PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (644630)

Clipboard (0)
None

Related Articles

1.  The Phylogenetic Forest and the Quest for the Elusive Tree of Life 
Extensive horizontal gene transfer (HGT) among prokaryotes seems to undermine the tree of life (TOL) concept. However, the possibility remains that the TOL can be salvaged as a statistical central trend in the phylogenetic “forest of life” (FOL). A comprehensive comparative analysis of 6901 phylogenetic trees for prokaryotic genes revealed a signal of vertical inheritance that was particularly strong among the 102 nearly universal trees (NUTs), despite the high topological inconsistency among the trees in the FOL, most likely, caused by HGT. The topologies of the NUTs are similar to the topologies of numerous other trees in the FOL; although the NUTs cannot represent the FOL completely, they reflect a significant central trend. Thus, the original TOL concept becomes obsolete but the idea of a “weak” TOL as the dominant trend in the FOL merits further investigation. The totality of gene trees comprising the FOL appears to be a natural representation of the history of life given the inherent tree-like character of the replication process.
doi:10.1101/sqb.2009.74.006
PMCID: PMC3380366  PMID: 19687142
2.  The Tree and Net Components of Prokaryote Evolution 
Phylogenetic trees of individual genes of prokaryotes (archaea and bacteria) generally have different topologies, largely owing to extensive horizontal gene transfer (HGT), suggesting that the Tree of Life (TOL) should be replaced by a “net of life” as the paradigm of prokaryote evolution. However, trees remain the natural representation of the histories of individual genes given the fundamentally bifurcating process of gene replication. Therefore, although no single tree can fully represent the evolution of prokaryote genomes, the complete picture of evolution will necessarily combine trees and nets. A quantitative measure of the signals of tree and net evolution is derived from an analysis of all quartets of species in all trees of the “Forest of Life” (FOL), which consists of approximately 7,000 phylogenetic trees for prokaryote genes including approximately 100 nearly universal trees (NUTs). Although diverse routes of net-like evolution collectively dominate the FOL, the pattern of tree-like evolution that reflects the consistent topologies of the NUTs is the most prominent coherent trend. We show that the contributions of tree-like and net-like evolutionary processes substantially differ across bacterial and archaeal lineages and between functional classes of genes. Evolutionary simulations indicate that the central tree-like signal cannot be realistically explained by a self-reinforcing pattern of biased HGT.
doi:10.1093/gbe/evq062
PMCID: PMC2997564  PMID: 20889655
phylogenetic tree; horizontal gene transfer; species quartets; computer simulation
3.  Search for a 'Tree of Life' in the thicket of the phylogenetic forest 
Journal of Biology  2009;8(6):59.
Background
Comparative genomics has revealed extensive horizontal gene transfer among prokaryotes, a development that is often considered to undermine the 'tree of life' concept. However, the possibility remains that a statistical central trend still exists in the phylogenetic 'forest of life'.
Results
A comprehensive comparative analysis of a 'forest' of 6,901 phylogenetic trees for prokaryotic genes revealed a consistent phylogenetic signal, particularly among 102 nearly universal trees, despite high levels of topological inconsistency, probably due to horizontal gene transfer. Horizontal transfers seemed to be distributed randomly and did not obscure the central trend. The nearly universal trees were topologically similar to numerous other trees. Thus, the nearly universal trees might reflect a significant central tendency, although they cannot represent the forest completely. However, topological consistency was seen mostly at shallow tree depths and abruptly dropped at the level of the radiation of archaeal and bacterial phyla, suggesting that early phases of evolution could be non-tree-like (Biological Big Bang). Simulations of evolution under compressed cladogenesis or Biological Big Bang yielded a better fit to the observed dependence between tree inconsistency and phylogenetic depth for the compressed cladogenesis model.
Conclusions
Horizontal gene transfer is pervasive among prokaryotes: very few gene trees are fully consistent, making the original tree of life concept obsolete. A central trend that most probably represents vertical inheritance is discernible throughout the evolution of archaea and bacteria, although compressed cladogenesis complicates unambiguous resolution of the relationships between the major archaeal and bacterial clades.
doi:10.1186/jbiol159
PMCID: PMC2737373  PMID: 19594957
4.  Phylo SI: a new genome-wide approach for prokaryotic phylogeny 
Nucleic Acids Research  2013;42(4):2391-2404.
The evolutionary history of all life forms is usually represented as a vertical tree-like process. In prokaryotes, however, the vertical signal is partly obscured by the massive influence of horizontal gene transfer (HGT). The HGT creates widespread discordance between evolutionary histories of different genes as genomes become mosaics of gene histories. Thus, the Tree of Life (TOL) has been questioned as an appropriate representation of the evolution of prokaryotes. Nevertheless a common hypothesis is that prokaryotic evolution is primarily tree-like, and a routine effort is made to place new isolates in their appropriate location in the TOL. Moreover, it appears desirable to exploit non–tree-like evolutionary processes for the task of microbial classification. In this work, we present a novel technique that builds on the straightforward observation that gene order conservation (‘synteny’) decreases in time as a result of gene mobility. This is particularly true in prokaryotes, mainly due to HGT. Using a ‘synteny index’ (SI) that measures the average synteny between a pair of genomes, we developed the phylogenetic reconstruction tool ‘Phylo SI’. Phylo SI offers several attractive properties such as easy bootstrapping, high sensitivity in cases where phylogenetic signal is weak and computational efficiency. Phylo SI was tested both on simulated data and on two bacterial data sets and compared with two well-established phylogenetic methods. Phylo SI is particularly efficient on short evolutionary distances where synteny footprints remain detectable, whereas the nucleotide substitution signal is too weak for reliable sequence-based phylogenetic reconstruction. The method is publicly available at http://research.haifa.ac.il/ssagi/software/PhyloSI.zip.
doi:10.1093/nar/gkt1138
PMCID: PMC3936750  PMID: 24243847
5.  GENOME-WIDE COMPARATIVE ANALYSIS OF PHYLOGENETIC TREES: THE PROKARYOTIC FOREST OF LIFE 
Methods in molecular biology (Clifton, N.J.)  2012;856:10.1007/978-1-61779-585-5_3.
Genome-wide comparison of phylogenetic trees is becoming an increasingly common approach in evolutionary genomics, and a variety of approaches for such comparison have been developed. In this article we present several methods for comparative analysis of large numbers of phylogenetic trees. To compare phylogenetic trees taking into account the bootstrap support for each internal branch, the Boot-Split Distance (BSD) method is introduced as an extension of the previously developed Split Distance (SD) method for tree comparison. The BSD method implements the straightforward idea that comparison of phylogenetic trees can be made more robust by treating tree splits differentially depending on the bootstrap support. Approaches are also introduced for detecting tree-like and net-like evolutionary trends in the phylogenetic Forest of Life (FOL), i.e., the entirety of the phylogenetic trees for conserved genes of prokaryotes. The principal method employed for this purpose includes mapping quartets of species onto trees to calculate the support of each quartet topology and so to quantify the tree and net contributions to the distances between species. We describe the applications methods used to analyze the FOL and the results obtained with these methods. These results support the concept of the Tree of Life (TOL) as a central evolutionary trend in the FOL as opposed to the traditional view of the TOL as a ‘species tree’.
doi:10.1007/978-1-61779-585-5_3
PMCID: PMC3842619  PMID: 22399455
Forest of life; tree of life; phylogenomic methods; tree comparison; map of quartets
6.  The Cobweb of Life Revealed by Genome-Scale Estimates of Horizontal Gene Transfer 
PLoS Biology  2005;3(10):e316.
With the availability of increasing amounts of genomic sequences, it is becoming clear that genomes experience horizontal transfer and incorporation of genetic information. However, to what extent such horizontal gene transfer (HGT) affects the core genealogical history of organisms remains controversial. Based on initial analyses of complete genomic sequences, HGT has been suggested to be so widespread that it might be the “essence of phylogeny” and might leave the treelike form of genealogy in doubt. On the other hand, possible biased estimation of HGT extent and the findings of coherent phylogenetic patterns indicate that phylogeny of life is well represented by tree graphs. Here, we reexamine this question by assessing the extent of HGT among core orthologous genes using a novel statistical method based on statistical comparisons of tree topology. We apply the method to 40 microbial genomes in the Clusters of Orthologous Groups database over a curated set of 297 orthologous gene clusters, and we detect significant HGT events in 33 out of 297 clusters over a wide range of functional categories. Estimates of positions of HGT events suggest a low mean genome-specific rate of HGT (2.0%) among the orthologous genes, which is in general agreement with other quantitative of HGT. We propose that HGT events, even when relatively common, still leave the treelike history of phylogenies intact, much like cobwebs hanging from tree branches.
A stastical approach applied to 297 orthologous gene clusters in 40 microbial genomes suggests a low rate of interspecies gene transfer. Species relationships can therefore be modeled with a tree structure.
doi:10.1371/journal.pbio.0030316
PMCID: PMC1233574  PMID: 16122348
7.  HGT-Gen: a tool for generating a phylogenetic tree with horizontal gene transfer 
Bioinformation  2011;7(5):211-213.
Horizontal gene transfer (HGT) is a common event in prokaryotic evolution. Therefore, it is very important to consider HGT in the study of molecular evolution of prokaryotes. This is true also for conducting computer simulations of their molecular phylogeny because HGT is known to be a serious disturbing factor for estimating their correct phylogeny. To the best of our knowledge, no existing computer program has generated a phylogenetic tree with HGT from an original phylogenetic tree. We developed a program called HGT-Gen that generates a phylogenetic tree with HGT on the basis of an original phylogenetic tree of a protein or gene. HGT-Gen converts an operational taxonomic unit or a clade from one place to another in a given phylogenetic tree. We have also devised an algorithm to compute the average length between any pair of branches in the tree. It defines and computes the relative evolutionary time to normalize evolutionary time for each lineage. The algorithm can generate an HGT between a pair of donor and acceptor lineages at the same evolutionary time. HGT-Gen is used with a sequence-generating program to evaluate the influence of HGT on the molecular phylogeny of prokaryotes in a computer simulation study.
Availability
The database is available for free at http://www.grl.shizuoka.ac.jp/˜thoriike/HGT-Gen.html
PMCID: PMC3218414  PMID: 22125388
8.  metaTIGER: a metabolic evolution resource 
Nucleic Acids Research  2008;37(Database issue):D531-D538.
Metabolic networks are a subject that has received much attention, but existing web resources do not include extensive phylogenetic information. Phylogenomic approaches (phylogenetics on a genomic scale) have been shown to be effective in the study of evolution and processes like horizontal gene transfer (HGT). To address the lack of phylogenomic information relating to eukaryotic metabolism, metaTIGER (www.bioinformatics.leeds.ac.uk/metatiger) has been created, using genomic information from 121 eukaryotes and 404 prokaryotes and sensitive sequence search techniques to predict the presence of metabolic enzymes. These enzyme sequences were used to create a comprehensive database of 2257 maximum-likelihood phylogenetic trees, some containing over 500 organisms. The trees can be viewed using iTOL, an advanced interactive tree viewer, enabling straightforward interpretation of large trees. Complex high-throughput tree analysis is also available through user-defined queries, allowing the rapid identification of trees of interest, e.g. containing putative HGT events. metaTIGER also provides novel and easy-to-use facilities for viewing and comparing the metabolic networks in different organisms via highlighted pathway images and tables. metaTIGER is demonstrated through evolutionary analysis of Plasmodium, including identification of genes horizontally transferred from chlamydia.
doi:10.1093/nar/gkn826
PMCID: PMC2686446  PMID: 18953037
9.  Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life 
Horizontal gene transfer (HGT) is often considered to be a source of error in phylogenetic reconstruction, causing individual gene trees within an organismal lineage to be incongruent, obfuscating the ‘true’ evolutionary history. However, when identified as such, HGTs between divergent organismal lineages are useful, phylogenetically informative characters that can provide insight into evolutionary history. Here, we discuss several distinct HGT events involving all three domains of life, illustrating the selective advantages that can be conveyed via HGT, and the utility of HGT in aiding phylogenetic reconstruction and in dating the relative sequence of speciation events. We also discuss the role of HGT from extinct lineages, and its impact on our understanding of the evolution of life on Earth. Organismal phylogeny needs to incorporate reticulations; a simple tree does not provide an accurate depiction of the processes that have shaped life's history.
doi:10.1098/rstb.2009.0033
PMCID: PMC2873001  PMID: 19571243
horizontal gene transfer; chlamydiae; cyanobacteria; acetoclastic methanogenesis; pyrrolysine; extinct lineages
10.  Does a tree-like phylogeny only exist at the tips in the prokaryotes? 
The extent to which prokaryotic evolution has been influenced by horizontal gene transfer (HGT) and therefore might be more of a network than a tree is unclear. Here we use supertree methods to ask whether a definitive prokaryotic phylogenetic tree exists and whether it can be confidently inferred using orthologous genes. We analysed an 11-taxon dataset spanning the deepest divisions of prokaryotic relationships, a 10-taxon dataset spanning the relatively recent gamma-proteobacteria and a 61-taxon dataset spanning both, using species for which complete genomes are available. Congruence among gene trees spanning deep relationships is not better than random. By contrast, a strong, almost perfect phylogenetic signal exists in gamma-proteobacterial genes. Deep-level prokaryotic relationships are difficult to infer because of signal erosion, systematic bias, hidden paralogy and/or HGT. Our results do not preclude levels of HGT that would be inconsistent with the notion of a prokaryotic phylogeny. This approach will help decide the extent to which we can say that there is a prokaryotic phylogeny and where in the phylogeny a cohesive genomic signal exists.
doi:10.1098/rspb.2004.2864
PMCID: PMC1691901  PMID: 15615680
11.  Detecting lateral gene transfers by statistical reconciliation of phylogenetic forests 
BMC Bioinformatics  2010;11:324.
Background
To understand the evolutionary role of Lateral Gene Transfer (LGT), accurate methods are needed to identify transferred genes and infer their timing of acquisition. Phylogenetic methods are particularly promising for this purpose, but the reconciliation of a gene tree with a reference (species) tree is computationally hard. In addition, the application of these methods to real data raises the problem of sorting out real and artifactual phylogenetic conflict.
Results
We present Prunier, a new method for phylogenetic detection of LGT based on the search for a maximum statistical agreement forest (MSAF) between a gene tree and a reference tree. The program is flexible as it can use any definition of "agreement" among trees. We evaluate the performance of Prunier and two other programs (EEEP and RIATA-HGT) for their ability to detect transferred genes in realistic simulations where gene trees are reconstructed from sequences. Prunier proposes a single scenario that compares to the other methods in terms of sensitivity, but shows higher specificity. We show that LGT scenarios carry a strong signal about the position of the root of the species tree and could be used to identify the direction of evolutionary time on the species tree. We use Prunier on a biological dataset of 23 universal proteins and discuss their suitability for inferring the tree of life.
Conclusions
The ability of Prunier to take into account branch support in the process of reconciliation allows a gain in complexity, in comparison to EEEP, and in accuracy in comparison to RIATA-HGT. Prunier's greedy algorithm proposes a single scenario of LGT for a gene family, but its quality always compares to the best solutions provided by the other algorithms. When the root position is uncertain in the species tree, Prunier is able to infer a scenario per root at a limited additional computational cost and can easily run on large datasets.
Prunier is implemented in C++, using the Bio++ library and the phylogeny program Treefinder. It is available at: http://pbil.univ-lyon1.fr/software/prunier
doi:10.1186/1471-2105-11-324
PMCID: PMC2905365  PMID: 20550700
12.  Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network 
BMC Bioinformatics  2008;9:551.
Background
Phylogenetic methods are well-established bioinformatic tools for sequence analysis, allowing to describe the non-independencies of sequences because of their common ancestor. However, the evolutionary profiles of bacterial genes are often complicated by hidden paralogy and extensive and/or (multiple) horizontal gene transfer (HGT) events which make bifurcating trees often inappropriate. In this context, plasmid sequences are paradigms of network-like relationships characterizing the evolution of prokaryotes. Actually, they can be transferred among different organisms allowing the dissemination of novel functions, thus playing a pivotal role in prokaryotic evolution. However, the study of their evolutionary dynamics is complicated by the absence of universally shared genes, a prerequisite for phylogenetic analyses.
Results
To overcome such limitations we developed a bioinformatic package, named Blast2Network (B2N), allowing the automatic phylogenetic profiling and the visualization of homology relationships in a large number of plasmid sequences. The software was applied to the study of 47 completely sequenced plasmids coming from Escherichia, Salmonella and Shigella spps.
Conclusion
The tools implemented by B2N allow to describe and visualize in a new way some of the evolutionary features of plasmid molecules of Enterobacteriaceae; in particular it helped to shed some light on the complex history of Escherichia, Salmonella and Shigella plasmids and to focus on possible roles of unannotated proteins.
The proposed methodology is general enough to be used for comparative genomic analyses of bacteria.
doi:10.1186/1471-2105-9-551
PMCID: PMC2640388  PMID: 19099604
13.  The rhizome of life: what about metazoa? 
The increase in huge number of genomic sequences in recent years has contributed to various genetic events such as horizontal gene transfer (HGT), gene duplication and hybridization of species. Among them HGT has played an important role in the genome evolution and was believed to occur only in Bacterial and Archaeal genomes. As a result, genomes were found to be chimeric and the evolution of life was represented in different forms such as forests, networks and species evolution was described more like a rhizome, rather than a tree. However, in the last few years, HGT has also been evidenced in other group such as metazoa (for example in root-knot nematodes, bdelloid rotifers and mammals). In addition to HGT, other genetic events such as transfer by retrotransposons and hybridization between more closely related lineages are also well established. Therefore, in the light of such genetic events, whether the evolution of metazoa exists in the form of a tree, network or rhizome is highly questionable and needs to be determined. In the current review, we will focus on the role of HGT, retrotransposons and hybridization in the metazoan evolution.
doi:10.3389/fcimb.2012.00050
PMCID: PMC3417402  PMID: 22919641
tree of life; horizontal gene transfer; retrotransposons; hybridization; metazoa
14.  T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks 
Nucleic Acids Research  2012;40(Web Server issue):W573-W579.
T-REX (Tree and reticulogram REConstruction) is a web server dedicated to the reconstruction of phylogenetic trees, reticulation networks and to the inference of horizontal gene transfer (HGT) events. T-REX includes several popular bioinformatics applications such as MUSCLE, MAFFT, Neighbor Joining, NINJA, BioNJ, PhyML, RAxML, random phylogenetic tree generator and some well-known sequence-to-distance transformation models. It also comprises fast and effective methods for inferring phylogenetic trees from complete and incomplete distance matrices as well as for reconstructing reticulograms and HGT networks, including the detection and validation of complete and partial gene transfers, inference of consensus HGT scenarios and interactive HGT identification, developed by the authors. The included methods allows for validating and visualizing phylogenetic trees and networks which can be built from distance or sequence data. The web server is available at: www.trex.uqam.ca.
doi:10.1093/nar/gks485
PMCID: PMC3394261  PMID: 22675075
15.  Horizontal gene transfer dynamics and distribution of fitness effects during microbial in silico evolution 
BMC Bioinformatics  2012;13(Suppl 10):S13.
Background
Horizontal gene transfer (HGT) is a process that facilitates the transfer of genetic material between organisms that are not directly related, and thus can affect both the rate of evolution and emergence of traits. Recent phylogenetic studies reveal HGT events are likely ubiquitous in the Tree of Life. However, our knowledge of HGT's role in evolution and biological organization is very limited, mainly due to the lack of ancestral evolutionary signatures and the difficulty to observe complex evolutionary dynamics in a laboratory setting. Here, we utilize a multi-scale microbial evolution model to comprehensively study the effect of HGT on the evolution of complex traits and organization of gene regulatory networks.
Results
Large-scale simulations reveal a distinct signature of the Distribution of Fitness Effect (DFE) for HGT events: during evolution, while mutation fitness effects become more negative and neutral, HGT events result in a balanced effect distribution. In either case, lethal events are significantly decreased during evolution (33.0% to 3.2%), a clear indication of mutational robustness. Interestingly, evolution was accelerated when populations were exposed to correlated environments of increasing complexity, especially in the presence of HGT, a phenomenon that warrants further investigation. High HGT rates were found to be disruptive, while the average transferred fragment size was linked to functional module size in the underlying biological network. Network analysis reveals that HGT results in larger regulatory networks, but with the same sparsity level as those evolved in its absence. Observed phenotypic variability and co-existing solutions were traced to individual gain/loss of function events, while subsequent re-wiring after fragment integration was necessary for complex traits to emerge.
doi:10.1186/1471-2105-13-S10-S13
PMCID: PMC3382434  PMID: 22759418
16.  The fundamental units, processes and patterns of evolution, and the Tree of Life conundrum 
Biology Direct  2009;4:33.
Background
The elucidation of the dominant role of horizontal gene transfer (HGT) in the evolution of prokaryotes led to a severe crisis of the Tree of Life (TOL) concept and intense debates on this subject.
Concept
Prompted by the crisis of the TOL, we attempt to define the primary units and the fundamental patterns and processes of evolution. We posit that replication of the genetic material is the singular fundamental biological process and that replication with an error rate below a certain threshold both enables and necessitates evolution by drift and selection. Starting from this proposition, we outline a general concept of evolution that consists of three major precepts.
1. The primary agency of evolution consists of Fundamental Units of Evolution (FUEs), that is, units of genetic material that possess a substantial degree of evolutionary independence. The FUEs include both bona fide selfish elements such as viruses, viroids, transposons, and plasmids, which encode some of the information required for their own replication, and regular genes that possess quasi-independence owing to their distinct selective value that provides for their transfer between ensembles of FUEs (genomes) and preferential replication along with the rest of the recipient genome.
2. The history of replication of a genetic element without recombination is isomorphously represented by a directed tree graph (an arborescence, in the graph theory language). Recombination within a FUE is common between very closely related sequences where homologous recombination is feasible but becomes negligible for longer evolutionary distances. In contrast, shuffling of FUEs occurs at all evolutionary distances. Thus, a tree is a natural representation of the evolution of an individual FUE on the macro scale, but not of an ensemble of FUEs such as a genome.
3. The history of life is properly represented by the "forest" of evolutionary trees for individual FUEs (Forest of Life, or FOL). Search for trends and patterns in the FOL is a productive direction of study that leads to the delineation of ensembles of FUEs that evolve coherently for a certain time span owing to a shared history of vertical inheritance or horizontal gene transfer; these ensembles are commonly known as genomes, taxa, or clades, depending on the level of analysis. A small set of genes (the universal genetic core of life) might show a (mostly) coherent evolutionary trend that transcends the entire history of cellular life forms. However, it might not be useful to denote this trend "the tree of life", or organismal, or species tree because neither organisms nor species are fundamental units of life.
Conclusion
A logical analysis of the units and processes of biological evolution suggests that the natural fundamental unit of evolution is a FUE, that is, a genetic element with an independent evolutionary history. Evolution of a FUE on the macro scale is naturally represented by a tree. Only the full compendium of trees for individual FUEs (the FOL) is an adequate depiction of the evolution of life. Coherent evolution of FUEs over extended evolutionary intervals is a crucial aspect of the history of life but a "species" or "organismal" tree is not a fundamental concept.
Reviewers
This articles was reviewed by Valerian Dolja, W. Ford Doolittle, Nicholas Galtier, and William Martin
doi:10.1186/1745-6150-4-33
PMCID: PMC2761301  PMID: 19788730
17.  SPRIT: Identifying horizontal gene transfer in rooted phylogenetic trees 
Background
Phylogenetic trees based on sequences from a set of taxa can be incongruent due to horizontal gene transfer (HGT). By identifying the HGT events, we can reconcile the gene trees and derive a taxon tree that adequately represents the species' evolutionary history. One HGT can be represented by a rooted Subtree Prune and Regraft (RSPR) operation and the number of RSPRs separating two trees corresponds to the minimum number of HGT events. Identifying the minimum number of RSPRs separating two trees is NP-hard, but the problem can be reduced to fixed parameter tractable. A number of heuristic and two exact approaches to identifying the minimum number of RSPRs have been proposed. This is the first implementation delivering an exact solution as well as the intermediate trees connecting the input trees.
Results
We present the SPR Identification Tool (SPRIT), a novel algorithm that solves the fixed parameter tractable minimum RSPR problem and its GPL licensed Java implementation. The algorithm can be used in two ways, exhaustive search that guarantees the minimum RSPR distance and a heuristic approach that guarantees finding a solution, but not necessarily the minimum one. We benchmarked SPRIT against other software in two different settings, small to medium sized trees i.e. five to one hundred taxa and large trees i.e. thousands of taxa. In the small to medium tree size setting with random artificial incongruence, SPRIT's heuristic mode outperforms the other software by always delivering a solution with a low overestimation of the RSPR distance. In the large tree setting SPRIT compares well to the alternatives when benchmarked on finding a minimum solution within a reasonable time. SPRIT presents both the minimum RSPR distance and the intermediate trees.
Conclusions
When used in exhaustive search mode, SPRIT identifies the minimum number of RSPRs needed to reconcile two incongruent rooted trees. SPRIT also performs quick approximations of the minimum RSPR distance, which are comparable to, and often better than, purely heuristic solutions. Put together, SPRIT is an excellent tool for identification of HGT events and pinpointing which taxa have been involved in HGT.
doi:10.1186/1471-2148-10-42
PMCID: PMC2829038  PMID: 20152048
18.  Dealing with incongruence in phylogenomic analyses 
Incongruence between gene trees is the main challenge faced by phylogeneticists in the genomic era. Incongruence can occur for artefactual reasons, when we fail to recover the correct gene trees, or for biological reasons, when true gene trees are actually distinct from each other, and from the species tree. Horizontal gene transfers (HGTs) between genomes are an important process of bacterial evolution resulting in a substantial amount of phylogenetic conflicts between gene trees. We argue that the (bacterial) species tree is still a meaningful scientific concept even in the case of HGTs, and that reconstructing it is still a valid goal. We tentatively assess the amount of phylogenetic incongruence caused by HGTs in bacteria by comparing bacterial datasets to a metazoan dataset in which transfers are presumably very scarce or absent. We review existing phylogenomic methods and their ability to return to the user, both the vertical (speciation/extinction history) and horizontal (gene transfers) phylogenetic signals.
doi:10.1098/rstb.2008.0144
PMCID: PMC2607408  PMID: 18852109
horizontal gene transfer; phylogenomics; phylogenetic conflict; bacteria
19.  Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea 
The ISME Journal  2011;5(8):1291-1302.
The extent of horizontal gene transfer (HGT) among marine pelagic prokaryotes and the role that HGT may have played in their adaptation to this particular environment remain open questions. This is partly due to the paucity of cultured species and genomic information for many widespread groups of marine bacteria and archaea. Molecular studies have revealed a large diversity and relative abundance of marine planktonic archaea, in particular of Thaumarchaeota (also known as group I Crenarchaeota) and Euryarchaeota of groups II and III, but only one species (the thaumarchaeote Candidatus Nitrosopumilus maritimus) has been isolated in pure culture so far. Therefore, metagenomics remains the most powerful approach to study these environmental groups. To investigate the impact of HGT in marine archaea, we carried out detailed phylogenetic analyses of all open reading frames of 21 archaeal 16S rRNA gene-containing fosmids and, to extend our analysis to other genomic regions, also of fosmid-end sequences of 12 774 fosmids from three different deep-sea locations (South Atlantic and Adriatic Sea at 1000 m depth, and Ionian Sea at 3000 m depth). We found high HGT rates in both marine planktonic Thaumarchaeota and Euryarchaeota, with remarkable converging values estimated from complete-fosmid and fosmid-end sequence analysis (25 and 21% of the genes, respectively). Most HGTs came from bacterial donors (mainly from Proteobacteria, Firmicutes and Chloroflexi) but also from other archaea and eukaryotes. Phylogenetic analyses showed that in most cases HGTs are shared by several representatives of the studied groups, implying that they are ancient and have been conserved over relatively long evolutionary periods. This, together with the functions carried out by these acquired genes (mostly related to energy metabolism and transport of metabolites across membranes), suggests that HGT has played an important role in the adaptation of these archaea to the cold and nutrient-depleted deep marine environment.
doi:10.1038/ismej.2011.16
PMCID: PMC3146271  PMID: 21346789
Thaumarchaeota; marine Euryarchaeota; metagenomics; deep ocean; planktonic archaea; horizontal gene transfer
20.  Giant viruses, giant chimeras: The multiple evolutionary histories of Mimivirus genes 
Background
Although capable to evolve, viruses are generally considered non-living entities because they are acellular and devoid of metabolism. However, the recent publication of the genome sequence of the Mimivirus, a giant virus that parasitises amoebas, strengthened the idea that viruses should be included in the tree of life. In fact, the first phylogenetic analyses of a few Mimivirus genes that are also present in cellular lineages suggested that it could define an independent branch in the tree of life in addition to the three domains, Bacteria, Archaea and Eucarya.
Results
We tested this hypothesis by carrying out detailed phylogenetic analyses for all the conserved Mimivirus genes that have homologues in cellular organisms. We found no evidence supporting Mimivirus as a new branch in the tree of life. On the contrary, our phylogenetic trees strongly suggest that Mimivirus acquired most of these genes by horizontal gene transfer (HGT) either from its amoebal hosts or from bacteria that parasitise the same hosts. The detection of HGT events involving different eukaryotic donors suggests that the spectrum of hosts of Mimivirus may be larger than currently known.
Conclusion
The large number of genes acquired by Mimivirus from eukaryotic and bacterial sources suggests that HGT has been an important process in the evolution of its genome and the adaptation to parasitism.
doi:10.1186/1471-2148-8-12
PMCID: PMC2263039  PMID: 18205905
21.  Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes 
Background
Comparative analysis of sequenced genomes reveals numerous instances of apparent horizontal gene transfer (HGT), at least in prokaryotes, and indicates that lineage-specific gene loss might have been even more common in evolution. This complicates the notion of a species tree, which needs to be re-interpreted as a prevailing evolutionary trend, rather than the full depiction of evolution, and makes reconstruction of ancestral genomes a non-trivial task.
Results
We addressed the problem of constructing parsimonious scenarios for individual sets of orthologous genes given a species tree. The orthologous sets were taken from the database of Clusters of Orthologous Groups of proteins (COGs). We show that the phyletic patterns (patterns of presence-absence in completely sequenced genomes) of almost 90% of the COGs are inconsistent with the hypothetical species tree. Algorithms were developed to reconcile the phyletic patterns with the species tree by postulating gene loss, COG emergence and HGT (the latter two classes of events were collectively treated as gene gains). We prove that each of these algorithms produces a parsimonious evolutionary scenario, which can be represented as mapping of loss and gain events on the species tree. The distribution of the evolutionary events among the tree nodes substantially depends on the underlying assumptions of the reconciliation algorithm, e.g. whether or not independent gene gains (gain after loss after gain) are permitted. Biological considerations suggest that, on average, gene loss might be a more likely event than gene gain. Therefore different gain penalties were used and the resulting series of reconstructed gene sets for the last universal common ancestor (LUCA) of the extant life forms were analysed. The number of genes in the reconstructed LUCA gene sets grows as the gain penalty increases. However, qualitative examination of the LUCA versions reconstructed with different gain penalties indicates that, even with a gain penalty of 1 (equal weights assigned to a gain and a loss), the set of 572 genes assigned to LUCA might be nearly sufficient to sustain a functioning organism. Under this gain penalty value, the numbers of horizontal gene transfer and gene loss events are nearly identical. This result holds true for two alternative topologies of the species tree and even under random shuffling of the tree. Therefore, the results seem to be compatible with approximately equal likelihoods of HGT and gene loss in the evolution of prokaryotes.
Conclusions
The notion that gene loss and HGT are major aspects of prokaryotic evolution was supported by quantitative analysis of the mapping of the phyletic patterns of COGs onto a hypothetical species tree. Algorithms were developed for constructing parsimonious evolutionary scenarios, which include gene loss and gain events, for orthologous gene sets, given a species tree. This analysis shows, contrary to expectations, that the number of predicted HGT events that occurred during the evolution of prokaryotes might be approximately the same as the number of gene losses. The approach to the reconstruction of evolutionary scenarios employed here is conservative with regard to the detection of HGT because only patterns of gene presence-absence in sequenced genomes are taken into account. In reality, horizontal transfer might have contributed to the evolution of many other genes also, which makes it a dominant force in prokaryotic evolution.
doi:10.1186/1471-2148-3-2
PMCID: PMC149225  PMID: 12515582
22.  An automated approach for the identification of horizontal gene transfers from complete genomes reveals the rhizome of Rickettsiales 
Background
Horizontal gene transfer (HGT) is considered to be a major force driving the evolutionary history of prokaryotes. HGT is widespread in prokaryotes, contributing to the genomic repertoire of prokaryotic organisms, and is particularly apparent in Rickettsiales genomes. Gene gains from both distantly and closely related organisms play crucial roles in the evolution of bacterial genomes. In this work, we focus on genes transferred from distantly related species into Rickettsiales species.
Results
We developed an automated approach for the detection of HGT from other organisms (excluding alphaproteobacteria) into Rickettsiales genomes. Our systematic approach consisted of several specialized features including the application of a parsimony method for inferring phyletic patterns followed by blast filter, automated phylogenetic reconstruction and the application of patterns for HGT detection. We identified 42 instances of HGT in 31 complete Rickettsiales genomes, of which 38 were previously unidentified instances of HGT from Anaplasma, Wolbachia, Candidatus Pelagibacter ubique and Rickettsia genomes. Additionally, putative cases with no phylogenetic support were assigned gene ontology terms. Overall, these transfers could be characterized as “rhizome-like”.
Conclusions
Our analysis provides a comprehensive, systematic approach for the automated detection of HGTs from several complete proteome sequences that can be applied to detect instances of HGT within other genomes of interest.
doi:10.1186/1471-2148-12-243
PMCID: PMC3575314  PMID: 23234643
Horizontal gene transfer; Rickettsiales; Candidatus Pelagibacter ubique; Sympatry
23.  Being Pathogenic, Plastic, and Sexual while Living with a Nearly Minimal Bacterial Genome 
PLoS Genetics  2007;3(5):e75.
Mycoplasmas are commonly described as the simplest self-replicating organisms, whose evolution was mainly characterized by genome downsizing with a proposed evolutionary scenario similar to that of obligate intracellular bacteria such as insect endosymbionts. Thus far, analysis of mycoplasma genomes indicates a low level of horizontal gene transfer (HGT) implying that DNA acquisition is strongly limited in these minimal bacteria. In this study, the genome of the ruminant pathogen Mycoplasma agalactiae was sequenced. Comparative genomic data and phylogenetic tree reconstruction revealed that ∼18% of its small genome (877,438 bp) has undergone HGT with the phylogenetically distinct mycoides cluster, which is composed of significant ruminant pathogens. HGT involves genes often found as clusters, several of which encode lipoproteins that usually play an important role in mycoplasma–host interaction. A decayed form of a conjugative element also described in a member of the mycoides cluster was found in the M. agalactiae genome, suggesting that HGT may have occurred by mobilizing a related genetic element. The possibility of HGT events among other mycoplasmas was evaluated with the available sequenced genomes. Our data indicate marginal levels of HGT among Mycoplasma species except for those described above and, to a lesser extent, for those observed in between the two bird pathogens, M. gallisepticum and M. synoviae. This first description of large-scale HGT among mycoplasmas sharing the same ecological niche challenges the generally accepted evolutionary scenario in which gene loss is the main driving force of mycoplasma evolution. The latter clearly differs from that of other bacteria with small genomes, particularly obligate intracellular bacteria that are isolated within host cells. Consequently, mycoplasmas are not only able to subvert complex hosts but presumably have retained sexual competence, a trait that may prevent them from genome stasis and contribute to adaptation to new hosts.
Author Summary
Mycoplasmas are cell wall–lacking prokaryotes that evolved from ancestors common to Gram-positive bacteria by way of massive losses of genetic material. With their minimal genome, mycoplasmas are considered to be the simplest free-living organisms, yet several species are successful pathogens of man and animal. In this study, we challenged the commonly accepted view in which mycoplasma evolution is driven only by genome down-sizing. Indeed, we showed that a significant amount of genes underwent horizontal transfer among different mycoplasma species that share the same ruminant hosts. In these species, the occurrence of a genetic element that can promote DNA transfer via cell-to-cell contact suggests that some mycoplasmas may have retained or acquired sexual competence. Transferred genes were found to encode proteins that are likely to be associated with mycoplasma–host interactions. Sharing genetic resources via horizontal gene transfer may provide mycoplasmas with a means for adapting to new niches or to new hosts and for avoiding irreversible genome erosion.
doi:10.1371/journal.pgen.0030075
PMCID: PMC1868952  PMID: 17511520
24.  Being Pathogenic, Plastic, and Sexual while Living with a Nearly Minimal Bacterial Genome 
PLoS Genetics  2007;3(5):e75.
Mycoplasmas are commonly described as the simplest self-replicating organisms, whose evolution was mainly characterized by genome downsizing with a proposed evolutionary scenario similar to that of obligate intracellular bacteria such as insect endosymbionts. Thus far, analysis of mycoplasma genomes indicates a low level of horizontal gene transfer (HGT) implying that DNA acquisition is strongly limited in these minimal bacteria. In this study, the genome of the ruminant pathogen Mycoplasma agalactiae was sequenced. Comparative genomic data and phylogenetic tree reconstruction revealed that ∼18% of its small genome (877,438 bp) has undergone HGT with the phylogenetically distinct mycoides cluster, which is composed of significant ruminant pathogens. HGT involves genes often found as clusters, several of which encode lipoproteins that usually play an important role in mycoplasma–host interaction. A decayed form of a conjugative element also described in a member of the mycoides cluster was found in the M. agalactiae genome, suggesting that HGT may have occurred by mobilizing a related genetic element. The possibility of HGT events among other mycoplasmas was evaluated with the available sequenced genomes. Our data indicate marginal levels of HGT among Mycoplasma species except for those described above and, to a lesser extent, for those observed in between the two bird pathogens, M. gallisepticum and M. synoviae. This first description of large-scale HGT among mycoplasmas sharing the same ecological niche challenges the generally accepted evolutionary scenario in which gene loss is the main driving force of mycoplasma evolution. The latter clearly differs from that of other bacteria with small genomes, particularly obligate intracellular bacteria that are isolated within host cells. Consequently, mycoplasmas are not only able to subvert complex hosts but presumably have retained sexual competence, a trait that may prevent them from genome stasis and contribute to adaptation to new hosts.
Author Summary
Mycoplasmas are cell wall–lacking prokaryotes that evolved from ancestors common to Gram-positive bacteria by way of massive losses of genetic material. With their minimal genome, mycoplasmas are considered to be the simplest free-living organisms, yet several species are successful pathogens of man and animal. In this study, we challenged the commonly accepted view in which mycoplasma evolution is driven only by genome down-sizing. Indeed, we showed that a significant amount of genes underwent horizontal transfer among different mycoplasma species that share the same ruminant hosts. In these species, the occurrence of a genetic element that can promote DNA transfer via cell-to-cell contact suggests that some mycoplasmas may have retained or acquired sexual competence. Transferred genes were found to encode proteins that are likely to be associated with mycoplasma–host interactions. Sharing genetic resources via horizontal gene transfer may provide mycoplasmas with a means for adapting to new niches or to new hosts and for avoiding irreversible genome erosion.
doi:10.1371/journal.pgen.0030075
PMCID: PMC1868952  PMID: 17511520
25.  CysQ of Cryptosporidium parvum, a Protozoa, May Have Been Acquired from Bacteria by Horizontal Gene Transfer 
Genomics & Informatics  2012;10(1):9-15.
Horizontal gene transfer (HGT) is the movement of genetic material between kingdoms and is considered to play a positive role in adaptation. Cryptosporidium parvum is a parasitic protozoan that causes an infectious disease. Its genome sequencing reported 14 bacteria-like proteins in the nuclear genome. Among them, cgd2_1810, which has been annotated as CysQ, a sulfite synthesis pathway protein, is listed as one of the candidates of genes horizontally transferred from bacterial origin. In this report, we examined this issue using phylogenetic analysis. Our BLAST search showed that C. parvum CysQ protein had the highest similarity with that of proteobacteria. Analysis with NCBI's Conserved Domain Tree showed phylogenetic incongruence, in that C. parvum CysQ protein was located within a branch of proteobacteria in the cd01638 domain, a bacterial member of the inositol monophosphatase family. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the sulfate assimilation pathway, where CysQ plays an important role, is well conserved in most eukaryotes as well as prokaryotes. However, the Apicomplexa, including C. parvum, largely lack orthologous genes of the pathway, suggesting its loss in those protozoan lineages. Therefore, we conclude that C. parvum regained cysQ from proteobacteria by HGT, although its functional role is elusive.
doi:10.5808/GI.2012.10.1.9
PMCID: PMC3475487  PMID: 23105923
conserved domain; Cryptosporidium parvum; CysQ; horizontal gene transfer; phylogenetic tree; sulfur assimilation

Results 1-25 (644630)