidly as the number of drug indications increases and reaches 84% for drugs with 11 indications. The analysis also demonstrated that 65 drugs with a Boxed Warning, which indicates significant risk of serious and possibly life-threatening adverse effects, might be replaced with safer alternatives that do not have a Boxed Warning. In addition, we identified two therapeutic groups of drugs (Musculo-skeletal system and Anti-infective for systemic use) where over 80% of the drugs have a potential replacement with high significance.
Conclusion
Topic modeling can be a powerful tool for the identification of repositioning opportunities by examining the adverse event terms in FDA approved drug labels. The proposed framework not only suggests drugs that can be repurposed, but also provides insight into the safety of repositioned drugs.
doi:10.1186/1471-2105-13-S15-S6
PMCID: PMC3439728  PMID: 23046522
2.  Recent Advances in Drug Repositioning for the Discovery of New Anticancer Drugs 
Drug repositioning (also referred to as drug repurposing), the process of finding new uses of existing drugs, has been gaining popularity in recent years. The availability of several established clinical drug libraries and rapid advances in disease biology, genomics and bioinformatics has accelerated the pace of both activity-based and in silico drug repositioning. Drug repositioning has attracted particular attention from the communities engaged in anticancer drug discovery due to the combination of great demand for new anticancer drugs and the availability of a wide variety of cell- and target-based screening assays. With the successful clinical introduction of a number of non-cancer drugs for cancer treatment, drug repositioning now became a powerful alternative strategy to discover and develop novel anticancer drug candidates from the existing drug space. In this review, recent successful examples of drug repositioning for anticancer drug discovery from non-cancer drugs will be discussed.
doi:10.7150/ijbs.9224
PMCID: PMC4081601
drug repositioning; drug discovery; cancer; angiogenesis; drug screening; drug library.
3.  DRUGSURV: a resource for repositioning of approved and experimental drugs in oncology based on patient survival information 
Cell Death & Disease  2014;5(2):e1051-.
The use of existing drugs for new therapeutic applications, commonly referred to as drug repositioning, is a way for fast and cost-efficient drug discovery. Drug repositioning in oncology is commonly initiated by in vitro experimental evidence that a drug exhibits anticancer cytotoxicity. Any independent verification that the observed effects in vitro may be valid in a clinical setting, and that the drug could potentially affect patient survival in vivo is of paramount importance. Despite considerable recent efforts in computational drug repositioning, none of the studies have considered patient survival information in modelling the potential of existing/new drugs in the management of cancer. Therefore, we have developed DRUGSURV; this is the first computational tool to estimate the potential effects of a drug using patient survival information derived from clinical cancer expression data sets. DRUGSURV provides statistical evidence that a drug can affect survival outcome in particular clinical conditions to justify further investigation of the drug anticancer potential and to guide clinical trial design. DRUGSURV covers both approved drugs (∼1700) as well as experimental drugs (∼5000) and is freely available at http://www.bioprofiling.de/drugsurv.
doi:10.1038/cddis.2014.9
PMCID: PMC3944280  PMID: 24503543
drug repositioning; clinical trial design; patient survival; thioridazine
4.  Drug repositioning for orphan genetic diseases through Conserved Anticoexpressed Gene Clusters (CAGCs) 
BMC Bioinformatics  2013;14:288.
Background
The development of new therapies for orphan genetic diseases represents an extremely important medical and social challenge. Drug repositioning, i.e. finding new indications for approved drugs, could be one of the most cost- and time-effective strategies to cope with this problem, at least in a subset of cases. Therefore, many computational approaches based on the analysis of high throughput gene expression data have so far been proposed to reposition available drugs. However, most of these methods require gene expression profiles directly relevant to the pathologic conditions under study, such as those obtained from patient cells and/or from suitable experimental models. In this work we have developed a new approach for drug repositioning, based on identifying known drug targets showing conserved anti-correlated expression profiles with human disease genes, which is completely independent from the availability of ‘ad hoc’ gene expression data-sets.
Results
By analyzing available data, we provide evidence that the genes displaying conserved anti-correlation with drug targets are antagonistically modulated in their expression by treatment with the relevant drugs. We then identified clusters of genes associated to similar phenotypes and showing conserved anticorrelation with drug targets. On this basis, we generated a list of potential candidate drug-disease associations. Importantly, we show that some of the proposed associations are already supported by independent experimental evidence.
Conclusions
Our results support the hypothesis that the identification of gene clusters showing conserved anticorrelation with drug targets can be an effective method for drug repositioning and provide a wide list of new potential drug-disease associations for experimental validation.
doi:10.1186/1471-2105-14-288
PMCID: PMC3851137  PMID: 24088245
5.  Discovery and preclinical validation of drug indications using compendia of public gene expression data 
Science translational medicine  2011;3(96):96ra77.
The application of established drug compounds to novel therapeutic indications, known as drug repositioning, offers several advantages over traditional drug development, including reduced development costs and shorter paths to approval. Recent approaches to drug repositioning employ high-throughput experimental approaches to assess a compound’s potential therapeutic qualities. Here we present a systematic computational approach to predict novel therapeutic indications based on comprehensive testing of molecular signatures in drug-disease pairs. We integrated gene expression measurements from 100 diseases and gene expression measurements on 164 drug compounds yielding predicted therapeutic potentials for these drugs. We demonstrate the ability to recover many known drug and disease relationships using computationally derived therapeutic potentials, and also predict many new indications for these drugs. We experimentally validated a prediction for the anti-ulcer drug cimetidine as a candidate therapeutic in the treatment of lung adenocarcinoma, and demonstrate both in vitro and in vivo using mouse xenograft models. This novel computational method provides a novel and systematic approach to reposition established drugs to treat a wide range of human diseases.
doi:10.1126/scitranslmed.3001318
PMCID: PMC3502016  PMID: 21849665
6.  Prediction of novel drug indications using network driven biological data prioritization and integration 
Background
With the rapid development of high-throughput genomic technologies and the accumulation of genome-wide datasets for gene expression profiling and biological networks, the impact of diseases and drugs on gene expression can be comprehensively characterized. Drug repositioning offers the possibility of reduced risks in the drug discovery process, thus it is an essential step in drug development.
Results
Computational prediction of drug-disease interactions using gene expression profiling datasets and biological networks is a new direction in drug repositioning that has gained increasing interest. We developed a computational framework to build disease-drug networks using drug- and disease-specific subnetworks. The framework incorporates protein networks to refine drug and disease associated genes and prioritize genes in disease and drug specific networks. For each drug and disease we built multiple networks using gene expression profiling and text mining. Finally a logistic regression model was used to build functional associations between drugs and diseases.
Conclusions
We found that representing drugs and diseases by genes with high centrality degree in gene networks is the most promising representation of drug or disease subnetworks.
doi:10.1186/1758-2946-6-1
PMCID: PMC3896815  PMID: 24397863
Disease; Drug; Gene; Protein networks
7.  Drug repositioning for personalized medicine 
Genome Medicine  2012;4(3):27.
Human diseases can be caused by complex mechanisms involving aberrations in numerous proteins and pathways. With recent advances in genomics, elucidating the molecular basis of disease on a personalized level has become an attainable goal. In many cases, relevant molecular targets will be identified for which approved drugs already exist, and the potential repositioning of these drugs to a new indication can be investigated. Repositioning is an accelerated route for drug discovery because existing drugs have established clinical and pharmacokinetic data. Personalized medicine and repositioning both aim to improve the productivity of current drug discovery pipelines, which expend enormous time and cost to develop new drugs, only to have them fail in clinical trials because of lack of efficacy or toxicity. Here, we discuss the current state of research in these two fields, focusing on recent large-scale efforts to systematically find repositioning candidates and elucidate individual disease mechanisms in cancer. We also discuss scenarios in which personalized drug repositioning could be particularly rewarding, such as for diseases that are rare or have specific mutations, as well as current challenges in this field. With an increasing number of drugs being approved for rare cancer subtypes, personalized medicine and repositioning approaches are poised to significantly alter the way we diagnose diseases, infer treatments and develop new drugs.
doi:10.1186/gm326
PMCID: PMC3446277  PMID: 22494857
Personalized medicine; repositioning; repurposing; drug discovery; cancer; orphan diseases; high-throughput screening; computational drug design
8.  Drug repositioning: a machine-learning approach through data integration 
Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.
doi:10.1186/1758-2946-5-30
PMCID: PMC3704944  PMID: 23800010
Drug repositioning; Connectivity map; CMap; ATC code; Mode of action; Machine learning; SVM; Integrative genomics; SMILES; Anthelmintics; Antineoplastic; Oxamniquine; Niclosamide
9.  Drug Target Prediction and Repositioning Using an Integrated Network-Based Approach 
PLoS ONE  2013;8(4):e60618.
The discovery of novel drug targets is a significant challenge in drug development. Although the human genome comprises approximately 30,000 genes, proteins encoded by fewer than 400 are used as drug targets in the treatment of diseases. Therefore, novel drug targets are extremely valuable as the source for first in class drugs. On the other hand, many of the currently known drug targets are functionally pleiotropic and involved in multiple pathologies. Several of them are exploited for treating multiple diseases, which highlights the need for methods to reliably reposition drug targets to new indications. Network-based methods have been successfully applied to prioritize novel disease-associated genes. In recent years, several such algorithms have been developed, some focusing on local network properties only, and others taking the complete network topology into account. Common to all approaches is the understanding that novel disease-associated candidates are in close overall proximity to known disease genes. However, the relevance of these methods to the prediction of novel drug targets has not yet been assessed. Here, we present a network-based approach for the prediction of drug targets for a given disease. The method allows both repositioning drug targets known for other diseases to the given disease and the prediction of unexploited drug targets which are not used for treatment of any disease. Our approach takes as input a disease gene expression signature and a high-quality interaction network and outputs a prioritized list of drug targets. We demonstrate the high performance of our method and highlight the usefulness of the predictions in three case studies. We present novel drug targets for scleroderma and different types of cancer with their underlying biological processes. Furthermore, we demonstrate the ability of our method to identify non-suspected repositioning candidates using diabetes type 1 as an example.
doi:10.1371/journal.pone.0060618
PMCID: PMC3617101  PMID: 23593264
10.  The functional therapeutic chemical classification system 
Bioinformatics  2013;30(6):876-883.
Motivation: Drug repositioning is the discovery of new indications for compounds that have already been approved and used in a clinical setting. Recently, some computational approaches have been suggested to unveil new opportunities in a systematic fashion, by taking into consideration gene expression signatures or chemical features for instance. We present here a novel method based on knowledge integration using semantic technologies, to capture the functional role of approved chemical compounds.
Results: In order to computationally generate repositioning hypotheses, we used the Web Ontology Language to formally define the semantics of over 20 000 terms with axioms to correctly denote various modes of action (MoA). Based on an integration of public data, we have automatically assigned over a thousand of approved drugs into these MoA categories. The resulting new resource is called the Functional Therapeutic Chemical Classification System and was further evaluated against the content of the traditional Anatomical Therapeutic Chemical Classification System. We illustrate how the new classification can be used to generate drug repurposing hypotheses, using Alzheimers disease as a use-case.
Availability: https://www.ebi.ac.uk/chembl/ftc; https://github.com/loopasam/ftc.
Contact: croset@ebi.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btt628
PMCID: PMC3957075  PMID: 24177719
11.  Drug Repositioning: An Opportunity to Develop Novel Treatments for Alzheimer’s Disease 
Pharmaceuticals  2013;6(10):1304-1321.
Alzheimer’s Disease (AD) is the most common cause of dementia, affecting approximately two thirds of the 35 million people worldwide with the condition. Despite this, effective treatments are lacking, and there are no drugs that elicit disease modifying effects to improve outcome. There is an urgent need to develop and evaluate more effective pharmacological treatments. Drug repositioning offers an exciting opportunity to repurpose existing licensed treatments for use in AD, with the benefit of providing a far more rapid route to the clinic than through novel drug discovery approaches. This review outlines the current most promising candidates for repositioning in AD, their supporting evidence and their progress through trials to date. Furthermore, it begins to explore the potential of new transcriptomic and microarray techniques to consider the future of drug repositioning as a viable approach to drug discovery.
doi:10.3390/ph6101304
PMCID: PMC3817602  PMID: 24275851
Alzheimer’s; repositioning; treatment; drug
12.  Potential repurposing of oncology drugs for the treatment of Alzheimer's disease 
BMC Medicine  2013;11:82.
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia, affecting about 30 million people worldwide. Despite recent advances in understanding its molecular pathology, no mechanism-based drugs are currently available that can halt the progression of AD. Because amyloid-β-peptide (Aβ), a primary component of senile plaques, is thought to be a central pathogenic culprit, several disease-modifying therapies are being developed, including inhibitors of Aβ-producing proteases and immunotherapies with anti-Aβ antibodies. Drug repositioning or repurposing is regarded as a complementary and reasonable approach to identify new drug candidates for AD. This commentary will discuss the clinical relevance of an attractive candidate compound reported in a recent paper by Hayes et al. (BMC Medicine 2013) as well as perspectives regarding the possible repositioning of oncology drugs for the treatment of AD.
See related research article here http://www.biomedcentral.com/1741-7015/11/81
doi:10.1186/1741-7015-11-82
PMCID: PMC3655040  PMID: 23531187
Alzheimer's disease; amyloid β-peptide; disease-modifying drugs; drug repositioning
13.  Novel Modeling of Cancer Cell Signaling Pathways Enables Systematic Drug Repositioning for Distinct Breast Cancer Metastases 
Cancer research  2013;73(20):6149-6163.
A new type of signaling network element, called cancer signaling bridges (CSB), has been shown to have the potential for systematic and fast-tracked drug repositioning. On the basis of CSBs, we developed a computational model to derive specific downstream signaling pathways that reveal previously unknown target–disease connections and new mechanisms for specific cancer subtypes. The model enables us to reposition drugs based on available patient gene expression data. We applied this model to repurpose known or shelved drugs for brain, lung, and bone metastases of breast cancer with the hypothesis that cancer subtypes have their own specific signaling mechanisms. To test the hypothesis, we addressed specific CSBs for each metastasis that satisfy (i) CSB proteins are activated by the maximal number of enriched signaling pathways specific to a given metastasis, and (ii) CSB proteins are involved in the most differential expressed coding genes specific to each breast cancer metastasis. The identified signaling networks for the three types of breast cancer metastases contain 31, 15, and 18 proteins and are used to reposition 15, 9, and 2 drug candidates for the brain, lung, and bone metastases. We conducted both in vitro and in vivo preclinical experiments as well as analysis on patient tumor specimens to evaluate the targets and repositioned drugs. Of special note, we found that the Food and Drug Administration-approved drugs, sunitinib and dasatinib, prohibit brain metastases derived from breast cancer, addressing one particularly challenging aspect of this disease.
doi:10.1158/0008-5472.CAN-12-4617
PMCID: PMC4005386  PMID: 24097821
14.  A Computational Approach to Finding Novel Targets for Existing Drugs 
PLoS Computational Biology  2011;7(9):e1002139.
Repositioning existing drugs for new therapeutic uses is an efficient approach to drug discovery. We have developed a computational drug repositioning pipeline to perform large-scale molecular docking of small molecule drugs against protein drug targets, in order to map the drug-target interaction space and find novel interactions. Our method emphasizes removing false positive interaction predictions using criteria from known interaction docking, consensus scoring, and specificity. In all, our database contains 252 human protein drug targets that we classify as reliable-for-docking as well as 4621 approved and experimental small molecule drugs from DrugBank. These were cross-docked, then filtered through stringent scoring criteria to select top drug-target interactions. In particular, we used MAPK14 and the kinase inhibitor BIM-8 as examples where our stringent thresholds enriched the predicted drug-target interactions with known interactions up to 20 times compared to standard score thresholds. We validated nilotinib as a potent MAPK14 inhibitor in vitro (IC50 40 nM), suggesting a potential use for this drug in treating inflammatory diseases. The published literature indicated experimental evidence for 31 of the top predicted interactions, highlighting the promising nature of our approach. Novel interactions discovered may lead to the drug being repositioned as a therapeutic treatment for its off-target's associated disease, added insight into the drug's mechanism of action, and added insight into the drug's side effects.
Author Summary
Most drugs are designed to bind to and inhibit the function of a disease target protein. However, drugs are often able to bind to ‘off-target’ proteins due to similarities in the protein binding sites. If an off-target is known to be involved in another disease, then the drug has potential to treat the second disease. This repositioning strategy is an alternate and efficient approach to drug discovery, as the clinical and toxicity histories of existing drugs can greatly reduce drug development cost and time. We present here a large-scale computational approach that simulates three-dimensional binding between existing drugs and target proteins to predict novel drug-target interactions. Our method focuses on removing false predictions, using annotated ‘known’ interactions, scoring and ranking thresholds. 31 of our top novel drug-target predictions were validated through literature search, and demonstrated the utility of our method. We were also able to identify the cancer drug nilotinib as a potent inhibitor of MAPK14, a target in inflammatory diseases, which suggests a potential use for the drug in treating rheumatoid arthritis.
doi:10.1371/journal.pcbi.1002139
PMCID: PMC3164726  PMID: 21909252
15.  Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data 
PLoS ONE  2013;8(11):e78518.
Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems.
doi:10.1371/journal.pone.0078518
PMCID: PMC3823875  PMID: 24244318
16.  Rational drug repositioning guided by an integrated pharmacological network of protein, disease and drug 
BMC Systems Biology  2012;6:80.
Background
The process of drug discovery and development is time-consuming and costly, and the probability of success is low. Therefore, there is rising interest in repositioning existing drugs for new medical indications. When successful, this process reduces the risk of failure and costs associated with de novo drug development. However, in many cases, new indications of existing drugs have been found serendipitously. Thus there is a clear need for establishment of rational methods for drug repositioning.
Results
In this study, we have established a database we call “PharmDB” which integrates data associated with disease indications, drug development, and associated proteins, and known interactions extracted from various established databases. To explore linkages of known drugs to diseases of interest from within PharmDB, we designed the Shared Neighborhood Scoring (SNS) algorithm. And to facilitate exploration of tripartite (Drug-Protein-Disease) network, we developed a graphical data visualization software program called phExplorer, which allows us to browse PharmDB data in an interactive and dynamic manner. We validated this knowledge-based tool kit, by identifying a potential application of a hypertension drug, benzthiazide (TBZT), to induce lung cancer cell death.
Conclusions
By combining PharmDB, an integrated tripartite database, with Shared Neighborhood Scoring (SNS) algorithm, we developed a knowledge platform to rationally identify new indications for known FDA approved drugs, which can be customized to specific projects using manual curation. The data in PharmDB is open access and can be easily explored with phExplorer and accessed via BioMart web service (http://www.i-pharm.org/, http://biomart.i-pharm.org/).
doi:10.1186/1752-0509-6-80
PMCID: PMC3443412  PMID: 22748168
Tripartite network; Drug repositioning; Shared Neighborhood Scoring (SNS) algorithm
17.  Prediction of Drug-Target Interactions for Drug Repositioning Only Based on Genomic Expression Similarity 
PLoS Computational Biology  2013;9(11):e1003315.
Small drug molecules usually bind to multiple protein targets or even unintended off-targets. Such drug promiscuity has often led to unwanted or unexplained drug reactions, resulting in side effects or drug repositioning opportunities. So it is always an important issue in pharmacology to identify potential drug-target interactions (DTI). However, DTI discovery by experiment remains a challenging task, due to high expense of time and resources. Many computational methods are therefore developed to predict DTI with high throughput biological and clinical data. Here, we initiatively demonstrate that the on-target and off-target effects could be characterized by drug-induced in vitro genomic expression changes, e.g. the data in Connectivity Map (CMap). Thus, unknown ligands of a certain target can be found from the compounds showing high gene-expression similarity to the known ligands. Then to clarify the detailed practice of CMap based DTI prediction, we objectively evaluate how well each target is characterized by CMap. The results suggest that (1) some targets are better characterized than others, so the prediction models specific to these well characterized targets would be more accurate and reliable; (2) in some cases, a family of ligands for the same target tend to interact with common off-targets, which may help increase the efficiency of DTI discovery and explain the mechanisms of complicated drug actions. In the present study, CMap expression similarity is proposed as a novel indicator of drug-target interactions. The detailed strategies of improving data quality by decreasing the batch effect and building prediction models are also effectively established. We believe the success in CMap can be further translated into other public and commercial data of genomic expression, thus increasing research productivity towards valid drug repositioning and minimal side effects.
Author Summary
Small drug molecules usually bind to unintended off-targets, leading to unexpected drug responses such as side effects or drug repositioning opportunities. Thus, identifying unintended drug-target interactions (DTI) is particularly required for understanding complicated drug actions. It remains expensive nowadays to experimentally determine DTI, so various computational methods are developed. In this study, we initiatively demonstrated that target binding is directly correlated with drug induced genomic expression profiles in Connectivity Map (CMap). By improving data quality of CMap, we illustrated three important facts: (1) Drugs binding to common targets show higher gene-expression similarity than random compounds, indicating that upstream ligand binding could be characterized by downstream gene-expression change. (2) It is found that some targets are better characterized by CMap than others. To guarantee efficiency of DTI discovery, prediction models should be specifically built for those well characterized targets. (3) It is broadly observed in the predicted DTI that ligands for the same target may collectively interact with common off-target. This observation is consistent with published experimental evidence and can help illustrate the mechanisms of unexplained drug reactions. Based on CMap, our work established an efficient pipeline of identifying potential DTI. By extending the success in CMap to other genomic data sources, we believe more DTI would be discovered.
doi:10.1371/journal.pcbi.1003315
PMCID: PMC3820513  PMID: 24244130
18.  PREDICT: a method for inferring novel drug indications with application to personalized medicine 
The authors present a new method, PREDICT, for the large-scale prediction of drug indications, and demonstrate its use on both approved drugs and novel molecules. They also provide a proof-of-concept for its potential utility in predicting patient-specific medications.
We present a novel method for the large-scale prediction of drug indications that can handle both approved drugs and novel molecules.Our method utilizes multiple drug–drug and disease–disease similarity measures for the prediction task, obtaining high specificity and sensitivity rates (AUC=0.9).Our drug repositioning predictions cover 27% of the indications currently tested on clinical trials (P<2 × 10−220).We show comparable performance using a gene expression signature-based disease–disease similarity, laying the computational foundation for predicting patient-specific indications.
Predicting indications for new molecules or finding alternative indications for approved drugs is a laborious and costly process (DiMasi et al, 2003), calling for computational solutions that would minimize production time and development costs (Terstappen and Reggiani, 2001). Here, we present a novel method for predicting drug indications, PREDICT, capable of handling both approved drugs and novel molecules. Our method is based on the assumption that similar drugs are indicated for similar diseases. To score a possible drug–disease association, we compute its similarity to known associations by combining drug–drug and disease–disease similarity computations. This strategy achieves high specificity and sensitivity rates in a cross-validation setting, where part of the known associations are hidden and the method is assessed based on how well it can retrieve them based on the rest of the associations. Assessing its predictions of novel indications for existing drugs, we find that it covers a significant portion (27%, P<2 × 10−220) of drug indications currently tested on clinical trials. Examples of such predictions include: (i) Cabergoline, indicated for Hyperprolactinemia, which is predicted to treat Migrane, a prediction supported by two separate studies (Verhelst et al, 1999; Cavestro et al, 2006) and (ii) Progesterone, which is predicted to treat renal cell cancer, non-papillary (npRCC), supported by the study of Izumi et al (2007). In addition, we provide indication predictions for novel molecules. For example, Cycloleucine is predicted for the treatment of Alzheimer's disease (AD); indeed, Cycloleucine was found to be a potent and selective antagonist of NMDA receptor-mediated responses (Hershkowitz and Rogawski, 1989), a new promising class of chemicals for the treatment of AD (Farlow, 2004). As another example, Hyperforin, St John's wort extract, is predicted to treat hyperthermia. Interestingly, St John's wort extract was found to have anxiolytic effects on stress-induced hyperthermia in mice (Grundmann et al, 2006). We further introduce a disease–disease similarity measure based on disease-specific gene signatures and show that such a measure can be used by our method to accurately predict drug indications. Importantly, this suggests the potential utility of our approach also in a personalized medicine setting, whereby future gene expression signatures from individual patients would replace these disease-specific signatures.
Inferring potential drug indications, for either novel or approved drugs, is a key step in drug development. Previous computational methods in this domain have focused on either drug repositioning or matching drug and disease gene expression profiles. Here, we present a novel method for the large-scale prediction of drug indications (PREDICT) that can handle both approved drugs and novel molecules. Our method is based on the observation that similar drugs are indicated for similar diseases, and utilizes multiple drug–drug and disease–disease similarity measures for the prediction task. On cross-validation, it obtains high specificity and sensitivity (AUC=0.9) in predicting drug indications, surpassing existing methods. We validate our predictions by their overlap with drug indications that are currently under clinical trials, and by their agreement with tissue-specific expression information on the drug targets. We further show that disease-specific genetic signatures can be used to accurately predict drug indications for new diseases (AUC=0.92). This lays the computational foundation for future personalized drug treatments, where gene expression signatures from individual patients would replace the disease-specific signatures.
doi:10.1038/msb.2011.26
PMCID: PMC3159979  PMID: 21654673
drug indication prediction; drug repositioning; drug repurposing; machine learning; personalized medicine
19.  Computational drug repositioning through heterogeneous network clustering 
BMC Systems Biology  2013;7(Suppl 5):S6.
Background
Given the costly and time consuming process and high attrition rates in drug discovery and development, drug repositioning or drug repurposing is considered as a viable strategy both to replenish the drying out drug pipelines and to surmount the innovation gap. Although there is a growing recognition that mechanistic relationships from molecular to systems level should be integrated into drug discovery paradigms, relatively few studies have integrated information about heterogeneous networks into computational drug-repositioning candidate discovery platforms.
Results
Using known disease-gene and drug-target relationships from the KEGG database, we built a weighted disease and drug heterogeneous network. The nodes represent drugs or diseases while the edges represent shared gene, biological process, pathway, phenotype or a combination of these features. We clustered this weighted network to identify modules and then assembled all possible drug-disease pairs (putative drug repositioning candidates) from these modules. We validated our predictions by testing their robustness and evaluated them by their overlap with drug indications that were either reported in published literature or investigated in clinical trials.
Conclusions
Previous computational approaches for drug repositioning focused either on drug-drug and disease-disease similarity approaches whereas we have taken a more holistic approach by considering drug-disease relationships also. Further, we considered not only gene but also other features to build the disease drug networks. Despite the relative simplicity of our approach, based on the robustness analyses and the overlap of some of our predictions with drug indications that are under investigation, we believe our approach could complement the current computational approaches for drug repositioning candidate discovery.
doi:10.1186/1752-0509-7-S5-S6
PMCID: PMC4029299  PMID: 24564976
20.  A novel method of transcriptional response analysis to facilitate drug repositioning for cancer therapy 
Cancer research  2011;72(1):33-44.
Little research has been done to address the huge opportunities that may exist to reposition existing approved or generic drugs for alternate uses in cancer therapy. Additionally, there has been little work on strategies to reposition experimental cancer agents for testing in alternate settings that could shorten their clinical development time. Progress in each area has lagged in part due to the lack of systematic methods to define drug off-target effects (OTEs) that might affect important cancer cell signaling pathways. In this study, we addressed this critical gap by developing an OTE-based method to repurpose drugs for cancer therapeutics, based on transcriptional responses made in cells before and after drug treatment. Specifically, we defined a new network component called cancer-signaling bridges (CSBs) and integrated it with Bayesian Factor Regression Model (BFRM) to form a new hybrid method termed CSB-BFRM. Proof of concept studies were performed in breast and prostate cancer cells and in promyelocytic leukemia cells. In each system, CSB-BFRM analysis could accurately predict clinical responses to >90% of FDA-approved drugs and >75% of experimental clinical drugs that were tested. Mechanistic investigation of OTEs for several high-ranking drug-dose pairs suggested repositioning opportunities for cancer therapy, based on the ability to enforce Rb-dependent repression of important E2F-dependent cell cycle genes. Together, our findings establish new methods to identify opportunities for drug repositioning or to elucidate the mechanisms of action of repositioned drugs.
doi:10.1158/0008-5472.CAN-11-2333
PMCID: PMC3251651  PMID: 22108825
Off-target drug repositioning; cancer systems biology; cancer transcriptional response
21.  dRiskKB: a large-scale disease-disease risk relationship knowledge base constructed from biomedical text 
BMC Bioinformatics  2014;15:105.
Background
Discerning the genetic contributions to complex human diseases is a challenging mandate that demands new types of data and calls for new avenues for advancing the state-of-the-art in computational approaches to uncovering disease etiology. Systems approaches to studying observable phenotypic relationships among diseases are emerging as an active area of research for both novel disease gene discovery and drug repositioning. Currently, systematic study of disease relationships on a phenome-wide scale is limited due to the lack of large-scale machine understandable disease phenotype relationship knowledge bases. Our study innovates a semi-supervised iterative pattern learning approach that is used to build an precise, large-scale disease-disease risk relationship (D1 →D2) knowledge base (dRiskKB) from a vast corpus of free-text published biomedical literature.
Results
21,354,075 MEDLINE records comprised the text corpus under study. First, we used one typical disease risk-specific syntactic pattern (i.e. “D1 due to D2”) as a seed to automatically discover other patterns specifying similar semantic relationships among diseases. We then extracted D1 →D2 risk pairs from MEDLINE using the learned patterns. We manually evaluated the precisions of the learned patterns and extracted pairs. Finally, we analyzed the correlations between disease-disease risk pairs and their associated genes and drugs. The newly created dRiskKB consists of a total of 34,448 unique D1 →D2 pairs, representing the risk-specific semantic relationships among 12,981 diseases with each disease linked to its associated genes and drugs. The identified patterns are highly precise (average precision of 0.99) in specifying the risk-specific relationships among diseases. The precisions of extracted pairs are 0.919 for those that are exactly matched and 0.988 for those that are partially matched. By comparing the iterative pattern approach starting from different seeds, we demonstrated that our algorithm is robust in terms of seed choice. We show that diseases and their risk diseases as well as diseases with similar risk profiles tend to share both genes and drugs.
Conclusions
This unique dRiskKB, when combined with existing phenotypic, genetic, and genomic datasets, can have profound implications in our deeper understanding of disease etiology and in drug repositioning.
doi:10.1186/1471-2105-15-105
PMCID: PMC3998061  PMID: 24725842
22.  Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference 
PLoS Computational Biology  2012;8(5):e1002503.
Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning.
Author Summary
Study of drug-target interaction is an important topic toward elucidation of protein functions and understanding of molecular mechanisms inside cells. Traditional methods to predict new targets for known drugs were based on small molecules, protein targets or phenotype features. Here, we proposed a network-based inference (NBI) method which only used drug-target bipartite network topology similarity to infer new targets for known drugs. The performance of NBI outperformed the drug-based similarity inference and target-based similarity inference methods as well as other published methods. Via the NBI method five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, were identified to have polypharmacological effects on human estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration from submicromolar to micromolar by in vitro assays. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that the drug-target bipartite network-based inference method could be a useful tool for fishing novel drug-target interactions in molecular polypharmacological space.
doi:10.1371/journal.pcbi.1002503
PMCID: PMC3349722  PMID: 22589709
23.  Advanced Systems Biology Methods in Drug Discovery and Translational Biomedicine 
BioMed Research International  2013;2013:742835.
Systems biology is in an exponential development stage in recent years and has been widely utilized in biomedicine to better understand the molecular basis of human disease and the mechanism of drug action. Here, we discuss the fundamental concept of systems biology and its two computational methods that have been commonly used, that is, network analysis and dynamical modeling. The applications of systems biology in elucidating human disease are highlighted, consisting of human disease networks, treatment response prediction, investigation of disease mechanisms, and disease-associated gene prediction. In addition, important advances in drug discovery, to which systems biology makes significant contributions, are discussed, including drug-target networks, prediction of drug-target interactions, investigation of drug adverse effects, drug repositioning, and drug combination prediction. The systems biology methods and applications covered in this review provide a framework for addressing disease mechanism and approaching drug discovery, which will facilitate the translation of research findings into clinical benefits such as novel biomarkers and promising therapies.
doi:10.1155/2013/742835
PMCID: PMC3792523  PMID: 24171171
24.  Drug repositioning as a route to anti-malarial drug discovery: preliminary investigation of the in vitro anti-malarial efficacy of emetine dihydrochloride hydrate 
Malaria Journal  2013;12:359.
Background
Drug repurposing or repositioning refers to the usage of existing drugs in diseases other than those it was originally used for. For diseases like malaria, where there is an urgent need for active drug candidates, the strategy offers a route to significantly shorten the traditional drug development pipelines. Preliminary high-throughput screens on patent expired drug libraries have recently been carried out for Plasmodium falciparum. This study reports the systematic and objective further interrogation of selected compounds reported in these studies, to enable their repositioning as novel stand-alone anti-malarials or as combinatorial partners.
Methods
SYBR Green flow cytometry and micro-titre plate assays optimized in the laboratory were used to monitor drug susceptibility of in vitro cultures of P. falciparum K1 parasite strains. Previously described fixed-ratio methods were adopted to investigate drug interactions.
Results
Emetine dihydrochloride hydrate, an anti-protozoal drug previously used for intestinal and tissue amoebiasis was shown to have potent inhibitory properties (IC50 doses of ~ 47nM) in the multidrug resistant K1 strain of P. falciparum. The sum 50% fractional inhibitory concentration (∑FIC50, 90) of the interaction of emetine dihydrochloride hydrate and dihydroartemisinin against the K1 strains of P. falciparum ranged from 0.88-1.48.
Conclusion
The results warrant further investigation of emetine dihydrochloride hydrate as a potential stand-alone anti-malarial option. The interaction between the drug and the current front line dihydroartemisinin ranged from additive to mildly antagonistic in the fixed drug ratios tested.
doi:10.1186/1475-2875-12-359
PMCID: PMC3852733  PMID: 24107123
Drug repositioning; Antimalarial chemotherapy; Emetine; Dihydroartemisinin; Drug susceptibility assays; Flow cytometry
25.  Predicting New Indications for Approved Drugs Using a Proteo-Chemometric Method 
Journal of medicinal chemistry  2012;55(15):6832-6848.
The most effective way to move from target identification to the clinic is to identify already approved drugs with the potential for activating or inhibiting unintended targets (repurposing or repositioning). This is usually achieved by high throughput chemical screening, transcriptome matching or simple in silico ligand docking. We now describe a novel rapid computational proteo-chemometric method called “Train, Match, Fit, Streamline” (TMFS) to map new drug-target interaction space and predict new uses. The TMFS method combines shape, topology and chemical signatures, including docking score and functional contact points of the ligand, to predict potential drug-target interactions with remarkable accuracy. Using the TMFS method, we performed extensive molecular fit computations on 3,671 FDA approved drugs across 2,335 human protein crystal structures. The TMFS method predicts drug-target associations with 91% accuracy for the majority of drugs. Over 58% of the known best ligands for each target were correctly predicted as top ranked, followed by 66%, 76%, 84% and 91% for agents ranked in the top 10, 20, 30 and 40, respectively, out of all 3,671 drugs. Drugs ranked in the top 1–40, that have not been experimentally validated for a particular target now become candidates for repositioning. Furthermore, we used the TMFS method to discover that mebendazole, an anti-parasitic with recently discovered and unexpected anti-cancer properties, has the structural potential to inhibit VEGFR2. We confirmed experimentally that mebendazole inhibits VEGFR2 kinase activity as well as angiogenesis at doses comparable with its known effects on hookworm. TMFS also predicted, and was confirmed with surface plasmon resonance, that dimethyl celecoxib and the anti-inflammatory agent celecoxib can bind cadherin-11, an adhesion molecule important in rheumatoid arthritis and poor prognosis malignancies for which no targeted therapies exist. We anticipate that expanding our TMFS method to the >27,000 clinically active agents available worldwide across all targets will be most useful in the repositioning of existing drugs for new therapeutic targets.
doi:10.1021/jm300576q
PMCID: PMC3419493  PMID: 22780961

Results 1-25 (909688)