Search tips
Search criteria

Results 1-25 (949509)

Clipboard (0)

Related Articles

1.  Interferon Regulatory Factors in Human Lupus Pathogenesis 
Systemic lupus erythematosus (SLE) is a severe multi-system autoimmune disease which results from both genetic predisposition and environmental factors. Many lines of investigation support interferon alpha (IFN-α) as a causal agent in human lupus, and high levels of serum IFN-α are a heritable risk factor for SLE. Interferon regulatory factors (IRFs) are a family of transcription factors involved in host defense, which can induce transcription of IFN-α and other immune response genes following activation. In SLE, circulating immune complexes which contain nucleic acid are prevalent. These complexes are recognized by endosomal Toll-like receptors, resulting in activation of downstream IRF proteins. Genetic variants in the IRF5 and IRF7 genes have been associated with SLE susceptibility, and these same variants are associated with increased serum IFN-α in SLE patients. The increase in serum IFN-α related to IRF5 and 7 genotypes is observed only in patients with particular antibody specificities. This suggests that chronic stimulation of the endosomal Toll-like receptors by autoantibody immune complexes is required for IRF SLE-risk variants to cause elevation of circulating IFN-α and subsequent risk of SLE. Recently, genetic variation in the IRF8 gene has been associated with SLE and multiple sclerosis, and studies support an impact of IRF8 genotype on the IFN-α pathway. In summary, the SLE-associated polymorphisms in the IRF family of proteins appear to be gain-of-function variants, and understanding the impact of these variants upon the IFN-α pathway in vivo may guide therapeutic strategies directed at the Toll-like receptor/IRF/IFN-α pathway in SLE.
PMCID: PMC3096827  PMID: 21575916
Interferon Alpha; Genetics; Systemic Lupus Erythematosus; Interferon Regulatory Factor; Autoantibodies; Autoimmunity
2.  Type I Interferon and Systemic Lupus Erythematosus 
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease associated with multiple immunologic abnormalities. Prominent among these is upregulation of type I interferon (IFN)—a powerful immune adjuvant. IFN is, in part, produced in SLE in response to autoantigens in the form of self-nucleic acids and their associated nuclear proteins. Sources of these autoantigens include apoptotic and necrotic cells as well as neutrophils undergoing a specific form of cell death called NETosis. Although plasmacytoid dendritic cells are the main producers of IFN-a, other cells are important regulators of this process. Both genetic and environmental risk factors play a role in the development and pathogenesis of SLE. Further highlighting the importance of IFN, candidate gene and genome-wide association studies have identified a number of genes involved in type I IFN pathways associated with SLE. In this review, 3 monogenic deficiencies that result in lupus-like phenotypes and several polygenic variants that have been consistently associated with SLE are highlighted, and the relationship of these genes to IFN-a production is discussed. Clinical associations of the type I IFN pathway and the use of IFN-blocking agents as therapeutic agents in SLE are also reviewed.
PMCID: PMC3216059  PMID: 21859344
3.  Constitutive Phosphorylation of Interferon Receptor A-Associated Signaling Proteins in Systemic Lupus Erythematosus 
PLoS ONE  2012;7(7):e41414.
Overexpression of type I interferon (IFN-I)-induced genes is a common feature of systemic lupus erythematosus (SLE) and its experimental models, but the participation of endogenous overproduction of IFN-I on it is not clear. To explore the possibility that abnormally increased IFN-I receptor (IFNAR) signaling could participate in IFN-I-induced gene overexpression of SLE, we examined the phosphorylation status of the IFNAR-associated signaling partners Jak1 and STAT2, and its relation with expression of its physiologic inhibitor SOCS1 and with plasma levels of IFNα and IFN-like activity.
Methodology/Principal Findings
Peripheral blood mononuclear cells (PBMC) from SLE patients with or without disease activity and healthy controls cultured in the presence or in the absence of IFNβ were examined by immunoprecipitation and/or western blotting for expression of the two IFNAR chains, Jak1, Tyk2, and STAT2 and their phosphorylated forms. In SLE but not in healthy control PBMC, Jak1 and STAT2 were constitutively phosphorylated, even in the absence of disease activity (basal pJak1: controls vs. active SLE p<0.0001 and controls vs. inactive SLE p = 0.0006; basal pSTAT2: controls vs. active and inactive SLE p<0.0001). Although SOCS1 protein was slightly but significantly decreased in SLE in the absence or in the presence of IFNβ (p = 0.0096 to p<0.0001), in SOCS1 mRNA levels were markedly decreased (p = 0.036 to p<0.0001). IFNβ induced higher levels of the IFN-I-dependent MxA protein mRNA in SLE than in healthy controls, whereas the opposite was observed for SOCS1. Although there was no relation to increased serum IFNα, active SLE plasma could induce expression of IFN-dependent genes by normal PBMC.
These findings suggest that in some SLE patients IFN-I dependent gene expression could be the result of a low IFNAR signaling threshold.
PMCID: PMC3408474  PMID: 22859983
4.  The IFN-regulated gene signature is elevated in SCLE and DLE and correlates with CLASI score 
The British Journal of Dermatology  2012;166(5):971-975.
There is increased expression of type I interferon (IFN)-regulated proteins in the blood and target tissues of patients with cutaneous lupus erythematosus (CLE) and systemic lupus erythematosus (SLE). Patients with SLE have increased IFN-regulated gene expression pointing towards a possible underlying genetic defect.
We measured expression levels of five type I IFN-regulated genes that are highly expressed in SLE in the peripheral blood of patients with CLE and correlated expression levels with cutaneous disease activity.
Peripheral blood was obtained from 10 healthy controls and 30 patients with CLE, including 8 with concomitant SLE. Total RNA was extracted and reverse transcribed into complimentary DNA. Gene expression levels were measured by real time PCR. Gene expression was normalized to GAPDH, standardized to healthy controls and then summed to calculate an IFN score for each patient. Disease activity was assessed with the Cutaneous Lupus Area and Severity Index (CLASI).
Patients with subacute cutaneous lupus erythematosus (SCLE) and discoid lupus erythematosus (DLE) had elevated IFN scores compared to healthy controls regardless of concomitant SLE (p< 0.01 with SLE and p<0.05 without SLE). There was no difference between patients with tumid lupus erythematosus (TLE) and healthy controls. The IFN score correlated with CLASI scores (Spearman’s Rho (r) = 0.55, p = 0.0017).
Patients with SCLE and DLE have an IFN signature, as seen in SLE. The level of gene expression correlates with cutaneous disease activity. These findings support a shared pathogenesis between SLE and some subtypes of CLE.
PMCID: PMC3336025  PMID: 22242767
5.  Activation of the Interferon Pathway is Dependent Upon Autoantibodies in African-American SLE Patients, but Not in European-American SLE Patients 
Background: In systemic lupus erythematosus (SLE), antibodies directed at RNA-binding proteins (anti-RBP) are associated with high serum type I interferon (IFN), which plays an important role in SLE pathogenesis. African-Americans (AA) are more likely to develop SLE, and SLE is also more severe in this population. We hypothesized that peripheral blood gene expression patterns would differ between AA and European-American (EA) SLE patients, and between those with anti-RBP antibodies and those who lack these antibodies.
Methods: Whole blood RNA from 33 female SLE patients and 16 matched female controls from AA and EA ancestral backgrounds was analyzed on Affymetrix Gene 1.0 ST gene expression arrays. Ingenuity Pathway Analysis was used to compare the top differentially expressed canonical pathways amongst the sample groups. An independent cohort of 116 SLE patients was used to replicate findings using quantitative real-time PCR (qPCR).
Results: Both AA and EA patients with positive anti-RBP antibodies showed over-expression of similar IFN-related canonical pathways, such as IFN Signaling (P = 1.3 × 10−7 and 6.3 × 10−11 in AA vs. EA respectively), Antigen Presenting Pathway (P = 1.8 × 10−5 and 2.5 × 10−6), and a number of pattern recognition receptor pathways. In anti-RBP negative (RBP−) patients, EA subjects demonstrated similar IFN-related pathway activation, whereas no IFN-related pathways were detected in RBP−AA patients. qPCR validation confirmed similar results.
Conclusion: Our data show that IFN-induced gene expression is completely dependent on the presence of autoantibodies in AA SLE patients but not in EA patients. This molecular heterogeneity suggests differences in IFN-pathway activation between ancestral backgrounds in SLE. This heterogeneity may be clinically important, as therapeutics targeting this pathway are being developed.
PMCID: PMC3787392  PMID: 24101921
systemic lupus erythematosus; interferon alpha; autoantibodies; ancestral background; interferon gamma
6.  Myeloid Dendritic Cells from B6.NZM Sle1/Sle2/Sle3 Lupus-prone Mice express an Interferon Signature that Precedes Disease Onset 
Patients with systemic lupus erythematosus (SLE) show an over-expression of Type I Interferon (IFN) responsive genes called “Interferon Signature”. We found that the B6.NZMSle1/Sle2/Sle3 (Sle1,2,3) lupus-prone mice also express an Interferon Signature compared to non autoimmune C57BL/6 mice. In vitro, myeloid dendritic cells (mDCs)(GM-CSF bone marrow-derived BMDCs) from Sle1,2,3 mice constitutively over-expressed IFN responsive genes such as IFNb, Oas-3, Mx-1, ISG-15 and CXCL10, and the members of IFN signaling pathway STAT1, STAT2, and IRF7. The Interferon Signature was similar in Sle1,2,3 BMDCs from young, pre-autoimmune mice and from mice with high titers of autoantibodies, suggesting that the Interferon Signature in mDCs precedes disease onset and it is independent from the autoantibodies. Sle1,2,3 BMDCs hyper-responded to stimulation with IFNa and the TLR7 and TLR9 agonists R848 and CpGs. We propose that this hyper-response is induced by the Interferon Signature and only partially contributes to the Signature, since oligonucleotides inhibitory for TLR7 and TLR9 only partially suppressed the constitutive Interferon Signature and pre-exposure to IFNa induced the same hyper-response in wild type BMDCs than in Sle1,2,3 BMDCs. In vivo, mDCs and with lesser extent T and B cells from young pre-diseased Sle1,2,3 mice also expressed the Interferon Signature, although they lacked the strength that BMDCs showed in vitro. Sle1,2,3 plasmacytoid DCs expressed the Interferon Signature in vitro but not in vivo, suggesting that mDCs may be more relevant before disease onset. We propose that Sle1,2,3 mice are useful tools to study the role of the Interferon Signature in lupus pathogenesis.
PMCID: PMC3381850  PMID: 22661089
Myeloid Dendritic cells; Type I Interferon; systemic lupus erythematosus; TLR; gene expression
7.  Cutting Edge: Autoimmune Disease Risk Variant of STAT4 Confers Increased Sensitivity to IFN-α in Lupus Patients In Vivo1 
Increased IFN-α signaling is a primary pathogenic factor in systemic lupus erythematosus (SLE). STAT4 is a transcription factor that is activated by IFN-α signaling, and genetic variation of STAT4 has been associated with risk of SLE and rheumatoid arthritis. We measured serum IFN-α activity and simultaneous IFN-α-induced gene expression in PBMC in a large SLE cohort. The risk variant of STAT4 (T allele; rs7574865) was simultaneously associated with both lower serum IFN-α activity and greater IFN-α-induced gene expression in PBMC in SLE patients in vivo. Regression analyses confirmed that the risk allele of STAT4 was associated with increased sensitivity to IFN-α signaling. The IFN regulatory factor 5 SLE risk genotype was associated with higher serum IFN-α activity; however, STAT4 showed dominant influence on the sensitivity of PBMC to serum IFN-α. These data provide biologic relevance for the risk variant of STAT4 in the IFN-α pathway in vivo.
PMCID: PMC2716754  PMID: 19109131
8.  Association of IRF5 polymorphisms with activation of the interferon α pathway 
Annals of the rheumatic diseases  2009;69(3):611-617.
The genetic association of interferon regulatory factor 5 (IRF5) with systemic lupus erythematosus (SLE) susceptibility has been convincingly established. To gain understanding of the effect of IRF5 variation in individuals without SLE, a study was undertaken to examine whether such genetic variation predisposes to activation of the interferon α (IFNα) pathway.
Using a computer simulated approach, 14 single nucleotide polymorphisms (SNPs) and haplotypes of IRF5 were tested for association with mRNA expression levels of IRF5, IFNα and IFN-inducible genes and chemokines in lymphoblastoid cell lines (LCLs) from individuals of European (CEU), Han Chinese (CHB), Japanese (JPT) and Yoruba Nigerian (YRI) backgrounds. IFN-inducible gene expression was assessed in LCLs from children with SLE in the presence and absence of IFNα stimulation.
The major alleles of IRF5 rs13242262 and rs2280714 were associated with increased IRF5 mRNA expression levels in the CEU, CHB+JPT and YRI samples. The minor allele of IRF5 rs10488631 was associated with increased IRF5, IFNα and IFN-inducible chemokine expression in CEU (pc=0.0005, 0.01 and 0.04, respectively). A haplotype containing these risk alleles of rs13242262, rs10488631 and rs2280714 was associated with increased IRF5, IFNα and IFN-inducible chemokine expression in CEU LCLs. In vitro studies showed specific activation of IFN-inducible genes in LCLs by IFNα.
SNPs of IRF5 in healthy individuals of a number of ethnic groups were associated with increased mRNA expression of IRF5. In European-derived individuals, an IRF5 haplotype was associated with increased IRF5, IFNα and IFN-inducible chemokine expression. Identifying individuals genetically predisposed to increased IFN-inducible gene and chemokine expression may allow early detection of risk for SLE.
PMCID: PMC3135414  PMID: 19854706
9.  Functional genetic polymorphisms in ILT3 are associated with decreased surface expression on dendritic cells and increased serum cytokines in lupus patients 
Annals of the rheumatic diseases  2012;72(4):596-601.
Hyperactivity of the type I interferon (IFN) pathway is involved in the pathogenesis of systemic lupus erythematosus (SLE). Immunoglobulin like transcript (ILT3) is an immunohibitory transmembrane molecule which is induced by type I IFNs. ILT3 is expressed by plasmacytoid dendritic cells (PDCs), monocytoid dendritic cells (MDCs), and monocytes/macrophages. Given the pathogenic role of IFN in SLE, we hypothesised that the IFN-induced immunosuppressive ILT3 receptor may be dysfunctional in human SLE.
132 European-derived and 79 Hispanic-American SLE patients were genotyped for two coding-change single nucleotide polymorphisms (SNPs) predicted to interfere with protein folding in ILT3 (rs11540761 and rs1048801). 116 control DNA samples and sera from healthy controls were also studied. We detected associations between ILT3 genotype and serum cytokine profiles. ILT3 expression levels on PDCs and MDCs from 18 patients and 10 controls were studied by flow cytometry.
The rs11540761 SNP in the extracellular region was associated with decreased cell surface expression of ILT3 on circulating MDCs and to a lesser extent PDCs in SLE patients. The cytoplasmically located rs1048801 SNP was not associated with a change in dendritic cells expression of ILT3. Both SNPs were significantly and independently associated with increased levels of serum type I IFN activity in SLE patients. The rs1048801 SNP was also associated with increased serum levels of TNF-α.
Loss-of-function polymorphisms in ILT3 are associated with increased inflammatory cytokine levels in SLE, supporting a biological role for ILT3 in SLE.
PMCID: PMC3910490  PMID: 22904259
10.  A Novel Type I Interferon-producing Cell Subset in Murine Lupus 
Excess type-I interferons (IFN-I) have been linked to the pathogenesis of systemic lupus erythematosus (SLE). Therapeutic use of IFN-I can trigger the onset of SLE and most lupus patients display upregulation of a group of interferon stimulated genes (ISGs). While this “interferon signature” has been linked with disease activity, kidney involvement, and autoantibody production, the source of IFN-I production in SLE remains unclear. Tetramethylpentadecane (TMPD)-induced lupus is at present the only model of SLE associated with excess IFN-I production and ISG expression. Here we demonstrate that TMPD treatment induces an accumulation of immature Ly6Chi monocytes, which are a major source of IFN-I in this lupus model. Importantly, they were distinct from interferon-producing dendritic cells. The expression of IFN-I and ISGs was rapidly abolished by monocyte depletion whereas systemic ablation of dendritic cells (DCs) had little effect. In addition, there was a striking correlation between the numbers of Ly6Chi monocytes and the production of lupus autoantibodies. Therefore, immature monocytes rather than DCs appear to be the primary source of IFN-I in this model of IFN-I dependent lupus.
PMCID: PMC2909121  PMID: 18354236
autoimmunity; systemic lupus erythematosus; monocytes
11.  Trait-stratified genome-wide association study identifies novel and diverse genetic associations with serologic and cytokine phenotypes in systemic lupus erythematosus 
Arthritis Research & Therapy  2010;12(4):R151.
Systemic lupus erythematosus (SLE) is a highly heterogeneous disorder, characterized by differences in autoantibody profile, serum cytokines, and clinical manifestations. SLE-associated autoantibodies and high serum interferon alpha (IFN-α) are important heritable phenotypes in SLE which are correlated with each other, and play a role in disease pathogenesis. These two heritable risk factors are shared between ancestral backgrounds. The aim of the study was to detect genetic factors associated with autoantibody profiles and serum IFN-α in SLE.
We undertook a case-case genome-wide association study of SLE patients stratified by ancestry and extremes of phenotype in serology and serum IFN-α. Single nucleotide polymorphisms (SNPs) in seven loci were selected for follow-up in a large independent cohort of 538 SLE patients and 522 controls using a multi-step screening approach based on novel metrics and expert database review. The seven loci were: leucine-rich repeat containing 20 (LRRC20); protein phosphatase 1 H (PPM1H); lysophosphatidic acid receptor 1 (LPAR1); ankyrin repeat and sterile alpha motif domain 1A (ANKS1A); protein tyrosine phosphatase, receptor type M (PTPRM); ephrin A5 (EFNA5); and V-set and immunoglobulin domain containing 2 (VSIG2).
SNPs in the LRRC20, PPM1H, LPAR1, ANKS1A, and VSIG2 loci each demonstrated strong association with a particular serologic profile (all odds ratios > 2.2 and P < 3.5 × 10-4). Each of these serologic profiles was associated with increased serum IFN-α. SNPs in both PTPRM and LRRC20 were associated with increased serum IFN-α independent of serologic profile (P = 2.2 × 10-6 and P = 2.6 × 10-3 respectively). None of the SNPs were strongly associated with SLE in case-control analysis, suggesting that the major impact of these variants will be upon subphenotypes in SLE.
This study demonstrates the power of using serologic and cytokine subphenotypes to elucidate genetic factors involved in complex autoimmune disease. The distinct associations observed emphasize the heterogeneity of molecular pathogenesis in SLE, and the need for stratification by subphenotypes in genetic studies. We hypothesize that these genetic variants play a role in disease manifestations and severity in SLE.
PMCID: PMC2945049  PMID: 20659327
12.  Replicated associations of TNFAIP3, TNIP1 and ETS1 with systemic lupus erythematosus in a southwestern Chinese population 
Arthritis Research & Therapy  2011;13(6):R186.
Recent genome-wide and candidate gene association studies in large numbers of systemic lupus erythematosus (SLE) patients have suggested approximately 30 susceptibility genes. These genes are involved in three types of biological processes, including immune complex processing, toll-like receptor function and type I interferon production, and immune signal transduction in lymphocytes, and they may contribute to the pathogenesis of SLE. To better understand the genetic risk factors of SLE, we investigated the associations of seven SLE susceptibility genes in a Chinese population, including FCGR3A, FCGR2A, TNFAIP3, TLR9, TREX1, ETS1 and TNIP1.
A total of 20 SNPs spanning the seven SLE susceptibility genes were genotyped in a sample of 564 unrelated SLE patients and 504 unrelated healthy controls recruited from Yunnan, southwestern China. The associations of SNPs with SLE were assessed by statistical analysis.
Five SNPs in two genes (TNFAIP3 and ETS1) were significantly associated with SLE (corrected P values ranging from 0.03 to 5.5 × 10-7). Through stratified analysis, TNFAIP3 and ETS1 showed significant associations with multiple SLE subphenotypes (such as malar rash, arthritis, hematologic disorder and antinuclear antibody) while TNIP1 just showed relatively weak association with onset age. The associations of the SNPs in the other four genes were not replicated.
The replication analysis indicates that TNFAIP3, ETS1 and TNIP1 are probably common susceptibility genes for SLE in Chinese populations, and they may contribute to the pathogenesis of multiple SLE subphenotypes.
PMCID: PMC3334635  PMID: 22087647
13.  IRF5 activation in monocytes of SLE patients is triggered by circulating autoantigens independent of type I IFN 
Arthritis and Rheumatism  2012;64(3):788-798.
Genetic variants of interferon regulatory factor 5 (IRF5) are associated with susceptibility to systemic lupus erythematosus (SLE). IRF5 regulates the expression of proinflammatory cytokines and type I interferons (IFN) believed to be involved in SLE pathogenesis. The aim of this study was to determine the activation status of IRF5 by assessing its nuclear localization in immune cells of SLE patients and healthy donors, and to identify SLE triggers of IRF5 activation.
IRF5 nuclear localization in subpopulations of peripheral blood mononuclear cells (PBMC) from 14 genotyped SLE patients and 11 healthy controls was assessed using imaging flow cytometry. IRF5 activation and function were examined after ex vivo stimulation of healthy donor monocytes with SLE serum or components of SLE serum. Cellular localization was determined by ImageStream and cytokine expression by Q-PCR and ELISA.
IRF5 was activated in a cell type-specific manner; monocytes of SLE patients had constitutively elevated levels of nuclear IRF5 compared to NK and T cells. SLE serum was identified as a trigger for IRF5 nuclear accumulation; however, neither IFNα nor SLE immune complexes could induce nuclear localization. Instead, autoantigens comprised of apoptotic/necrotic material triggered IRF5 nuclear accumulation in monocytes. Production of cytokines IFNα, TNFα and IL6 in monocytes stimulated with SLE serum or autoantigens was distinct yet correlated with the kinetics of IRF5 nuclear localization.
This study provides the first formal proof that IRF5 activation is altered in monocytes of SLE patients that is in part contributed by the SLE blood environment.
PMCID: PMC3288585  PMID: 21968701
14.  Interferon Alpha as a Primary Pathogenic Factor in Human Lupus 
Interferon alpha (IFN-α) is a critical mediator of human systemic lupus erythematosus (SLE). This review will summarize evidence supporting the role for IFN-α in the initiation of human SLE. IFN-α functions in viral immunity at the interface of innate and adaptive immunity, a position well suited to setting thresholds for autoimmunity. Some individuals treated with IFN-α for chronic viral infections develop de novo SLE, which frequently resolves when IFN-α is withdrawn, supporting the idea that IFN-α was causal. Abnormally high IFN-α levels are clustered within SLE families, suggesting that high serum IFN-α is a heritable risk factor for SLE. Additionally, SLE-risk genetic variants in the IFN-α pathway are gain of function in nature, resulting in either higher circulating IFN-α levels or greater sensitivity to IFN-α signaling in SLE patients. A recent genome-wide association study has identified additional novel genetic loci associated with high serum IFN-α in SLE patients. These data support the idea that genetically determined endogenous elevations in IFN-α predispose to human SLE. It is possible that some of these gain-of-function polymorphisms in the IFN-α pathway are useful in viral defense, and that risk of SLE is a burden we have taken on in the fight to defend ourselves against viral infection.
PMCID: PMC3234490  PMID: 21923413
15.  Interferon Regulatory Factor 5 in the Pathogenesis of Systemic Lupus Erythematosus 
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple genetic risk factors, high levels of interferon alpha (IFN-α), and the production of autoantibodies against components of the cell nucleus. Interferon regulatory factor 5 (IRF5) is a transcription factor which induces the transcription of IFN-α and other cytokines, and genetic variants of IRF5 have been strongly linked to SLE pathogenesis. IRF5 functions downstream of Toll-like receptors and other microbial pattern-recognition receptors, and immune complexes made up of SLE-associated autoantibodies seem to function as a chronic endogenous stimulus to this pathway. In this paper, we discuss the physiologic role of IRF5 in immune defense and the ways in which IRF5 variants may contribute to the pathogenesis of human SLE. Recent data regarding the role of IRF5 in both serologic autoimmunity and the overproduction of IFN-α in human SLE are summarized. These data support a model in which SLE-risk variants of IRF5 participate in a “feed-forward” mechanism, predisposing to SLE-associated autoantibody formation, and subsequently facilitating IFN-α production downstream of Toll-like receptors stimulated by immune complexes composed of these autoantibodies.
PMCID: PMC3509422  PMID: 23251221
16.  Replication of the genetic effects of IFN regulatory factor 5 (IRF5) on systemic lupus erythematosus in a Korean population 
Recently, two studies provided convincing evidence that IFN regulatory factor 5 (IRF5) gene polymorphisms are significantly associated with systemic lupus erythematosus (SLE) in several white populations. To replicate the association with SLE in an Asian population, we examined the genetic effects in our SLE cohort from a Korean population. A total of 1,565 subjects, composed of 593 cases and 972 controls, were genotyped using the TaqMan® (Applied Biosystems, Foster City, CA, USA) method. The genetic effects of polymorphisms on the risk of SLE were evaluated using χ2 tests and a Mantel–Haenszel meta-analysis. Statistical analysis revealed results in the Korean population were similar to the previous reports from white populations. The rs2004640 T allele had a higher frequency in SLE cases (0.385) than controls (0.321; odds ratio (OR) = 1.32, P = 0.0003). In combined analysis, including all seven independent cohorts from the three studies so far, robust and consistent associations of the rs2004640 T allele with SLE were observed. The estimate of risk was OR = 1.44 (range, 1.34–1.55), with an overall P = 1.85 × 10-23 for the rs2004640 T allele. The haplotype (rs2004640T–rs2280714T) involved in both the alternative splice donor site and the elevated expression of IRF5 also had a highly significant association with SLE (pooled, P = 2.11 × 10-16). Our results indicate that the genetic effect on the risk of SLE mediated by IRF5 variants can be generally accepted in both white and Asian populations.
PMCID: PMC1906810  PMID: 17389033
17.  Specificity of the STAT4 Genetic Association for Severe Disease Manifestations of Systemic Lupus Erythematosus 
PLoS Genetics  2008;4(5):e1000084.
Systemic lupus erythematosus (SLE) is a genetically complex disease with heterogeneous clinical manifestations. A polymorphism in the STAT4 gene has recently been established as a risk factor for SLE, but the relationship with specific SLE subphenotypes has not been studied. We studied 137 SNPs in the STAT4 region genotyped in 4 independent SLE case series (total n = 1398) and 2560 healthy controls, along with clinical data for the cases. Using conditional testing, we confirmed the most significant STAT4 haplotype for SLE risk. We then studied a SNP marking this haplotype for association with specific SLE subphenotypes, including autoantibody production, nephritis, arthritis, mucocutaneous manifestations, and age at diagnosis. To prevent possible type-I errors from population stratification, we reanalyzed the data using a subset of subjects determined to be most homogeneous based on principal components analysis of genome-wide data. We confirmed that four SNPs in very high LD (r2 = 0.94 to 0.99) were most strongly associated with SLE, and there was no compelling evidence for additional SLE risk loci in the STAT4 region. SNP rs7574865 marking this haplotype had a minor allele frequency (MAF) = 31.1% in SLE cases compared with 22.5% in controls (OR = 1.56, p = 10−16). This SNP was more strongly associated with SLE characterized by double-stranded DNA autoantibodies (MAF = 35.1%, OR = 1.86, p<10−19), nephritis (MAF = 34.3%, OR = 1.80, p<10−11), and age at diagnosis<30 years (MAF = 33.8%, OR = 1.77, p<10−13). An association with severe nephritis was even more striking (MAF = 39.2%, OR = 2.35, p<10−4 in the homogeneous subset of subjects). In contrast, STAT4 was less strongly associated with oral ulcers, a manifestation associated with milder disease. We conclude that this common polymorphism of STAT4 contributes to the phenotypic heterogeneity of SLE, predisposing specifically to more severe disease.
Author Summary
Systemic lupus erythematosus is a chronic disabling autoimmune disease, most commonly striking women in their thirties or forties. It can cause a wide variety of clinical manifestations, including kidney disease, arthritis, and skin disorders. Prognosis varies greatly depending on these clinical features, with kidney disease and related characteristics leading to greater morbidity and mortality. It is also complex genetically; while lupus runs in families, genes increase one’s risk for lupus but do not fully determine the outcome. It is thought that the interactions of multiple genes and/or interactions between genes and environmental factors may cause lupus, but the causes and disease pathways of this very heterogeneous disease are not well understood. By examining relationships between subtypes of lupus and specific genes, we hope to better understand how lupus is triggered and by what biological pathways it progresses. We show in this work that the STAT4 gene, very recently identified as a lupus risk gene, predisposes specifically to severe manifestations of lupus, including kidney disease.
PMCID: PMC2377340  PMID: 18516230
18.  Autoimmune Disease Risk Variant of IFIH1 Is Associated with Increased Sensitivity to IFN-α and Serologic Autoimmunity in Lupus Patients 
Increased IFN-α signaling is a heritable risk factor for systemic lupus erythematosus (SLE). IFN induced with helicase C domain 1 (IFIH1) is a cytoplasmic dsRNA sensor that activates IFN-α pathway signaling. We studied the impact of the autoimmune-disease–associated IFIH1 rs1990760 (A946T) single nucleotide polymorphism upon IFN-α signaling in SLE patients in vivo. We studied 563 SLE patients (278 African-American, 179 European-American, and 106 Hispanic-American). Logistic regression models were used to detect genetic associations with autoantibody traits, and multiple linear regression was used to analyze IFN-α–induced gene expression in PBMCs in the context of serum IFN-α in the same blood sample. We found that the rs1990760 T allele was associated with anti-dsDNA Abs across all of the studied ancestral backgrounds (meta-analysis odds ratio = 1.34, p = 0.026). This allele also was associated with lower serum IFN-α levels in subjects who had anti-dsDNA Abs (p = 0.0026). When we studied simultaneous serum and PBMC samples from SLE patients, we found that the IFIH1 rs1990760 T allele was associated with increased IFN-induced gene expression in PBMCs in response to a given amount of serum IFN-α in anti-dsDNA–positive patients. This effect was independent of the STAT4 genotype, which modulates sensitivity to IFN-α in a similar way. Thus, the IFIH1 rs1990760 Tallele was associated with dsDNA Abs, and in patients with anti-dsDNA Abs this risk allele increased sensitivity to IFN-α signaling. These studies suggest a role for the IFIH1 risk allele in SLE in vivo.
PMCID: PMC3304466  PMID: 21705624
19.  Genetic variants and disease-associated factors contribute to enhanced IRF-5 expression in blood cells of systemic lupus erythematosus patients 
Arthritis and rheumatism  2010;62(2):562-573.
Genetic variants of the interferon (IFN) regulatory factor 5 (IRF5) gene are associated with systemic lupus erythematosus (SLE) susceptibility. The contribution of these variants to IRF-5 expression in primary blood cells of SLE patients has not been addressed, nor has the role of type I IFN. The aim of this study was to determine the association between increased IRF-5 expression and the IRF5 risk haplotype in SLE patients.
IRF-5 transcript and protein levels in 44 Swedish patients with SLE and 16 healthy controls were measured by quantitative real-time PCR, minigene assay, and flow cytometry. The rs2004640, rs10954213, rs10488631 and the CGGGG indel were genotyped in these patients. Genotypes of these polymorphisms defined a common risk and protective haplotype.
IRF-5 expression and alternative splicing were significantly upregulated in SLE patients versus healthy donors. Enhanced transcript and protein levels were associated with the risk haplotype of IRF5; rs10488631 gave the only significant independent association that correlated with increased transcription from non-coding exon 1C. Minigene experiments demonstrated an important role for rs2004640 and the CGGGG indel, along with type I IFNs in regulating IRF-5 expression.
This study provides the first formal proof that IRF-5 expression and alternative splicing are significantly upregulated in primary blood cells of SLE patients. The risk haplotype is associated with enhanced IRF-5 transcript and protein expression in SLE patients.
PMCID: PMC3213692  PMID: 20112383
20.  Netting Neutrophils Are Major Inducers of Type I IFN Production in Pediatric Systemic Lupus Erythematosus 
Science translational medicine  2011;3(73):73ra20.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a breakdown of tolerance to nuclear antigens and the development of immune complexes. Genomic approaches have shown that human SLE leukocytes homogeneously express type I interferon (IFN)–induced and neutrophil-related transcripts. Increased production and/or bioavailability of IFN-α and associated alterations in dendritic cell (DC) homeostasis have been linked to lupus pathogenesis. Although neutrophils have long been shown to be associated with lupus, their potential role in disease pathogenesis remains elusive. Here, we show that mature SLE neutrophils are primed in vivo by type I IFN and die upon exposure to SLE-derived anti-ribonucleoprotein antibodies, releasing neutrophil extracellular traps (NETs). SLE NETs contain DNA as well as large amounts of LL37 and HMGB1, neutrophil proteins that facilitate the uptake and recognition of mammalian DNA by plasmacytoid DCs (pDCs). Indeed, SLE NETs activate pDCs to produce high levels of IFN-α in a DNA- and TLR9 (Toll-like receptor 9)–dependent manner. Our results reveal an unsuspected role for neutrophils in SLE pathogenesis and identify a novel link between nucleic acid–recognizing antibodies and type I IFN production in this disease.
PMCID: PMC3143837  PMID: 21389264
21.  Plasmacytoid dendritic cells and C1q differentially regulate inflammatory gene induction by lupus immune complexes1 
Immune complexes (ICs) play a pivotal role in causing inflammation in systemic lupus erythematosus (SLE)3. Yet, it remains unclear what the dominant blood cell type(s) and inflammation related gene programs stimulated by lupus ICs are. To address these questions, we exposed normal human peripheral blood mononuclear cells (PBMCs) or CD14+ isolated monocytes to SLE ICs in the presence or absence of C1q and performed microarray analysis and other tests for cell activation. By microarray analysis, we identified genes and pathways regulated by SLE ICs that are both type I IFN dependent and independent. We also found that C1q containing ICs markedly reduced expression of the majority of IFN-response genes and also influenced the expression of multiple other genes induced by SLE ICs. Surprisingly, IC activation of isolated CD14+ monocytes did not upregulate CD40 and CD86 and only modestly stimulated inflammatory gene expression. However, when monocyte subsets were purified and analyzed separately, the low abundance CD14dim (‘patrolling’) subpopulation was more responsive to ICs. These observations demonstrate the importance of plasmacytoid dendritic cells (pDCs), CD14dim monocytes and C1q as key regulators of inflammatory properties of ICs and identify many pathways through which they act.
PMCID: PMC3238790  PMID: 22147767
Immune complexes; interferon alpha; plasmacytoid dendritic cells; monocytes; systemic lupus erythematosus; gene regulation; complement
22.  Inflammasome Activation of IL-18 Results in Endothelial Progenitor Cell Dysfunction in Systemic Lupus Erythematosus 
Systemic lupus erythematosus (SLE) is an autoimmune disease with heterogeneous manifestations including severe organ damage and vascular dysfunction leading to premature atherosclerosis. Interferon-alpha (IFN-α) has been proposed to have an important role in the development of lupus and lupus-related cardiovascular disease, partly by repression of IL-1 pathways leading to impairments in vascular repair induced by endothelial progenitor cells (EPCs) and circulating angiogenic cells (CACs). Counterintuitively, SLE patients also display transcriptional upregulation of the IL-1β/IL-18 processing machinery, the inflammasome. To understand this dichotomy and its impact on SLE-related cardiovascular disease, we examined cultures of human and murine control or lupus EPC/CACs to determine the role of the inflammasome in endothelial differentiation. We show that caspase-1 inhibition improves dysfunctional SLE EPC/CAC differentiation into mature endothelial cells and blocks IFN-α-mediated repression of this differentiation, implicating inflammasome activation as a crucial downstream pathway leading to aberrant vasculogenesis. Furthermore, serum IL-18 levels are elevatedin SLE and correlate with EPC/CAC dysfunction. Exogenous IL-18 inhibits endothelial differentiation in control EPC/CACs and neutralization of IL-18 in SLE EPC/CAC cultures restores their capacity to differentiate into mature endothelial cells, supporting a deleterious effect of IL-18 on vascular repair in vivo. Upregulation of the inflammasome machinery was operational in vivo, as evidenced by gene array analysis of lupus nephritis biopsies. Thus, the effects of IFN-α are complex and contribute to an elevated risk of cardiovascular disease by suppression of IL-1β pathways and by upregulation of the inflammasome machinery and potentiation of IL-18 activation.
PMCID: PMC3221936  PMID: 22058412
23.  Type I Interferons Are Associated with Subclinical Markers of Cardiovascular Disease in a Cohort of Systemic Lupus Erythematosus Patients 
PLoS ONE  2012;7(5):e37000.
Systemic lupus erythematosus (SLE) patients have a striking increase in cardiovascular (CV) comorbidity not fully explained by the Framingham risk score. Recent evidence from in vitro studies suggests that type I interferons (IFN) could promote premature CV disease (CVD) in SLE. We assessed the association of type I IFN signatures with functional and anatomical evidence of vascular damage, and with biomarkers of CV risk in a cohort of lupus patients without overt CVD.
Methodology/Principal Findings
Serum type I IFN activity (induction of five IFN-inducible genes; IFIGs) from 95 SLE patient and 38 controls was quantified by real-time PCR. Flow mediated dilatation (FMD) of the brachial artery and carotid intima media thickness (CIMT) were quantified by ultrasound, and coronary calcification by computed tomography. Serum vascular biomarkers were measured by ELISA. We evaluated the effect of type I IFNs on FMD, CIMT and coronary calcification by first applying principal components analysis to combine data from five IFIGs into summary components that could be simultaneously modeled. Three components were derived explaining 97.1% of the total IFIG variation. Multivariable linear regression was utilized to investigate the association between the three components and other covariates, with the outcomes of FMD and CIMT; zero-inflated Poisson regression was used for modeling of coronary calcification. After controlling for traditional CV risk factors, enhanced serum IFN activity was significantly associated with decreased endothelial function in SLE patients and controls (p<0.05 for component 3), increased CIMT among SLE patients (p<0.01 for components 1 and 2), and severity of coronary calcification among SLE patients (p<0.001 for component 3).
Type I IFNs are independently associated with atherosclerosis development in lupus patients without history of overt CVD and after controlling for Framingham risk factors. This study further supports the hypothesis that type I IFNs promote premature vascular damage in SLE.
PMCID: PMC3351452  PMID: 22606325
24.  Novel identification of the IRF7 region as an anticentromere autoantibody propensity locus in systemic sclerosis 
Annals of the Rheumatic Diseases  2011;71(1):114-119.
Systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) are related chronic autoimmune diseases of complex aetiology in which the interferon (IFN) pathway plays a key role. Recent studies have reported an association between IRF7 and SLE which confers a risk to autoantibody production. A study was undertaken to investigate whether the IRF7 genomic region is also involved in susceptibility to SSc and the main clinical features.
Two case-control sets of Caucasian origin from the USA and Spain, comprising a total of 2316 cases of SSc and 2347 healthy controls, were included in the study. Five single nucleotide polymorphisms (SNPs) in the PHRF1-IRF7-CDHR5 locus were genotyped using TaqMan allelic discrimination technology. A meta-analysis was performed to test the overall effect of these genetic variants on SSc.
Four out of five analysed SNPs were Significantly associated with the presence of anticentromere autoantibodies (ACA) in the patients with SSc in the combined analysis (rs1131665: pFDR=6.14 × 10−4, OR=0.78; rs4963128: pFDR=6.14 × 10−4, OR=0.79; rs702966: pFDR=3.83 × 10−3, OR=0.82; and rs2246614: pFDR=3.83 × 10−3, OR=0.83). Significant p values were also obtained when the disease was tested globally; however, the statistical significance was lost when the ACA-positive patients were excluded from the study, suggesting that these associations rely on ACA positivity. Conditional logistic regression and allelic combination analyses suggested that the functional IRF7 SNP rs1131665 is the most likely causal variant.
The results show that variation in the IRF7 genomic region is associated with the presence of ACA in patients with SSc, supporting other evidence that this locus represents a common risk factor for autoantibody production in autoimmune diseases.
PMCID: PMC3369428  PMID: 21926187
25.  Recent advances in the genetics of systemic lupus erythematosus 
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the production of antinuclear autoantibodies and the inflammatory infiltration of many organ systems. SLE is a complex disorder in which multiple genetic variants, together with environmental and hormonal factors, contribute to disease risk. In this article, we summarize our current understanding of the genetic contribution to SLE in light of recent genome-wide association studies, which have brought the total number of confirmed SLE susceptibility loci to 29. In the second section, we explore the functional implications of these risk loci and, in particular, highlight the role that many of these genes play in the Toll-like receptor and type I interferon signaling pathways. Finally, we discuss the genetic overlap between SLE and other autoimmune and inflammatory conditions as several risk loci are shared among multiple disorders, suggesting common underlying pathogenic mechanisms.
PMCID: PMC2897739  PMID: 20441431
genome-wide association studies; pathogenesis; systemic lupus erythematosus; Toll-like receptor signaling; type I interferon signaling

Results 1-25 (949509)