Search tips
Search criteria

Results 1-25 (1128732)

Clipboard (0)

Related Articles

1.  Time-resolved synchrotron diffraction and theoretical studies of very short-lived photo-induced molecular species 
Excited-state geometries determined by time-resolved synchrotron diffraction are summarized with emphasis on their comparison with a series of theoretical results. The relative merits of monochromatic and polychromatic (Laue) techniques are discussed.
Definitive experimental results on the geometry of fleeting species are at the time of writing still limited to monochromatic data collection, but methods for modifications of the polychromatic Laue data to increase their accuracy and their suitability for pump–probe experiments have been implemented and are reviewed. In the monochromatic experiments summarized, excited-state conversion percentages are small when neat crystals are used, but are higher when photoactive species are embedded in an inert framework in supramolecular crystals. With polychromatic techniques and increasing source brightness, smaller samples down to tenths of a micrometre or less can be used, increasing homogeneity of exposure and the fractional population of the excited species. Experiments described include a series of transition metal complexes and a fully organic example involving excimer formation. In the final section, experimental findings are compared with those from theoretical calculations on the isolated species. Qualitative agreement is generally obtained, but the theoretical results are strongly dependent on the details of the calculation, indicating the need for further systematic analysis.
PMCID: PMC2824528  PMID: 20164641
pump–probe experiments; time-resolved diffraction; excited-state molecular geometries; excimers
2.  Restricted Photochemistry in the Molecular Solid State: Structural changes on Photoexcitation of Cu(I) Phenanthroline metal-to-ligand-charge-transfer (MLCT) complexes by Time-Resolved Diffraction 
The journal of physical chemistry. A  2012;116(13):3359-3365.
The excited state structure of [Cu(1)[(1,10-phenanthroline-N,N’) bis(triphenylphosphine)] cations in their crystalline [BF4] salt has been determined at both 180 and 90K by single-pulse time-resolved synchrotron experiments with the modified polychromatic Laue method. The two independent molecules in the crystal show distortions on MLCT excitation which differ in magnitude and direction, a difference attributed to a pronounced difference in the molecular environment of the two complexes. As the excited states differ, the decay of the emission is bi-exponential with two strongly different lifetimes, the longer lifetime, assigned to the more restricted molecule, becoming more prevalent as the temperature increases. Standard deviations in the current Laue study are very much lower than those achieved in a previous monochromatic study of a Cu(I) 2,9 dimethyl-phenanthroline substituted complex (J. Am. Chem. Soc. 2009, 131, 6566), but the magnitude of the shifts on excitation is similar, indicating that lattice restrictions dominate over the steric effect of the methyl substitution. Above all the study illustrates emphatically that molecules in solids have physical properties different from those of isolated molecules and that their properties depend on the specific molecular environment. This conclusion is relevant for the understanding of the properties of molecular solid state devices which are increasingly used in current technology.
PMCID: PMC3545449  PMID: 22385365
3.  The LaueUtil toolkit for Laue photocrystallography. I. Rapid orientation matrix determination for intermediate-size-unit-cell Laue data 
Journal of Applied Crystallography  2011;44(Pt 6):1182-1189.
A new method for determination of the orientation matrix of Laue X-ray data is presented. The method is based on matching of the patterns of central reciprocal lattice rows projected on a unit sphere centered on the origin of the reciprocal lattice of the Laue data set with the corresponding pattern of a monochromatic data set on the same material.
A new method for determination of the orientation matrix of Laue X-ray data is presented. The method is based on matching of the experimental patterns of central reciprocal lattice rows projected on a unit sphere centered on the origin of the reciprocal lattice with the corresponding pattern of a monochromatic data set on the same material. This technique is applied to the complete data set and thus eliminates problems often encountered when single frames with a limited number of peaks are to be used for orientation matrix determination. Application of the method to a series of Laue data sets on organometallic crystals is described. The corresponding program is available under a Mozilla Public License-like open-source license.
PMCID: PMC3246831  PMID: 22199400
LaueUtil; Laue photocrystallography; orientation matrix determination; computer programs
4.  Feasibility of one-shot-per-crystal structure determination using Laue diffraction 
Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals.
Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.
PMCID: PMC2803125  PMID: 20057043
Laue diffraction; microcrystallography; X-ray optics
5.  Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches 
Time-resolved structural studies of proteins have undergone several significant developments during the last decade. Recent developments using time-resolved X-ray methods, such as time-resolved Laue diffraction, low-temperature intermediate trapping, time-resolved wide-angle X-ray scattering and time-resolved X-ray absorption spectroscopy, are reviewed.
Proteins undergo conformational changes during their biological function. As such, a high-resolution structure of a protein’s resting conformation provides a starting point for elucidating its reaction mechanism, but provides no direct information concerning the protein’s conformational dynamics. Several X-ray methods have been developed to elucidate those conformational changes that occur during a protein’s reaction, including time-resolved Laue diffraction and intermediate trapping studies on three-dimensional protein crystals, and time-resolved wide-angle X-ray scattering and X-ray absorption studies on proteins in the solution phase. This review emphasizes the scope and limitations of these complementary experimental approaches when seeking to understand protein conformational dynamics. These methods are illustrated using a limited set of examples including myoglobin and haemoglobin in complex with carbon monoxide, the simple light-driven proton pump bacteriorhodopsin, and the superoxide scavenger superoxide reductase. In conclusion, likely future developments of these methods at synchrotron X-ray sources and the potential impact of emerging X-ray free-electron laser facilities are speculated upon.
PMCID: PMC2824530  PMID: 20164644
time-resolved diffraction; structural biology; protein structural dynamics; Laue diffraction; kinetic crystallography; WAXS; XAS
6.  Macromolecular neutron crystallography at the Protein Crystallography Station (PCS) 
The Protein Crystallography Station user facility at Los Alamos National Laboratory not only offers open access to a high-performance neutron beamline, but also actively supports and develops new methods in protein expression, deuteration, purification, robotic crystallization and the synthesis of substrates with stable isotopes and provides assistance with data-reduction and structure-refinement software and comprehensive neutron structure analysis.
The Protein Crystallography Station (PCS) at Los Alamos Neutron Science Center is a high-performance beamline that forms the core of a capability for neutron macromolecular structure and function determination. Neutron diffraction is a powerful technique for locating H atoms and can therefore provide unique information about how biological macro­molecules function and interact with each other and smaller molecules. Users of the PCS have access to neutron beam time, deuteration facilities, the expression of proteins and the synthesis of substrates with stable isotopes and also support for data reduction and structure analysis. The beamline exploits the pulsed nature of spallation neutrons and a large electronic detector in order to collect wavelength-resolved Laue patterns using all available neutrons in the white beam. The PCS user facility is described and highlights from the user program are presented.
PMCID: PMC2967422  PMID: 21041938
Protein Crystallography Station; neutron macromolecular crystallography; spallation neutron sources; deuteration; user support
7.  A preliminary neutron diffraction study of rasburicase, a recombinant urate oxidase enzyme, complexed with 8-azaxanthin 
Neutron diffraction data of hydrogenated recombinant urate oxidase enzyme (Rasburicase), complexed with a purine-type inhibitor 8-azaxanthin, was collected to 2.1 Å resolution from a crystal grown in D2O by careful control and optimization of crystallization conditions via knowledge of the phase diagram. Deuterium atoms were clearly seen in the neutron-scattering density map.
Crystallization and preliminary neutron diffraction measurements of rasburicase, a recombinant urate oxidase enzyme expressed by a genetically modified Saccharomyces cerevisiae strain, complexed with a purine-type inhibitor (8-­azaxanthin) are reported. Neutron Laue diffraction data were collected to 2.1 Å resolution using the LADI instrument from a crystal (grown in D2O) with volume 1.8 mm3. The aim of this neutron diffraction study is to determine the protonation states of the inhibitor and residues within the active site. This will lead to improved comprehension of the enzymatic mechanism of this important enzyme, which is used as a protein drug to reduce toxic uric acid accumulation during chemotherapy. This paper illustrates the high quality of the neutron diffraction data collected, which are suitable for high-resolution structural analysis. In comparison with other neutron protein crystallography studies to date in which a hydrogenated protein has been used, the volume of the crystal was relatively small and yet the data still extend to high resolution. Furthermore, urate oxidase has one of the largest primitive unit-cell volumes (space group I222, unit-cell parameters a = 80, b = 96, c = 106 Å) and molecular weights (135 kDa for the homotetramer) so far successfully studied with neutrons.
PMCID: PMC2197182  PMID: 16511330
urate oxidase; heavy water; phase diagram; neutron Laue diffraction
8.  A preliminary neutron diffraction study of γ-­chymotrypsin 
A 2.0 Å resolution neutron diffraction data set has been collected from a D2O-soaked γ-chymotrypsin crystal at low pH on the Institute Laue–Langevin LADI-III beamline.
The crystal preparation and preliminary neutron diffraction analysis of γ-­chymotrypsin are presented. Large hydrogenated crystals of γ-chymotrypsin were exchanged into deuterated buffer via vapor diffusion in a capillary and neutron Laue diffraction data were collected from the resulting crystal to 2.0 Å resolution on the LADI-III diffractometer at the Institut Laue–Langevin (ILL) at room temperature. The neutron structure of a well studied protein such as γ-­chymotrypsin, which is also amenable to ultrahigh-resolution X-ray crystallo­graphy, represents the first step in developing a model system for the study of H atoms in protein crystals.
PMCID: PMC2650460  PMID: 19255494
γ-chymotrypsin; neutron diffraction
9.  Three-dimensional electron crystallography of protein microcrystals 
eLife  2013;2:e01345.
We demonstrate that it is feasible to determine high-resolution protein structures by electron crystallography of three-dimensional crystals in an electron cryo-microscope (CryoEM). Lysozyme microcrystals were frozen on an electron microscopy grid, and electron diffraction data collected to 1.7 Å resolution. We developed a data collection protocol to collect a full-tilt series in electron diffraction to atomic resolution. A single tilt series contains up to 90 individual diffraction patterns collected from a single crystal with tilt angle increment of 0.1–1° and a total accumulated electron dose less than 10 electrons per angstrom squared. We indexed the data from three crystals and used them for structure determination of lysozyme by molecular replacement followed by crystallographic refinement to 2.9 Å resolution. This proof of principle paves the way for the implementation of a new technique, which we name ‘MicroED’, that may have wide applicability in structural biology.
eLife digest
X-ray crystallography has been used to work out the atomic structure of a large number of proteins. In a typical X-ray crystallography experiment, a beam of X-rays is directed at a protein crystal, which scatters some of the X-ray photons to produce a diffraction pattern. The crystal is then rotated through a small angle and another diffraction pattern is recorded. Finally, after this process has been repeated enough times, it is possible to work backwards from the diffraction patterns to figure out the structure of the protein.
The crystals used for X-ray crystallography must be large to withstand the damage caused by repeated exposure to the X-ray beam. However, some proteins do not form crystals at all, and others only form small crystals. It is possible to overcome this problem by using extremely short pulses of X-rays, but this requires a very large number of small crystals and ultrashort X-ray pulses are only available at a handful of research centers around the world. There is, therefore, a need for other approaches that can determine the structure of proteins that only form small crystals.
Electron crystallography is similar to X-ray crystallography in that a protein crystal scatters a beam to produce a diffraction pattern. However, the interactions between the electrons in the beam and the crystal are much stronger than those between the X-ray photons and the crystal. This means that meaningful amounts of data can be collected from much smaller crystals. However, it is normally only possible to collect one diffraction pattern from each crystal because of beam induced damage. Researchers have developed methods to merge the diffraction patterns produced by hundreds of small crystals, but to date these techniques have only worked with very thin two-dimensional crystals that contain only one layer of the protein of interest.
Now Shi et al. report a new approach to electron crystallography that works with very small three-dimensional crystals. Called MicroED, this technique involves placing the crystal in a transmission electron cryo-microscope, which is a fairly standard piece of equipment in many laboratories. The normal ‘low-dose’ electron beam in one of these microscopes would normally damage the crystal after a single diffraction pattern had been collected. However, Shi et al. realized that it was possible to obtain diffraction patterns without severely damaging the crystal if they dramatically reduced the normal low-dose electron beam. By reducing the electron dose by a factor of 200, it was possible to collect up to 90 diffraction patterns from the same, very small, three-dimensional crystal, and then—similar to what happens in X-ray crystallography—work backwards to figure out the structure of the protein. Shi et al. demonstrated the feasibility of the MicroED approach by using it to determine the structure of lysozyme, which is widely used as a test protein in crystallography, with a resolution of 2.9 Å. This proof-of principle study paves the way for crystallographers to study protein that cannot be studied with existing techniques.
PMCID: PMC3831942  PMID: 24252878
electron crystallography; electron diffraction; electron cryomicroscopy (cryo-EM); microED; protein structure; microcrystals; None
10.  The kinetic dose limit in room-temperature time-resolved macromolecular crystallography 
Journal of Synchrotron Radiation  2012;19(Pt 2):264-273.
The effect of the X-ray dose on room-temperature time-resolved Laue data is discussed.
Protein X-ray structures are determined with ionizing radiation that damages the protein at high X-ray doses. As a result, diffraction patterns deteriorate with the increased absorbed dose. Several strategies such as sample freezing or scavenging of X-ray-generated free radicals are currently employed to minimize this damage. However, little is known about how the absorbed X-ray dose affects time-resolved Laue data collected at physiological temperatures where the protein is fully functional in the crystal, and how the kinetic analysis of such data depends on the absorbed dose. Here, direct evidence for the impact of radiation damage on the function of a protein is presented using time-resolved macromolecular crystallography. The effect of radiation damage on the kinetic analysis of time-resolved X-ray data is also explored.
PMCID: PMC3284346  PMID: 22338689
radiation damage; X-ray dose; room temperature; time-resolved crystallography; Laue crystallography
11.  The RATIO method for time-resolved Laue crystallography 
Journal of Synchrotron Radiation  2009;16(Pt 2):226-230.
A RATIO method for analysis of intensity changes in time-resolved pump–probe Laue diffraction experiments is described.
A RATIO method for analysis of intensity changes in time-resolved pump–probe Laue diffraction experiments is described. The method eliminates the need for scaling the data with a wavelength curve representing the spectral distribution of the source and removes the effect of possible anisotropic absorption. It does not require relative scaling of series of frames and removes errors due to all but very short term fluctuations in the synchrotron beam.
PMCID: PMC2651764  PMID: 19240334
Laue diffraction; time-resolved diffraction; ratio method; data reduction
12.  Laue Crystal Structure of Shewanella oneidensis Cytochrome c Nitrite Reductase from a High-yield Expression System 
The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR), and its characterization by a variety of methods, notably Laue crystallography, is reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein “Small Tetra-heme c” replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated ~20 mg crude ccNiR/L culture, compared with 0.5–1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for E. coli ccNiR, and is stable for over two weeks in pH 7 solution at 4° C. UV/Vis spectropotentiometric titrations and protein film voltammetry identified 5 independent 1-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the 5 reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed amongst the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good quality crystals, with which the 2.59 Å resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein).
PMCID: PMC3412176  PMID: 22382353
Cytochrome c nitrite reductase; NrfA; Laue crystallography; UV/Vis spectropotentiometry; Protein film voltammetry
13.  Large crystal growth by thermal control allows combined X-ray and neutron crystallographic studies to elucidate the protonation states in Aspergillus flavus urate oxidase 
Journal of the Royal Society Interface  2009;6(Suppl 5):S599-S610.
Urate oxidase (Uox) catalyses the oxidation of urate to allantoin and is used to reduce toxic urate accumulation during chemotherapy. X-ray structures of Uox with various inhibitors have been determined and yet the detailed catalytic mechanism remains unclear. Neutron crystallography can provide complementary information to that from X-ray studies and allows direct determination of the protonation states of the active-site residues and substrate analogues, provided that large, well-ordered deuterated crystals can be grown. Here, we describe a method and apparatus used to grow large crystals of Uox (Aspergillus flavus) with its substrate analogues 8-azaxanthine and 9-methyl urate, and with the natural substrate urate, in the presence and absence of cyanide. High-resolution X-ray (1.05–1.20 Å) and neutron diffraction data (1.9–2.5 Å) have been collected for the Uox complexes at the European Synchrotron Radiation Facility and the Institut Laue-Langevin, respectively. In addition, room temperature X-ray data were also collected in preparation for joint X-ray and neutron refinement. Preliminary results indicate no major structural differences between crystals grown in H2O and D2O even though the crystallization process is affected. Moreover, initial nuclear scattering density maps reveal the proton positions clearly, eventually providing important information towards unravelling the mechanism of catalysis.
PMCID: PMC2843968  PMID: 19586953
urate oxidase; neutron and X-ray crystallography; crystal growth; phase diagram; H–D exchange; protonation states
14.  Preliminary neutron crystallographic study of human transthyretin 
Human transthyretin, a hormone-binding protein of high abundance in blood and cerebrospinal fluid, is intrinsically amyloidogenic. Preliminary results from a neutron diffraction analysis of this protein that may shed light on the mechanism of tetramer dissociation and successive fatal aggregation are presented.
Preliminary studies of perdeuterated crystals of human transthyretin (TTR) have been carried out using the LADI-III and D19 diffractometers at the Institut Laue–Langevin in Grenoble. The results demonstrate the feasibility of a full crystallographic analysis to a resolution of 2.0 Å using Laue diffraction and also illustrate the potential of using monochromatic instruments such as D19 for higher resolution studies where larger crystals having smaller unit cells are available. This study will yield important information on hydrogen bonding, amino-acid protonation states and hydration in the protein. Such information will be of general interest for an understanding of the factors that stabilize/destabilize TTR and for the design of ligands that may be used to counter TTR amyloid fibrillogenesis.
PMCID: PMC3212468  PMID: 22102249
transthyretin; TTR; amyloidosis; neutron crystallography; deuteration; perdeuteration
15.  Preliminary neutron crystallographic analysis of selectively CH3-protonated deuterated rubredoxin from Pyrococcus furiosus  
The crystallization and preliminary neutron crystallographic analysis of selectively CH3-protonated deuterated rubredoxin from P. furiosus is presented. This work represents the first reported use of selectively labeled material for phasing applications using neutron protein crystallography.
Neutron crystallography is used to locate H atoms in biological materials and can distinguish between negatively scattering hydrogen-substituted and positively scattering deuterium-substituted positions in isomorphous neutron structures. Recently, Hauptman & Langs (2003 ▶; Acta Cryst. A59, 250–254) have shown that neutron diffraction data can be used to solve macromolecular structures by direct methods and that solution is aided by the presence of negatively scattering H atoms in the structure. Selective-labeling protocols allow the design and production of H/D-labeled macromolecular structures in which the ratio of H to D atoms can be precisely controlled. Methyl selective-labeling protocols were applied to introduce (1H-δ methyl)-leucine and (1H-γ methyl)-valine into deuterated rubredoxin from Pyrococcus furiosus (PfRd). Here, the production, crystallization and preliminary neutron analysis of a selectively CH3-protonated deuterated PfRd sample, which provided a high-quality neutron data set that extended to 1.75 Å resolution using the new LADI-III instrument at the Institut Laue-Langevin, are reported. Preliminary analysis of neutron density maps allows unambiguous assignment of the positions of H atoms at the methyl groups of the valine and leucine residues in the otherwise deuterated rubredoxin structure.
PMCID: PMC2496865  PMID: 18540070
rubredoxin; deuteration; selective labeling; neutron diffraction
16.  Time-resolved Laue diffraction of excited species at atomic resolution: 100 ps single-pulse diffraction of the excited state of the organometallic complex Rh2(μ-PNP)2(PNP)2 ·BPh4 
The polychromatic Laue technique has been applied in 100 ps delay synchrotron pump–probe experiments of the triplet excited state of a Rh(I) dinuclear complex. The observed contraction of the Rh–Rh distance of 0.154 (13) Å is less than predicted by a series of theoretical calculations, a difference attributed to the constraining effect of the crystal lattice.
PMCID: PMC3129623  PMID: 21210070
17.  Neutron crystallography 
Neutron crystallography has had an important, but relatively small role in structural biology over the years. In this review of recently determined neutron structures, a theme emerges of a field currently expanding beyond its traditional boundaries, to address larger and more complex problems, with smaller samples and shorter data collection times, and employing more sophisticated structure determination and refinement methods. The origin of this transformation can be found in a number of advances including first, the development of neutron image-plates and quasi-Laue methods at nuclear reactor neutron sources and the development of time-of-flight Laue methods and electronic detectors at spallation neutron sources; second, new facilities and methods for sample perdeuteration and crystallization; third, new approaches and computational tools for structure determination.
PMCID: PMC2586829  PMID: 18656544
18.  Perdeuteration, purification, crystallization and preliminary neutron diffraction of an ocean pout type III antifreeze protein 
Perdeuterated type III antifreeze protein has been expressed, purified and crystallized. Preliminary neutron data collection showed diffraction to 1.85 Å resolution from a 0.13 mm3 crystal.
The highly homologous type III antifreeze protein (AFP) subfamily share the capability to inhibit ice growth at subzero temperatures. Extensive studies by X-­ray crystallography have been conducted, mostly on AFPs from polar fishes. Although interactions between a defined flat ice-binding surface and a particular lattice plane of an ice crystal have now been identified, the fine structural features underlying the antifreeze mechanism still remain unclear owing to the intrinsic difficulty in identifying H atoms using X-ray diffraction data alone. Here, successful perdeuteration (i.e. complete deuteration) for neutron crystallo­graphic studies of the North Atlantic ocean pout (Macrozoarces americanus) AFP in Escherichia coli high-density cell cultures is reported. The perdeuterated protein (AFP D) was expressed in inclusion bodies, refolded in deuterated buffer and purified by cation-exchange chromatography. Well shaped perdeuterated AFP D crystals have been grown in D2O by the sitting-drop method. Preliminary neutron Laue diffraction at 293 K using LADI-III at ILL showed that with a few exposures of 24 h a very low background and clear small spots up to a resolution of 1.85 Å were obtained using a ‘radically small’ perdeuterated AFP D crystal of dimensions 0.70 × 0.55 × 0.35 mm, corresponding to a volume of 0.13 mm3.
PMCID: PMC2664773  PMID: 19342793
type III antifreeze proteins; neutron diffraction; perdeuteration
19.  Incorporation of methyl-protonated valine and leucine residues into deuterated ocean pout type III antifreeze protein: expression, crystallization and preliminary neutron diffraction studies 
Deuterated type III antifreeze protein specifically hydrogen reverse-labelled in the methyl groups of leucine and valine residues has been expressed, purified and crystallized. Preliminary neutron data collection showed diffraction to 1.80 Å resolution from a 0.23 mm3 crystal.
Antifreeze proteins (AFPs) are found in different species from polar, alpine and subarctic regions, where they serve to inhibit ice-crystal growth by adsorption to ice surfaces. Recombinant North Atlantic ocean pout (Macrozoarces americanus) AFP has been used as a model protein to develop protocols for amino-acid-specific hydrogen reverse-labelling of methyl groups in leucine and valine residues using Escherichia coli high-density cell cultures supplemented with the amino-acid precursor α-ketoisovalerate. Here, the successful methyl protonation (methyl reverse-labelling) of leucine and valine residues in AFP is reported. Methyl-protonated AFP was expressed in inclusion bodies, refolded in deuterated buffer and purified by cation-exchange chromatography. Crystals were grown in D2O buffer by the sitting-drop method. Preliminary neutron Laue diffraction at 293 K using LADI-III at ILL showed in a few 24 h exposures a very low background and clear small spots up to a resolution of 1.80 Å from a crystal of dimensions 1.60 × 0.38 × 0.38 mm corresponding to a volume of 0.23 mm3.
PMCID: PMC2882765  PMID: 20516595
ocean pout type III antifreeze protein; neutron diffraction; reverse labelling; deuteration
20.  Inorganic pyrophosphatase crystals from Thermococcus thioreducens for X-ray and neutron diffraction 
Inorganic pyrophosphatase from T. thioreducans has been crystallized and the crystals were deemed to be suitable for both X-ray and neutron diffraction at room temperature.
Inorganic pyrophosphatase (IPPase) from the archaeon Thermococcus thioreducens was cloned, overexpressed in Escherichia coli, purified and crystallized in restricted geometry, resulting in large crystal volumes exceeding 5 mm3. IPPase is thermally stable and is able to resist denaturation at temperatures above 348 K. Owing to the high temperature tolerance of the enzyme, the protein was amenable to room-temperature manipulation at the level of protein preparation, crystallization and X-ray and neutron diffraction analyses. A complete synchrotron X-ray diffraction data set to 1.85 Å resolution was collected at room temperature from a single crystal of IPPase (monoclinic space group C2, unit-cell parameters a = 106.11, b = 95.46, c = 113.68 Å, α = γ = 90.0, β = 98.12°). As large-volume crystals of IPPase can be obtained, preliminary neutron diffraction tests were undertaken. Consequently, Laue diffraction images were obtained, with reflections observed to 2.1 Å resolution with I/σ(I) greater than 2.5. The preliminary crystallographic results reported here set in place future structure–function and mechanism studies of IPPase.
PMCID: PMC3509969  PMID: 23192028
inorganic pyrophosphatase; Thermococcus thioreducens; neutron diffraction
21.  Exploring ribozyme conformational changes with X-ray crystallography 
Methods (San Diego, Calif.)  2009;49(2):87-100.
Relating three-dimensional fold to function is a central challenge in RNA structural biology. Toward this goal, X-ray crystallography has long been considered the “gold standard” for structure determinations at atomic resolution, although NMR spectroscopy has become a powerhouse in this arena as well. In the area of dynamics, NMR remains the dominant technique to probe the magnitude and timescales of molecular motion. Although the latter area remains largely unassailable by conventional crystallographic methods, inroads have been made on proteins using Laue radiation on timescales of ms to ns. Proposed ‘fourth generation’ radiation sources, such as free-electron X-ray lasers, promise ps- to fs-timescale resolution, and credible evidence is emerging that supports the feasibility of single molecule imaging. At present however, the preponderance of RNA structural information has been derived from timescale and motion insensitive crystallographic techniques. Importantly, developments in computing, automation and high-flux synchrotron sources have propelled the rapidity of ‘conventional’ RNA crystal structure determinations to timeframes of hours once a suitable set of phases is obtained. With a sufficient number of crystal structures, it is possible to create a structural ensemble that can provide insight into global and local molecular motion characteristics that are relevant to biological function. Here we describe techniques to explore conformational changes in the hairpin ribozyme, a representative non-protein-coding RNA catalyst. The approaches discussed include: (i) construct choice and design using prior knowledge to improve X-ray diffraction; (ii) recognition of long-range conformational changes; and (iii) use of single-base or single-atom changes to create ensembles. The methods are broadly applicable to other RNA systems.
PMCID: PMC2782588  PMID: 19559088
RNA crystallography; ribozyme; crystallization; RNA structure; crystallographic ensembles; alternate conformation; long-range motion; fold and function; difference Fourier; non-protein-coding RNA
22.  Crystallization and preliminary crystallographic analysis of hygromycin B phosphotransferase from Escherichia coli  
The crystallization and preliminary X-ray studies of the aminoglycoside antibiotic-modifying enzyme hygromycin B phosphotransferase from E. coli are reported.
Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC converts hygromycin B to 7′′-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 Å and belongs to space group P3221, with unit-cell parameters a = b = 71.0, c = 125.0 Å. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein.
PMCID: PMC2335168  PMID: 17671368
aminoglycoside antibiotics; hygromycin B phosphotransferase; MAD; selenomethionine
23.  SHELXT – Integrated space-group and crystal-structure determination 
SHELXT automates routine small-molecule structure determination starting from single-crystal reflection data, the Laue group and a reasonable guess as to which elements might be present.
The new computer program SHELXT employs a novel dual-space algorithm to solve the phase problem for single-crystal reflection data expanded to the space group P1. Missing data are taken into account and the resolution extended if necessary. All space groups in the specified Laue group are tested to find which are consistent with the P1 phases. After applying the resulting origin shifts and space-group symmetry, the solutions are subject to further dual-space recycling followed by a peak search and summation of the electron density around each peak. Elements are assigned to give the best fit to the integrated peak densities and if necessary additional elements are considered. An isotropic refinement is followed for non-centrosymmetric space groups by the calculation of a Flack parameter and, if appropriate, inversion of the structure. The structure is assembled to maximize its connectivity and centred optimally in the unit cell. SHELXT has already solved many thousand structures with a high success rate, and is optimized for multiprocessor computers. It is, however, unsuitable for severely disordered and twinned structures because it is based on the assumption that the structure consists of atoms.
PMCID: PMC4283466  PMID: 25537383
Patterson superposition; direct methods; dual-space recycling; space-group determination; element assignment
24.  Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges 
X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today’s synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics.
PMCID: PMC3520507  PMID: 23021004
25.  A preliminary neutron crystallographic study of thaumatin 
Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin.
A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.
PMCID: PMC2376403  PMID: 18453706
thaumatin; neutron diffraction; sweet proteins

Results 1-25 (1128732)