# Related Articles

Background

Large-scale statistical analyses have become hallmarks of post-genomic era biological research due to advances in high-throughput assays and the integration of large biological databases. One accompanying issue is the simultaneous estimation of p-values for a large number of hypothesis tests. In many applications, a parametric assumption in the null distribution such as normality may be unreasonable, and resampling-based p-values are the preferred procedure for establishing statistical significance. Using resampling-based procedures for multiple testing is computationally intensive and typically requires large numbers of resamples.

Results

We present a new approach to more efficiently assign resamples (such as bootstrap samples or permutations) within a nonparametric multiple testing framework. We formulated a Bayesian-inspired approach to this problem, and devised an algorithm that adapts the assignment of resamples iteratively with negligible space and running time overhead. In two experimental studies, a breast cancer microarray dataset and a genome wide association study dataset for Parkinson's disease, we demonstrated that our differential allocation procedure is substantially more accurate compared to the traditional uniform resample allocation.

Conclusion

Our experiments demonstrate that using a more sophisticated allocation strategy can improve our inference for hypothesis testing without a drastic increase in the amount of computation on randomized data. Moreover, we gain more improvement in efficiency when the number of tests is large. R code for our algorithm and the shortcut method are available at .

doi:10.1186/1471-2105-10-198

PMCID: PMC2718927
PMID: 19558706

It is a common practice to use resampling methods such as the bootstrap for calculating the p-value for each test when performing large scale multiple testing. The precision of the bootstrap p-values and that of the false discovery rate (FDR) relies on the number of bootstraps used for testing each hypothesis. Clearly, the larger the number of bootstraps the better the precision. However, the required number of bootstraps can be computationally burdensome, and it multiplies the number of tests to be performed. Further adding to the computational challenge is that in some applications the calculation of the test statistic itself may require considerable computation time. As technology improves one can expect the dimension of the problem to increase as well. For instance, during the early days of microarray technology, the number of probes on a cDNA chip was less than 10,000. Now the Affymetrix chips come with over 50,000 probes per chip. Motivated by this important need, we developed a simple adaptive bootstrap methodology for large scale multiple testing, which reduces the total number of bootstrap calculations while ensuring the control of the FDR. The proposed algorithm results in a substantial reduction in the number of bootstrap samples. Based on a simulation study we found that, relative to the number of bootstraps required for the Benjamini-Hochberg (BH) procedure, the standard FDR methodology which was the proposed methodology achieved a very substantial reduction in the number of bootstraps. In some cases the new algorithm required as little as 1/6th the number of bootstraps as the conventional BH procedure. Thus, if the conventional BH procedure used 1,000 bootstraps, then the proposed method required only 160 bootstraps. This methodology has been implemented for time-course/dose-response data in our software, ORIOGEN, which is available from the authors upon request.

doi:10.2202/1544-6115.1360

PMCID: PMC2752392
PMID: 18384266

Background

A two-arm non-inferiority trial without a placebo is usually adopted to demonstrate that an experimental treatment is not worse than a reference treatment by a small pre-specified non-inferiority margin due to ethical concerns. Selection of the non-inferiority margin and establishment of assay sensitivity are two major issues in the design, analysis and interpretation for two-arm non-inferiority trials. Alternatively, a three-arm non-inferiority clinical trial including a placebo is usually conducted to assess the assay sensitivity and internal validity of a trial. Recently, some large-sample approaches have been developed to assess the non-inferiority of a new treatment based on the three-arm trial design. However, these methods behave badly with small sample sizes in the three arms. This manuscript aims to develop some reliable small-sample methods to test three-arm non-inferiority.

Methods

Saddlepoint approximation, exact and approximate unconditional, and bootstrap-resampling methods are developed to calculate p-values of the Wald-type, score and likelihood ratio tests. Simulation studies are conducted to evaluate their performance in terms of type I error rate and power.

Results

Our empirical results show that the saddlepoint approximation method generally behaves better than the asymptotic method based on the Wald-type test statistic. For small sample sizes, approximate unconditional and bootstrap-resampling methods based on the score test statistic perform better in the sense that their corresponding type I error rates are generally closer to the prespecified nominal level than those of other test procedures.

Conclusions

Both approximate unconditional and bootstrap-resampling test procedures based on the score test statistic are generally recommended for three-arm non-inferiority trials with binary outcomes.

doi:10.1186/1471-2288-14-134

PMCID: PMC4277823
PMID: 25524326

Approximate unconditional test; Bootstrap-resampling test; Non-inferiority trial; Rate difference; Saddlepoint approximation; Three-arm design

Background

Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed.

Results

We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server.

Conclusions

permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.

doi:10.1186/1471-2105-11-329

PMCID: PMC2910023
PMID: 20553619

Methods for the analysis of brain morphology, including voxel-based morphology and surface-based morphometries, have been used to detect associations between brain structure and covariates of interest, such as diagnosis, severity of disease, age, IQ, and genotype. The statistical analysis of morphometric measures usually involves two statistical procedures: 1) invoking a statistical model at each voxel (or point) on the surface of the brain or brain subregion, followed by mapping test statistics (e.g., t test) or their associated p values at each of those voxels; 2) correction for the multiple statistical tests conducted across all voxels on the surface of the brain region under investigation. We propose the use of new statistical methods for each of these procedures. We first use a heteroscedastic linear model to test the associations between the morphological measures at each voxel on the surface of the specified subregion (e.g., cortical or subcortical surfaces) and the covariates of interest. Moreover, we develop a robust test procedure that is based on a resampling method, called wild bootstrapping. This procedure assesses the statistical significance of the associations between a measure of given brain structure and the covariates of interest. The value of this robust test procedure lies in its computationally simplicity and in its applicability to a wide range of imaging data, including data from both anatomical and functional magnetic resonance imaging (fMRI). Simulation studies demonstrate that this robust test procedure can accurately control the family-wise error rate. We demonstrate the application of this robust test procedure to the detection of statistically significant differences in the morphology of the hippocampus over time across gender groups in a large sample of healthy subjects.

doi:10.1109/TMI.2007.897396

PMCID: PMC2367010
PMID: 17649909

Heteroscedastic linear model; hippocampus; multiple hypothesis test; permutation test; robust test procedure

Motivation: Resampling methods, such as permutation and bootstrap, have been widely used to generate an empirical distribution for assessing the statistical significance of a measurement. However, to obtain a very low P-value, a large size of resampling is required, where computing speed, memory and storage consumption become bottlenecks, and sometimes become impossible, even on a computer cluster.

Results: We have developed a multiple stage P-value calculating program called FastPval that can efficiently calculate very low (up to 10−9) P-values from a large number of resampled measurements. With only two input files and a few parameter settings from the users, the program can compute P-values from empirical distribution very efficiently, even on a personal computer. When tested on the order of 109 resampled data, our method only uses 52.94% the time used by the conventional method, implemented by standard quicksort and binary search algorithms, and consumes only 0.11% of the memory and storage. Furthermore, our method can be applied to extra large datasets that the conventional method fails to calculate. The accuracy of the method was tested on data generated from Normal, Poison and Gumbel distributions and was found to be no different from the exact ranking approach.

Availability: The FastPval executable file, the java GUI and source code, and the java web start server with example data and introduction, are available at http://wanglab.hku.hk/pvalue

Contact: junwen@hku.hk

Supplementary information: Supplementary data are available at Bioinformatics online and http://wanglab.hku.hk/pvalue/.

doi:10.1093/bioinformatics/btq540

PMCID: PMC2971576
PMID: 20861029

Background

Non-parametric bootstrapping is a widely-used statistical procedure for assessing confidence of model parameters based on the empirical distribution of the observed data [1] and, as such, it has become a common method for assessing tree confidence in phylogenetics [2]. Traditional non-parametric bootstrapping does not weigh each tree inferred from resampled (i.e., pseudo-replicated) sequences. Hence, the quality of these trees is not taken into account when computing bootstrap scores associated with the clades of the original phylogeny. As a consequence, traditionally, the trees with different bootstrap support or those providing a different fit to the corresponding pseudo-replicated sequences (the fit quality can be expressed through the LS, ML or parsimony score) contribute in the same way to the computation of the bootstrap support of the original phylogeny.

Results

In this article, we discuss the idea of applying weighted bootstrapping to phylogenetic reconstruction by weighting each phylogeny inferred from resampled sequences. Tree weights can be based either on the least-squares (LS) tree estimate or on the average secondary bootstrap score (SBS) associated with each resampled tree. Secondary bootstrapping consists of the estimation of bootstrap scores of the trees inferred from resampled data. The LS and SBS-based bootstrapping procedures were designed to take into account the quality of each "pseudo-replicated" phylogeny in the final tree estimation. A simulation study was carried out to evaluate the performances of the five weighting strategies which are as follows: LS and SBS-based bootstrapping, LS and SBS-based bootstrapping with data normalization and the traditional unweighted bootstrapping.

Conclusions

The simulations conducted with two real data sets and the five weighting strategies suggest that the SBS-based bootstrapping with the data normalization usually exhibits larger bootstrap scores and a higher robustness compared to the four other competing strategies, including the traditional bootstrapping. The high robustness of the normalized SBS could be particularly useful in situations where observed sequences have been affected by noise or have undergone massive insertion or deletion events. The results provided by the four other strategies were very similar regardless the noise level, thus also demonstrating the stability of the traditional bootstrapping method.

doi:10.1186/1471-2148-10-250

PMCID: PMC2939571
PMID: 20716358

Background

In eukaryotes, most DNA-binding proteins exert their action as members of large effector complexes. The presence of these complexes are revealed in high-throughput genome-wide assays by the co-occurrence of the binding sites of different complex components. Resampling tests are one route by which the statistical significance of apparent co-occurrence can be assessed.

Results

We have investigated two resampling approaches for evaluating the statistical significance of binding-site co-occurrence. The permutation test approach was found to yield overly favourable p-values while the independent resampling approach had the opposite effect and is of little use in practical terms. We have developed a new, pragmatically-devised hybrid approach that, when applied to the experimental results of an Polycomb/Trithorax study, yielded p-values consistent with the findings of that study. We extended our investigations to the FL method developed by Haiminen et al, which derives its null distribution from all binding sites within a dataset, and show that the p-value computed for a pair of factors by this method can depend on which other factors are included in that dataset. Both our hybrid method and the FL method appeared to yield plausible estimates of the statistical significance of co-occurrences although our hybrid method was more conservative when applied to the Polycomb/Trithorax dataset.

A high-performance parallelized implementation of the hybrid method is available.

Conclusions

We propose a new resampling-based co-occurrence significance test and demonstrate that it performs as well as or better than existing methods on a large experimentally-derived dataset. We believe it can be usefully applied to data from high-throughput genome-wide techniques such as ChIP-chip or DamID. The Cooccur package, which implements our approach, accompanies this paper.

doi:10.1186/1471-2105-11-359

PMCID: PMC2910723
PMID: 20591178

Sequential designs can be used to save computation time in implementing Monte Carlo hypothesis tests. The motivation is to stop resampling if the early resamples provide enough information on the significance of the p-value of the original Monte Carlo test. In this paper, we consider a sequential design called the B-value design proposed by Lan and Wittes and construct the sequential design bounding the resampling risk, the probability that the accept/reject decision is different from the decision from complete enumeration. For the B-value design whose exact implementation can be done by using the algorithm proposed in Fay, Kim and Hachey, we first compare the expected resample size for different designs with comparable resampling risk. We show that the B-value design has considerable savings in expected resample size compared to a fixed resample or simple curtailed design, and comparable expected resample size to the iterative push out design of Fay and Follmann. The B-value design is more practical than the iterative push out design in that it is tractable even for small values of resampling risk, which was a challenge with the iterative push out design. We also propose an approximate B-value design that can be constructed without using a specially developed software and provides analytic insights on the choice of parameter values in constructing the exact B-value design.

doi:10.1016/j.jspi.2010.01.003

PMCID: PMC2876353
PMID: 20514142

B-Value; Bootstrap; Permutation; Sequential Design; Approximation

Wavelet analysis is now frequently used to extract information from ecological and epidemiological time series. Statistical hypothesis tests are conducted on associated wavelet quantities to assess the likelihood that they are due to a random process. Such random processes represent null models and are generally based on synthetic data that share some statistical characteristics with the original time series. This allows the comparison of null statistics with those obtained from original time series. When creating synthetic datasets, different techniques of resampling result in different characteristics shared by the synthetic time series. Therefore, it becomes crucial to consider the impact of the resampling method on the results. We have addressed this point by comparing seven different statistical testing methods applied with different real and simulated data. Our results show that statistical assessment of periodic patterns is strongly affected by the choice of the resampling method, so two different resampling techniques could lead to two different conclusions about the same time series. Moreover, our results clearly show the inadequacy of resampling series generated by white noise and red noise that are nevertheless the methods currently used in the wide majority of wavelets applications. Our results highlight that the characteristics of a time series, namely its Fourier spectrum and autocorrelation, are important to consider when choosing the resampling technique. Results suggest that data-driven resampling methods should be used such as the hidden Markov model algorithm and the ‘beta-surrogate’ method.

doi:10.1098/rsif.2013.0585

PMCID: PMC3869155
PMID: 24284892

wavelet analysis; statistical testing; ecology; epidemiology

Combinatorial gene perturbations provide rich information for a systematic exploration of genetic interactions. Despite successful applications to bacteria and yeast, the scalability of this approach remains a major challenge for higher organisms such as humans. Here, we report a novel experimental and computational framework to efficiently address this challenge by limiting the ‘search space’ for important genetic interactions. We propose to integrate rich phenotypes of multiple single gene perturbations to robustly predict functional modules, which can subsequently be subjected to further experimental investigations such as combinatorial gene silencing. We present posterior association networks (PANs) to predict functional interactions between genes estimated using a Bayesian mixture modelling approach. The major advantage of this approach over conventional hypothesis tests is that prior knowledge can be incorporated to enhance predictive power. We demonstrate in a simulation study and on biological data, that integrating complementary information greatly improves prediction accuracy. To search for significant modules, we perform hierarchical clustering with multiscale bootstrap resampling. We demonstrate the power of the proposed methodologies in applications to Ewing's sarcoma and human adult stem cells using publicly available and custom generated data, respectively. In the former application, we identify a gene module including many confirmed and highly promising therapeutic targets. Genes in the module are also significantly overrepresented in signalling pathways that are known to be critical for proliferation of Ewing's sarcoma cells. In the latter application, we predict a functional network of chromatin factors controlling epidermal stem cell fate. Further examinations using ChIP-seq, ChIP-qPCR and RT-qPCR reveal that the basis of their genetic interactions may arise from transcriptional cross regulation. A Bioconductor package implementing PAN is freely available online at http://bioconductor.org/packages/release/bioc/html/PANR.html.

Author Summary

Synthetic genetic interactions estimated from combinatorial gene perturbation screens provide systematic insights into synergistic interactions of genes in a biological process. However, this approach lacks scalability for large-scale genetic interaction profiling in metazoan organisms such as humans. We contribute to this field by proposing a more scalable and affordable approach, which takes the advantage of multiple single gene perturbation data to predict coherent functional modules followed by genetic interaction investigation using combinatorial perturbations. We developed a versatile computational framework (PAN) to robustly predict functional interactions and search for significant functional modules from rich phenotyping screens of single gene perturbations under different conditions or from multiple cell lines. PAN features a Bayesian mixture model to assess statistical significance of functional associations, the capability to incorporate prior knowledge as well as a generalized approach to search for significant functional modules by multiscale bootstrap resampling. In applications to Ewing's sarcoma and human adult stem cells, we demonstrate the general applicability and prediction power of PAN to both public and custom generated screening data.

doi:10.1371/journal.pcbi.1002566

PMCID: PMC3386165
PMID: 22761558

Microarrays are widely used for examining differential gene expression, identifying single nucleotide polymorphisms, and detecting methylation loci. Multiple testing methods in microarray data analysis aim at controlling both Type I and Type II error rates; however, real microarray data do not always fit their distribution assumptions. Smyth's ubiquitous parametric method, for example, inadequately accommodates violations of normality assumptions, resulting in inflated Type I error rates. The Significance Analysis of Microarrays, another widely used microarray data analysis method, is based on a permutation test and is robust to non-normally distributed data; however, the Significance Analysis of Microarrays method fold change criteria are problematic, and can critically alter the conclusion of a study, as a result of compositional changes of the control data set in the analysis. We propose a novel approach, combining resampling with empirical Bayes methods: the Resampling-based empirical Bayes Methods. This approach not only reduces false discovery rates for non-normally distributed microarray data, but it is also impervious to fold change threshold since no control data set selection is needed. Through simulation studies, sensitivities, specificities, total rejections, and false discovery rates are compared across the Smyth's parametric method, the Significance Analysis of Microarrays, and the Resampling-based empirical Bayes Methods. Differences in false discovery rates controls between each approach are illustrated through a preterm delivery methylation study. The results show that the Resampling-based empirical Bayes Methods offer significantly higher specificity and lower false discovery rates compared to Smyth's parametric method when data are not normally distributed. The Resampling-based empirical Bayes Methods also offers higher statistical power than the Significance Analysis of Microarrays method when the proportion of significantly differentially expressed genes is large for both normally and non-normally distributed data. Finally, the Resampling-based empirical Bayes Methods are generalizable to next generation sequencing RNA-seq data analysis.

doi:10.1371/journal.pone.0080099

PMCID: PMC3842292
PMID: 24312198

Hoffman et al. [1] proposed an elegant resampling method for analyzing clustered binary data. The focus of their paper was to perform association tests on clustered binary data using within-cluster-resampling (WCR) method. Follmann et al. [2] extended Hoffman et al.’s procedure more generally with applicability to angular data, combining of p-values, testing of vectors of parameters, and Bayesian inference. Follmann et al. [2] termed their procedure multiple outputation because all “excess” data within each cluster is thrown out multiple times. Herein, we refer to this procedure as WCR-MO. For any statistical test to be useful for a particular design, it must be robust, have adequate power, and be easy to implement and flexible. WCR-MO can be easily extended to continuous data and is a computationally intensive but simple and highly flexible method. Considering family as a cluster, one can apply WCR to familial data in genetic studies. Using simulations, we evaluated WCR-MO’s robustness for analysis of a continuous trait in terms of type I error rates in genetic research. WCR-MO performed well at the 5% α-level. However, it provided inflated type I error rates for α-levels less than 5% implying the procedure is liberal and may not be ready for application to genetic studies where α levels used are typically much less than 0.05.

PMCID: PMC2907179
PMID: 20664749

Correlated residuals; WCR; Multiple Outputation; familial data; genetic research; Type I error

Pathway or gene set analysis has become an increasingly popular approach for analyzing high-throughput biological experiments such as microarray gene expression studies. The purpose of pathway analysis is to identify differentially expressed pathways associated with outcomes. Important challenges in pathway analysis are selecting a subset of genes contributing most to association with clinical phenotypes and conducting statistical tests of association for the pathways efficiently. We propose a two-stage analysis strategy: (1) extract latent variables representing activities within each pathway using a dimension reduction approach based on adaptive elastic-net sparse principal component analysis; (2) integrate the latent variables with the regression modeling framework to analyze studies with different types of outcomes such as binary, continuous or survival outcomes. Our proposed approach is computationally efficient. For each pathway, because the latent variables are estimated in an unsupervised fashion without using disease outcome information, in the sample label permutation testing procedure, the latent variables only need to be calculated once rather than for each permutation resample. Using both simulated and real datasets, we show our approach performed favorably when compared with five other currently available pathway testing methods.

doi:10.2202/1544-6115.1697

PMCID: PMC3215429
PMID: 23089825

gene expression; microarray; pathway analysis; sparse principal component analysis

With the development of high-throughput sequencing and genotyping technologies, the number of markers collected in genetic association studies is growing rapidly, increasing the importance of methods for correcting for multiple hypothesis testing. The permutation test is widely considered the gold standard for accurate multiple testing correction, but it is often computationally impractical for these large datasets. Recently, several studies proposed efficient alternative approaches to the permutation test based on the multivariate normal distribution (MVN). However, they cannot accurately correct for multiple testing in genome-wide association studies for two reasons. First, these methods require partitioning of the genome into many disjoint blocks and ignore all correlations between markers from different blocks. Second, the true null distribution of the test statistic often fails to follow the asymptotic distribution at the tails of the distribution. We propose an accurate and efficient method for multiple testing correction in genome-wide association studies—SLIDE. Our method accounts for all correlation within a sliding window and corrects for the departure of the true null distribution of the statistic from the asymptotic distribution. In simulations using the Wellcome Trust Case Control Consortium data, the error rate of SLIDE's corrected p-values is more than 20 times smaller than the error rate of the previous MVN-based methods' corrected p-values, while SLIDE is orders of magnitude faster than the permutation test and other competing methods. We also extend the MVN framework to the problem of estimating the statistical power of an association study with correlated markers and propose an efficient and accurate power estimation method SLIP. SLIP and SLIDE are available at http://slide.cs.ucla.edu.

Author Summary

In genome-wide association studies, it is important to account for the fact that a large number of genetic variants are tested in order to adequately control for false positives. The simplest way to correct for multiple hypothesis testing is the Bonferroni correction, which multiplies the p-values by the number of markers assuming the markers are independent. Since the markers are correlated due to linkage disequilibrium, this approach leads to a conservative estimate of false positives, thus adversely affecting statistical power. The permutation test is considered the gold standard for accurate multiple testing correction, but is often computationally impractical for large association studies. We propose a method that efficiently and accurately corrects for multiple hypotheses in genome-wide association studies by fully accounting for the local correlation structure between markers. Our method also corrects for the departure of the true distribution of test statistics from the asymptotic distribution, which dramatically improves the accuracy, particularly when many rare variants are included in the tests. Our method shows a near identical accuracy to permutation and shows greater computational efficiency than previously suggested methods. We also provide a method to accurately and efficiently estimate the statistical power of genome-wide association studies.

doi:10.1371/journal.pgen.1000456

PMCID: PMC2663787
PMID: 19381255

Resampling-based multiple testing procedures are widely used in genomic studies to identify differentially expressed genes and to conduct genome-wide association studies. However, the power and stability properties of these popular resampling-based multiple testing procedures have not been extensively evaluated. Our study focuses on investigating the power and stability of seven resampling-based multiple testing procedures frequently used in high-throughput data analysis for small sample size data through simulations and gene oncology examples. The bootstrap single-step minP procedure and the bootstrap step-down minP procedure perform the best among all tested procedures, when sample size is as small as 3 in each group and either familywise error rate or false discovery rate control is desired. When sample size increases to 12 and false discovery rate control is desired, the permutation maxT procedure and the permutation minP procedure perform best. Our results provide guidance for high-throughput data analysis when sample size is small.

doi:10.1155/2013/610297

PMCID: PMC3853148
PMID: 24348741

Objective

Develop fast sequential Bayesian inference for disease outbreak counts.

Introduction

Development of effective policy interventions to stem disease outbreaks requires knowledge of the current state of affairs, e.g. how many individuals are currently infected, a strain’s virulence, etc, as well as our uncertainty of these values. A Bayesian inferential approach provides this information, but at a computational expense. We develop a sequential Bayesian approach based on an epidemiological compartment model and noisy count observations of the transitions between compartments.

Methods

For simplicity, consider an SIR epidemiological compartment model where compartments exist for susceptible, infected, and recovered individuals. Transitions between compartments occur in discrete time with transitions numbers given by Poisson random variables, the tau-leaping approximation, whose means depend on the current compartment occupancy and some unknown fixed parameters, e.g. virulence. Binomial observations, with possible unknown sampling proportion, are made on these transitions.

The standard sequential Bayesian updating methodology is sequential Monte Carlo (SMC), a.k.a. particle filtering. The original bootstrap filter is effective when the system has no fixed parameters, but exhibits marked degeneracy otherwise [1]. An approach based on resampling the fixed parameters from a kernel density estimate provides a generic approach with less degeneracy [2].

We build methodology based on a particle learning framework [3]. In this framework, each particle carries a set of parameter-specific sufficient statistics and samples parameter values whenever necessary. In addition, the methodology promotes a resample-move approach based on the predictive likelihood that reduces degeneracy in the first place.

An improvement on the particle learning framework in this model is that some fixed parameters can be integrated out of the predictive likelihood. This Rao-Blackwellization provides an SMC methodology with reduced Monte Carlo variance.

Results

For a fixed number of particles or computational expense, we show improvements in accuracy relative to the kernel density approach and an alternative approach based on sufficient statistics [4] where compared with a gold-standard Markov chain Monte Carlo analysis.

Conclusions

Many surveillance systems collect counts of adverse events related to some disease. These counts are expected to be a fraction of the true underlying disease extent. The methodology developed here allows a fully Bayesian analysis that uncovers the true number of infected individuals as well as disease virulence based on these count data. This statistical approach can be combined with an optimal policy map to help public health officials react effectively to initial disease reports.

PMCID: PMC3692928

surveillance; Bayesian; sequential Monte Carlo; particle learning

When designing programs or software for the implementation of Monte Carlo (MC) hypothesis tests, we can save computation time by using sequential stopping boundaries. Such boundaries imply stopping resampling after relatively few replications if the early replications indicate a very large or very small p-value. We study a truncated sequential probability ratio test (SPRT) boundary and provide a tractable algorithm to implement it. We review two properties desired of any MC p-value, the validity of the p-value and a small resampling risk, where resampling risk is the probability that the accept/reject decision will be different than the decision from complete enumeration. We show how the algorithm can be used to calculate a valid p-value and confidence intervals for any truncated SPRT boundary. We show that a class of SPRT boundaries is minimax with respect to resampling risk and recommend a truncated version of boundaries in that class by comparing their resampling risk (RR) to the RR of fixed boundaries with the same maximum resample size. We study the lack of validity of some simple estimators of p-values and offer a new simple valid p-value for the recommended truncated SPRT boundary. We explore the use of these methods in a practical example and provide the MChtest R package to perform the methods.

doi:10.1198/106186007X257025

PMCID: PMC2467508
PMID: 18633453

Bootstrap; B-value; Permutation; Resampling Risk; Sequential Design; Sequential Probability Ratio Test

Summary

The Joint United Nations Programme on HIV/AIDS (UNAIDS) has decided to use Bayesian melding as the basis for its probabilistic projections of HIV prevalence in countries with generalized epidemics. This combines a mechanistic epidemiological model, prevalence data and expert opinion. Initially, the posterior distribution was approximated by sampling-importance-resampling, which is simple to implement, easy to interpret, transparent to users and gave acceptable results for most countries. For some countries, however, this is not computationally efficient because the posterior distribution tends to be concentrated around nonlinear ridges and can also be multimodal. We propose instead Incremental Mixture Importance Sampling (IMIS), which iteratively builds up a better importance sampling function. This retains the simplicity and transparency of sampling importance resampling, but is much more efficient computationally. It also leads to a simple estimator of the integrated likelihood that is the basis for Bayesian model comparison and model averaging. In simulation experiments and on real data it outperformed both sampling importance resampling and three publicly available generic Markov chain Monte Carlo algorithms for this kind of problem.

doi:10.1111/j.1541-0420.2010.01399.x

PMCID: PMC2925068
PMID: 20222935

Bayesian melding; Bayesian model selection; Bayesian model averaging; Epidemio-logical model; Integrated likelihood; Markov chain Monte Carlo; Prevalence; Sampling importance resampling; Susceptible infected removed model

Background

Time-course microarray experiments are widely used to study the temporal profiles of gene expression. Storey et al. (2005) developed a method for analyzing time-course microarray studies that can be applied to discovering genes whose expression trajectories change over time within a single biological group, or those that follow different time trajectories among multiple groups. They estimated the expression trajectories of each gene using natural cubic splines under the null (no time-course) and alternative (time-course) hypotheses, and used a goodness of fit test statistic to quantify the discrepancy. The null distribution of the statistic was approximated through a bootstrap method. Gene expression levels in microarray data are often complicatedly correlated. An accurate type I error control adjusting for multiple testing requires the joint null distribution of test statistics for a large number of genes. For this purpose, permutation methods have been widely used because of computational ease and their intuitive interpretation.

Results

In this paper, we propose a permutation-based multiple testing procedure based on the test statistic used by Storey et al. (2005). We also propose an efficient computation algorithm. Extensive simulations are conducted to investigate the performance of the permutation-based multiple testing procedure. The application of the proposed method is illustrated using the Caenorhabditis elegans dauer developmental data.

Conclusion

Our method is computationally efficient and applicable for identifying genes whose expression levels are time-dependent in a single biological group and for identifying the genes for which the time-profile depends on the group in a multi-group setting.

doi:10.1186/1471-2105-10-336

PMCID: PMC2772858
PMID: 19832992

Large, family-based imaging studies can provide a better understanding of the interactions of environmental and genetic influences on brain structure and function. The interpretation of imaging data from large family studies, however, has been hindered by the paucity of well-developed statistical tools for that permit the analysis of complex imaging data together with behavioral and clinical data. In this paper, we propose to use two methods for these analyses. First, a variance components model along with score statistics is used to test linear hypotheses of unknown parameters, such as the associations of brain measures (e.g., cortical and subcortical surfaces) with their potential genetic determinants. Second, we develop a test procedure based on a resampling method to assess simultaneously the statistical significance of linear hypotheses across the entire brain. The value of these methods lies in their computational simplicity and in their applicability to a wide range of imaging data. Simulation studies show that our test procedure can accurately control the family-wise error rate. We apply our methods to the detection of statistical significance of gender-by-age interactions and of the effects of genetic variation on the thickness of the cerebral cortex in a family study of major depressive disorder.

PMCID: PMC3018831
PMID: 21234282

Cortical thickness; Linear hypothesis; Morphology; Resampling method; Variance components model

Reference intervals (RI) play a key role in clinical interpretation of laboratory test results. Numerous articles are devoted to analyzing and discussing various methods of RI determination. The two most widely used approaches are the parametric method, which assumes data normality, and a nonparametric, rank-based procedure. The decision about which method to use is usually made arbitrarily. The goal of this study was to demonstrate that using a resampling approach for the comparison of RI determination techniques could help researchers select the right procedure. Three methods of RI calculation—parametric, transformed parametric, and quantile-based bootstrapping—were applied to multiple random samples drawn from 81 values of complement factor B observations and from a computer-simulated normally distributed population. It was shown that differences in RI between legitimate methods could be up to 20% and even more. The transformed parametric method was found to be the best method for the calculation of RI of non-normally distributed factor B estimations, producing an unbiased RI and the lowest confidence limits and interquartile ranges. For a simulated Gaussian population, parametric calculations, as expected, were the best; quantile-based bootstrapping produced biased results at low sample sizes, and the transformed parametric method generated heavily biased RI. The resampling approach could help compare different RI calculation methods. An algorithm showing a resampling procedure for choosing the appropriate method for RI calculations is included.

doi:10.1128/CVI.00112-10

PMCID: PMC2916257
PMID: 20554803

In gene mapping, it is common to test for association between the phenotype and the genotype at a large number of loci, i.e., the same response variable is used repeatedly to test a large number of non-independent and non-nested hypotheses. In many of these genetic problems, the underlying model is a mixed model consistent of one or very few major genes concurrently with a genetic background effect, usually thought as of polygenic nature and, consequently, modeled through a random effects term with a well-defined covariance structure dependent upon the kinship between individuals. Either because the interest lies only on the major genes or to simplify the analysis, it is habitual to drop the random effects term and use a simple linear regression model, sometimes complemented with testing via resampling as an attempt to minimize the consequences of this practice. Here, it is shown that dropping the random effects term has not only extreme negative effects on the control of the type I error rate, but it is also unlikely to be fixed by resampling because, whenever the mixed model is correct, this practice does not allow to meet some basic requirements of resampling in a gene mapping context. Furthermore, simulations show that the type I error rates when the random term is ignored can be unacceptably high. As an alternative, this paper introduces a new bootstrap procedure to handle the specific case of mapping by using recombinant congenic strains under a linear mixed model. A simulation study showed that the type I error rates of the proposed procedure are very close to the nominal ones, although they tend to be slightly inflated for larger values of the random effects variance. Overall, this paper illustrates the extent of the adverse consequences of ignoring random effects term due to polygenic factors while testing for genetic linkage and warns us of potential modeling issues whenever simple linear regression for a major gene yields multiple significant linkage peaks.

doi:10.3389/fgene.2014.00068

PMCID: PMC3980105
PMID: 24765102

misspecified genetic models; bootstrapping mixed models; recombinant congenic strains; ignoring random effects; mapping quantitative trait loci

Background

Hierarchical clustering is a widely applied tool in the analysis of microarray gene expression data. The assessment of cluster stability is a major challenge in clustering procedures. Statistical methods are required to distinguish between real and random clusters. Several methods for assessing cluster stability have been published, including resampling methods such as the bootstrap.

We propose a new resampling method based on continuous weights to assess the stability of clusters in hierarchical clustering. While in bootstrapping approximately one third of the original items is lost, continuous weights avoid zero elements and instead allow non integer diagonal elements, which leads to retention of the full dimensionality of space, i.e. each variable of the original data set is represented in the resampling sample.

Results

Comparison of continuous weights and bootstrapping using real datasets and simulation studies reveals the advantage of continuous weights especially when the dataset has only few observations, few differentially expressed genes and the fold change of differentially expressed genes is low.

Conclusion

We recommend the use of continuous weights in small as well as in large datasets, because according to our results they produce at least the same results as conventional bootstrapping and in some cases they surpass it.

doi:10.1186/1471-2105-9-42

PMCID: PMC2265265
PMID: 18218074

Background

In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared to predictions based on a model fitted via unpenalized maximum likelihood. Since some coefficients are set to zero, parsimony is achieved as well. It is unclear whether the performance of a model fitted using the lasso still shows some optimism. Bootstrap methods have been advocated to quantify optimism and generalize model performance to new subjects. It is unclear how resampling should be performed in the presence of multiply imputed data.

Method

The data were based on a cohort of Chronic Obstructive Pulmonary Disease patients. We constructed models to predict Chronic Respiratory Questionnaire dyspnea 6 months ahead. Optimism of the lasso model was investigated by comparing 4 approaches of handling multiply imputed data in the bootstrap procedure, using the study data and simulated data sets. In the first 3 approaches, data sets that had been completed via multiple imputation (MI) were resampled, while the fourth approach resampled the incomplete data set and then performed MI.

Results

The discriminative model performance of the lasso was optimistic. There was suboptimal calibration due to over-shrinkage. The estimate of optimism was sensitive to the choice of handling imputed data in the bootstrap resampling procedure. Resampling the completed data sets underestimates optimism, especially if, within a bootstrap step, selected individuals differ over the imputed data sets. Incorporating the MI procedure in the validation yields estimates of optimism that are closer to the true value, albeit slightly too larger.

Conclusion

Performance of prognostic models constructed using the lasso technique can be optimistic as well. Results of the internal validation are sensitive to how bootstrap resampling is performed.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2288-14-116) contains supplementary material, which is available to authorized users.

doi:10.1186/1471-2288-14-116

PMCID: PMC4209042
PMID: 25323009

Clinical prediction models; Model validation; Multiple imputation; Quality of life; Shrinkage