PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1343120)

Clipboard (0)
None

Related Articles

1.  Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks 
PLoS Genetics  2012;8(1):e1002440.
Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells.
Author Summary
In mammals, germ-cell–specific methylation patterns and genomic imprints are established throughout large-scale de novo DNA methylation in oogenesis and spermatogenesis. These steps are required for normal germline differentiation and embryonic development; however, current DNA methylation analyses only provide us a partial picture of germ cell methylome. To the best of our knowledge, this is the first study to generate comprehensive maps of DNA methylomes and transcriptomes at single base resolution for mouse germ cells. These methylome maps revealed genome-wide opposing DNA methylation patterns and differential correlation between methylation and gene expression levels in oocyte and sperm genomes. In addition, our results indicate the presence of 2 types of methylation patterns in the oocytes: (i) methylation across the transcribed regions, which might be required for the establishment of maternal methylation imprints and normal embryogenesis, and (ii) retroviral methylation, which might be essential for silencing of retrotransposons and normal oogenesis. We believe that an extension of this work would lead to a better understanding of the epigenetic reprogramming in germline cells and of the role for gene regulations.
doi:10.1371/journal.pgen.1002440
PMCID: PMC3252278  PMID: 22242016
2.  Passive and active DNA methylation and the interplay with genetic variation in gene regulation 
eLife  2013;2:e00523.
DNA methylation is an essential epigenetic mark whose role in gene regulation and its dependency on genomic sequence and environment are not fully understood. In this study we provide novel insights into the mechanistic relationships between genetic variation, DNA methylation and transcriptome sequencing data in three different cell-types of the GenCord human population cohort. We find that the association between DNA methylation and gene expression variation among individuals are likely due to different mechanisms from those establishing methylation-expression patterns during differentiation. Furthermore, cell-type differential DNA methylation may delineate a platform in which local inter-individual changes may respond to or act in gene regulation. We show that unlike genetic regulatory variation, DNA methylation alone does not significantly drive allele specific expression. Finally, inferred mechanistic relationships using genetic variation as well as correlations with TF abundance reveal both a passive and active role of DNA methylation to regulatory interactions influencing gene expression.
DOI: http://dx.doi.org/10.7554/eLife.00523.001
eLife digest
Variations occur throughout our genome. These variations can cause genes to be expressed (switched on) in slightly different ways among individuals. Moreover, the same gene can also be expressed in different ways in different cells within an individual. A third level of variation is supplied by epigenetic markers: these are molecules that bind to the DNA at specific points and can have profound effects on the expression of nearby genes. One such epigenetic marker is the addition of a methyl group to a cytosine base, a process that is known as DNA methylation.
DNA methylation usually happens when a cytosine base is next to a guanine base, forming a CpG site. In mammals, most CpG sites have methyl groups attached, although regions with a lot of CpG sites (called CpG islands) are mostly unmethylated. Initial studies suggested that methylation prevented particular genes from being expressed, but more recent work has indicated that methylation can be associated with both reduced and increased expression of genes. Moreover, it is not clear if this association is active (i.e., changes in methylation drive changes in gene expression) or passive (DNA methylation is the result of gene regulation).
Now, Gutierrez-Arcelus et al. have carried out a large-scale study to clarify the relationships between three different types of gene-related variations among individuals. They extracted fibroblasts, T-cells and lymphoblastoid cells from the umbilical cords of 204 babies, and analysed them for variations in DNA sequence, gene expression and DNA methylation. Their results show that the associations between the three are more complex than was previously thought.
Gutierrez-Arcelus et al. show that the mechanisms that control the association between the variations in DNA methylation and gene expression in individuals are likely to be different to those that are responsible for the establishment of methylation patterns during the process of cell differentiation. They also find that the association between DNA methylation and gene expression can be either active or passive, and can depend on the context in which they occur in our genome. Finally, where the two copies or alleles of a gene are not equally expressed in a given cell, the difference in expression is primarily regulated by DNA sequence variation, with DNA methylation having little or no role on its own. Equally complex interactions and effects are expected in further studies of genetic and epigenetic variation.
DOI: http://dx.doi.org/10.7554/eLife.00523.002
doi:10.7554/eLife.00523
PMCID: PMC3673336  PMID: 23755361
methylation; gene regulation; epigenetics; genome variation; Human
3.  Transcription Factor Occupancy Can Mediate Active Turnover of DNA Methylation at Regulatory Regions 
PLoS Genetics  2013;9(12):e1003994.
Distal regulatory elements, including enhancers, play a critical role in regulating gene activity. Transcription factor binding to these elements correlates with Low Methylated Regions (LMRs) in a process that is poorly understood. Here we ask whether and how actual occupancy of DNA-binding factors is linked to DNA methylation at the level of individual molecules. Using CTCF as an example, we observe that frequency of binding correlates with the likelihood of a demethylated state and sites of low occupancy display heterogeneous DNA methylation within the CTCF motif. In line with a dynamic model of binding and DNA methylation turnover, we find that 5-hydroxymethylcytosine (5hmC), formed as an intermediate state of active demethylation, is enriched at LMRs in stem and somatic cells. Moreover, a significant fraction of changes in 5hmC during differentiation occurs at these regions, suggesting that transcription factor activity could be a key driver for active demethylation. Since deletion of CTCF is lethal for embryonic stem cells, we used genetic deletion of REST as another DNA-binding factor implicated in LMR formation to test this hypothesis. The absence of REST leads to a decrease of hydroxymethylation and a concomitant increase of DNA methylation at its binding sites. These data support a model where DNA-binding factors can mediate turnover of DNA methylation as an integral part of maintenance and reprogramming of regulatory regions.
Author Summary
Cell identity is determined by differential gene expression, which in turn is controlled by the combined activity of proximal and distal regulatory elements such as enhancers. DNA within active enhancer elements is marked by a hypomethylated state as a result of transcription factor (TF) binding. Here, using CTCF as an example for a DNA-binding factor, we explore the relationship between binding and DNA methylation at the level of single molecules by enriching for CTCF occupied DNA. To our surprise, methylation at molecules which are bound by CTCF does not differ from the average methylation levels at the binding sites defined by whole-genome bisulfite sequencing. We find that binding strength inversely correlates with DNA methylation within the CTCF motif with heterogenic methylation levels at low occupancy sites, suggesting that CTCF can bind to molecules with different methylation states. Moreover, we observed enrichment of 5-hydroxymethylcytosines at constitutive and cell-type specific TF binding sites indicative of an active demethylation process. To test the requirement of TF binding for the observed hydroxymethylation, and as CTCF deletion is incompatible with the survival of embryonic stem cells, we made use of cells in which REST – a factor which was previously shown to be involved in LMR formation - was genetically deleted. This deletion leads to loss of hydroxymethylation at its binding sites, suggesting that binding is necessary for turnover. Our data support a model in which TF occupancy mediates a continuous turnover of DNA methylation during maintenance and formation of active regulatory regions.
doi:10.1371/journal.pgen.1003994
PMCID: PMC3868540  PMID: 24367273
4.  Global Mapping of DNA Methylation in Mouse Promoters Reveals Epigenetic Reprogramming of Pluripotency Genes 
PLoS Genetics  2008;4(6):e1000116.
DNA methylation patterns are reprogrammed in primordial germ cells and in preimplantation embryos by demethylation and subsequent de novo methylation. It has been suggested that epigenetic reprogramming may be necessary for the embryonic genome to return to a pluripotent state. We have carried out a genome-wide promoter analysis of DNA methylation in mouse embryonic stem (ES) cells, embryonic germ (EG) cells, sperm, trophoblast stem (TS) cells, and primary embryonic fibroblasts (pMEFs). Global clustering analysis shows that methylation patterns of ES cells, EG cells, and sperm are surprisingly similar, suggesting that while the sperm is a highly specialized cell type, its promoter epigenome is already largely reprogrammed and resembles a pluripotent state. Comparisons between pluripotent tissues and pMEFs reveal that a number of pluripotency related genes, including Nanog, Lefty1 and Tdgf1, as well as the nucleosome remodeller Smarcd1, are hypomethylated in stem cells and hypermethylated in differentiated cells. Differences in promoter methylation are associated with significant differences in transcription levels in more than 60% of genes analysed. Our comparative approach to promoter methylation thus identifies gene candidates for the regulation of pluripotency and epigenetic reprogramming. While the sperm genome is, overall, similarly methylated to that of ES and EG cells, there are some key exceptions, including Nanog and Lefty1, that are highly methylated in sperm. Nanog promoter methylation is erased by active and passive demethylation after fertilisation before expression commences in the morula. In ES cells the normally active Nanog promoter is silenced when targeted by de novo methylation. Our study suggests that reprogramming of promoter methylation is one of the key determinants of the epigenetic regulation of pluripotency genes. Epigenetic reprogramming in the germline prior to fertilisation and the reprogramming of key pluripotency genes in the early embryo is thus crucial for transmission of pluripotency.
Author Summary
Large scale epigenetic reprogramming occurs in mammalian germ cells and the early embryo. The biological purpose of this reprogramming is largely unknown, although it has been suggested that it may be required for the embryonic genome to return to a pluripotent state. We carried out a genome-wide screen of promoter methylation in the mouse, comparing germ cells with pluripotent cells, multipotent cells, and more differentiated cell types. We find that promoter methylation is an epigenetic signature of developmental potency. Genes linked to pluripotency are generally hypomethylated in stem cells and hypermethylated (and silenced) in more differentiated cell types, and our genome-wide screen provides new candidates for the regulation of pluripotency. Importantly, germ cells resemble pluripotent cell types in that most promoters have been reprogrammed. However, a small group of key pluripotency regulators (including Nanog), are methylated in mature germ cells, presumably in order to suppress pluripotency at critical stages of germ cell differentiation. Indeed, methylation in these genes becomes reprogrammed after fertilisation so that the embryo can regain totipotency. This work, therefore, shows for the first time that epigenetic reprogramming is crucial for maintaining the pluripotency of germ and embryonic stem cells.
doi:10.1371/journal.pgen.1000116
PMCID: PMC2432031  PMID: 18584034
5.  GADD45A Does Not Promote DNA Demethylation 
PLoS Genetics  2008;4(3):e1000013.
Although DNA methylation patterns in somatic cells are thought to be relatively stable, they undergo dramatic changes during embryonic development, gametogenesis, and during malignant transformation. The enzymology of DNA methyltransferases is well understood, but the mechanism that removes methylated cytosines from DNA (active DNA demethylation) has remained enigmatic. Recently, a role of the growth arrest and DNA damage inducible protein GADD45A in DNA demethylation has been reported [1]. We have investigated the function of GADD45A in DNA demethylation in more detail using gene reactivation and DNA methylation assays. Contrary to the previous report, we were unable to substantiate a functional role of GADD45A in DNA demethylation. The mechanism of active DNA demethylation in mammalian cells remains unknown.
Author Summary
During mammalian development, genome-wide DNA demethylation occurs both in developing germ cells and in fertilized oocytes. This rapid DNA demethylation is an active process that occurs in the absence of DNA replication. The mechanism of active DNA demethylation represents a conundrum for researchers in this field, i.e. the breakage of a carbon-carbon bond to remove a methyl group from the DNA cytosine ring appears energetically unfavorable, and the elimination of approximately 30 million 5-methylcytosine bases from both DNA strands within a short time window raises questions about the maintenance of genome stability during this process. Recently, it has been reported that the protein GADD45A, a small acidic protein that has been implicated in the DNA damage response, plays a crucial role in promoting active DNA demethylation in several mammalian cell lines. We noticed that GADD45A does not fulfill one likely requirement for a mammalian DNA demethylase factor in that it is not expressed in oocytes or zygotes. We then investigated the role of GADD45A in DNA demethylation using methylated reporter plasmids and DNA methylation analysis of several endogenous genes in cell lines overexpressing GADD45A. Contrary to the previous report, we were not able to demonstrate a role of GADD45A in DNA demethylation. The activity that promotes DNA demethylation at a genome-wide level in mammals remains to be identified.
doi:10.1371/journal.pgen.1000013
PMCID: PMC2265528  PMID: 18369439
6.  Locus-Specific DNA Methylation Reprogramming During Early Porcine Embryogenesis1 
Biology of Reproduction  2013;88(2):48.
ABSTRACT
During early mammalian embryogenesis, there is a wave of DNA demethylation postfertilization and de novo methylation around implantation. The paternal genome undergoes active DNA demethylation, whereas the maternal genome is passively demethylated after fertilization in most mammals except for sheep and rabbits. However, the emerging genome-wide DNA methylation landscape has revealed a regulatory and locus-specific DNA methylation reprogramming pattern in mammalian preimplantation embryos. Here we optimized a bisulfite sequencing protocol to draw base-resolution DNA methylation profiles of several selected genes in gametes, early embryos, and somatic tissue. We observed locus-specific DNA methylation reprogramming in early porcine embryos. First, some pluripotency genes (POU5F1 and NANOG) followed a typical wave of DNA demethylation and remethylation, whereas CpG-rich regions of SOX2 and CDX2 loci were hypomethylated throughout development. Second, a differentially methylated region of an imprint control region in the IGF2/H19 locus exhibited differential DNA methylation which was maintained in porcine early embryos. Third, a centromeric repeat element retained a moderate DNA methylation level in gametes, early embryos, and somatic tissue. The diverse DNA methylation reprogramming during early embryogenesis is thought to be possibly associated with the multiple functions of DNA methylation in transcriptional regulation, genome stability and genomic imprinting. The latest technology such as oxidative bisulfite sequencing to identify 5-hydroxymethylcytosine will further clarify the DNA methylation reprogramming during porcine embryonic development.
DNA methylation reprogramming in early porcine embryos is locus-specific and associated with multiple functions of DNA methylation in transcriptional regulation, genomic imprinting, and genome stability.
doi:10.1095/biolreprod.112.104471
PMCID: PMC3589235  PMID: 23303676
CDX2; DNA methylation; NANOG; porcine preimplantation embryos; POU5F1; reprogramming; SOX2
7.  Quantitative analysis of DNA methylation at all human imprinted regions reveals preservation of epigenetic stability in adult somatic tissue 
Background
Genes subject to genomic imprinting are mono-allelically expressed in a parent-of-origin dependent manner. Each imprinted locus has at least one differentially methylated region (DMR) which has allele specific DNA methylation and contributes to imprinted gene expression. Once DMRs are established, they are potentially able to withstand normal genome reprogramming events that occur during cell differentiation and germ-line DMRs are stably maintained throughout development. These DMRs, in addition to being either maternally or paternally methylated, have differences in whether methylation was acquired in the germ-line or post fertilization and are present in a variety of genomic locations with different Cytosine-phosphate guanine (CpG) densities and CTCF binding capacities. We therefore examined the stability of maintenance of DNA methylation imprints and determined the normal baseline DNA methylation levels in several adult tissues for all imprinted genes. In order to do this, we first developed and validated 50 highly specific, quantitative DNA methylation pyrosequencing assays for the known DMRs associated with human imprinted genes.
Results
Remarkable stability of the DNA methylation imprint was observed in all germ-line DMRs and paternally methylated somatic DMRs (which maintained average methylation levels of between 35% - 65% in all somatic tissues, independent of gene expression). Maternally methylated somatic DMRs were found to have more variation with tissue specific methylation patterns. Most DMRs, however, showed some intra-individual variability for DNA methylation levels in peripheral blood, suggesting that more than one DMR needs to be examined in order to get an overall impression of the epigenetic stability in a tissue. The plasticity of DNA methylation at imprinted genes was examined in a panel of normal and cancer cell lines. All cell lines showed changes in DNA methylation, especially at the paternal germ-line and the somatic DMRs.
Conclusions
Our validated pyrosequencing methylation assays can be widely used as a tool to investigate DNA methylation levels of imprinted genes in clinical samples. This first comprehensive analysis of normal methylation levels in adult somatic tissues at human imprinted regions confirm that, despite intra-individual variability and tissue specific expression, imprinted genes faithfully maintain their DNA methylation in healthy adult tissue. DNA methylation levels of a selection of imprinted genes are, therefore, a valuable indicator for epigenetic stability.
doi:10.1186/1756-8935-4-1
PMCID: PMC3038880  PMID: 21281512
8.  DNA Methylation Analysis of Chromosome 21 Gene Promoters at Single Base Pair and Single Allele Resolution 
PLoS Genetics  2009;5(3):e1000438.
Differential DNA methylation is an essential epigenetic signal for gene regulation, development, and disease processes. We mapped DNA methylation patterns of 190 gene promoter regions on chromosome 21 using bisulfite conversion and subclone sequencing in five human cell types. A total of 28,626 subclones were sequenced at high accuracy using (long-read) Sanger sequencing resulting in the measurement of the DNA methylation state of 580427 CpG sites. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, both for amplicons and individual subclones, which represent single alleles from individual cells. Within CpG-rich sequences, DNA methylation was found to be anti-correlated with CpG dinucleotide density and GC content, and methylated CpGs are more likely to be flanked by AT-rich sequences. We observed over-representation of CpG sites in distances of 9, 18, and 27 bps in highly methylated amplicons. However, DNA sequence alone is not sufficient to predict an amplicon's DNA methylation status, since 43% of all amplicons are differentially methylated between the cell types studied here. DNA methylation in promoter regions is strongly correlated with the absence of gene expression and low levels of activating epigenetic marks like H3K4 methylation and H3K9 and K14 acetylation. Utilizing the single base pair and single allele resolution of our data, we found that i) amplicons from different parts of a CpG island frequently differ in their DNA methylation level, ii) methylation levels of individual cells in one tissue are very similar, and iii) methylation patterns follow a relaxed site-specific distribution. Furthermore, iv) we identified three cases of allele-specific DNA methylation on chromosome 21. Our data shed new light on the nature of methylation patterns in human cells, the sequence dependence of DNA methylation, and its function as epigenetic signal in gene regulation. Further, we illustrate genotype–epigenotype interactions by showing novel examples of allele-specific methylation.
Author Summary
Epigenetics is defined as the inheritance of changes in gene function without changing the DNA sequence. Epigenetic signals comprise methylation of cytosine bases of the DNA and chemical modifications of the histone proteins. DNA methylation plays important roles in development and disease processes. To investigate the biological role of DNA methylation, we analyzed DNA methylation patterns of 190 gene promoter regions on chromosome 21 in five human cell types. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, indicating that DNA methylation acts in a switch-like manner. Consistent with the well-established role of DNA methylation in gene silencing, we found DNA methylation in promoter regions strongly correlated with absence of gene expression and low levels of additional activating epigenetic marks. Although methylation levels of individual cells in one tissue are very similar, we observed differences in DNA methylation when comparing different cell types in 43% of all regions analyzed. This finding is in agreement with a role of DNA methylation in cellular development. We identified three cases of genes that are differentially methylated in both alleles that illustrate the tight interplay of genetic and epigenetic processes.
doi:10.1371/journal.pgen.1000438
PMCID: PMC2653639  PMID: 19325872
9.  Genome-Wide DNA Methylation Analysis of Systemic Lupus Erythematosus Reveals Persistent Hypomethylation of Interferon Genes and Compositional Changes to CD4+ T-cell Populations 
PLoS Genetics  2013;9(8):e1003678.
Systemic lupus erythematosus (SLE) is an autoimmune disease with known genetic, epigenetic, and environmental risk factors. To assess the role of DNA methylation in SLE, we collected CD4+ T-cells, CD19+ B-cells, and CD14+ monocytes from 49 SLE patients and 58 controls, and performed genome-wide DNA methylation analysis with Illumina Methylation450 microarrays. We identified 166 CpGs in B-cells, 97 CpGs in monocytes, and 1,033 CpGs in T-cells with highly significant changes in DNA methylation levels (p<1×10−8) among SLE patients. Common to all three cell-types were widespread and severe hypomethylation events near genes involved in interferon signaling (type I). These interferon-related changes were apparent in patients collected during active and quiescent stages of the disease, suggesting that epigenetically-mediated hypersensitivity to interferon persists beyond acute stages of the disease and is independent of circulating interferon levels. This interferon hypersensitivity was apparent in memory, naïve and regulatory T-cells, suggesting that this epigenetic state in lupus patients is established in progenitor cell populations. We also identified a widespread, but lower amplitude shift in methylation in CD4+ T-cells (>16,000 CpGs at FDR<1%) near genes involved in cell division and MAPK signaling. These cell type-specific effects are consistent with disease-specific changes in the composition of the CD4+ population and suggest that shifts in the proportion of CD4+ subtypes can be monitored at CpGs with subtype-specific DNA methylation patterns.
Author Summary
We have analyzed DNA methylation, an epigenetic modification that influences gene expression, in lupus patients and control subjects. Our analysis was run in three different immune cell types, T-cells, B-cells, and monocytes, to discern common epigenetic effects in lupus from cell type-specific effects. We have identified a lupus-related reduction in methylation around genes that respond to interferon, a cytokine that induces inflammation in response to pathogens. This hypomethylation suggests that lupus patients are hypersensitive to interferon, as DNA methylation is typically an inhibitor of gene expression. We also find that this hypersensitivity is preserved in lupus patients beyond active stages of the disease, and this may help explain the chronic, recurrent nature of the disease. In addition, we have identified DNA methylation changes in T-cells that suggest an alteration in the proportions of these cells in lupus patients, which may help explain the disease process.
doi:10.1371/journal.pgen.1003678
PMCID: PMC3738443  PMID: 23950730
10.  Insertion of Foreign DNA into an Established Mammalian Genome Can Alter the Methylation of Cellular DNA Sequences† 
Journal of Virology  1999;73(2):1010-1022.
The insertion of adenovirus type 12 (Ad12) DNA into the hamster genome and the transformation of these cells by Ad12 can lead to marked alterations in the levels of DNA methylation in several cellular genes and DNA segments. Since such alterations in DNA methylation patterns are likely to affect the transcription patterns of cellular genes, it is conceivable that these changes have played a role in the generation or the maintenance of the Ad12-transformed phenotype. We have now isolated clonal BHK21 hamster cell lines that carry in their genomes bacteriophage λ and plasmid pSV2neo DNAs in an integrated state. Most of these cell lines contain one or multiple copies of integrated λ DNA, which often colocalize with the pSV2neo DNA, usually in a single chromosomal site as determined by the fluorescent in situ hybridization technique. In different cell lines, the loci of foreign DNA insertion are different. The inserted bacteriophage λ DNA frequently becomes de novo methylated. In some of the thus-generated hamster cell lines, the levels of DNA methylation in the retrotransposon genomes of the endogenous intracisternal A particles (IAP) are increased in comparison to those in the non-λ-DNA-transgenic BHK21 cell lines. These changes in the methylation patterns of the IAP subclone I (IAPI) segment have been documented by restriction analyses with methylation-sensitive restriction endonucleases followed by Southern transfer hybridization and phosphorimager quantitation. The results of genomic sequencing experiments using the bisulfite protocol yielded additional evidence for alterations in the patterns of DNA methylation in selected segments of the IAPI sequences. In these experiments, the nucleotide sequences in >330 PCR-generated cloned DNA molecules were determined. Upon prolonged cultivation of cell lines with altered cellular methylation patterns, these differences became less apparent, perhaps due to counterselection of the transgenic cells. The possibility existed that the hamster BHK21 cell genomes represent mosaics with respect to DNA methylation in the IAPI segment. Hence, some of the cells with the patterns observed after λ DNA integration might have existed prior to λ DNA integration and been selected by chance. A total of 66 individual BHK21 cell clones from the BHK21 cell stock have been recloned up to three times, and the DNAs of these cell populations have been analyzed for differences in IAPI methylation patterns. None have been found. These patterns are identical among the individual BHK21 cell clones and identical to the patterns of the originally used BHK21 cell line. Similar results have been obtained with nine clones isolated from BHK21 cells mock transfected by the Ca2+-phosphate precipitation procedure with DNA omitted from the transfection mixture. In four clonal sublines of nontransgenic control BHK21 cells, genomic sequencing of 335 PCR-generated clones by the bisulfite protocol revealed 5′-CG-3′ methylation levels in the IAPI segment that were comparable to those in the uncloned BHK21 cell line. We conclude that the observed changes in the DNA methylation patterns in BHK21 cells with integrated λ DNA are unlikely to preexist or to be caused by the transfection procedure. Our data support the interpretation that the insertion of foreign DNA into a preexisting mammalian genome can alter the cellular patterns of DNA methylation, perhaps via changes in chromatin structure. The cellular sites affected by and the extent of these changes could depend on the site and size of foreign DNA insertion.
PMCID: PMC103921  PMID: 9882302
11.  A Six Months Exercise Intervention Influences the Genome-wide DNA Methylation Pattern in Human Adipose Tissue 
PLoS Genetics  2013;9(6):e1003572.
Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention (q<0.05). Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q<0.05). Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity (p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise (q<0.05), including TCF7L2 (6 CpG sites) and KCNQ1 (10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism.
Author Summary
Given the important role of epigenetics in gene regulation and disease development, we here present the genome-wide DNA methylation pattern of 476,753 CpG sites in adipose tissue obtained from healthy men. Since environmental factors potentially change metabolism through epigenetic modifications, we examined if a six months exercise intervention alters the DNA methylation pattern as well as gene expression in human adipose tissue. Our results show that global DNA methylation changes and 17,975 individual CpG sites alter the levels of DNA methylation in response to exercise. We also found differential DNA methylation of 39 candidate genes for obesity and type 2 diabetes in human adipose tissue after exercise. Additionally, we provide functional proof that genes, which exhibit both differential DNA methylation and gene expression in human adipose tissue in response to exercise, influence adipocyte metabolism. Together, this study provides the first detailed map of the genome-wide DNA methylation pattern in human adipose tissue and links exercise to altered adipose tissue DNA methylation, potentially affecting adipocyte metabolism.
doi:10.1371/journal.pgen.1003572
PMCID: PMC3694844  PMID: 23825961
12.  MicroRNA Mediates DNA De-methylation Events Triggered By Retinoic Acid During Neuroblastoma Cell Differentiation 
Cancer research  2010;70(20):7874-7881.
Neuroblastoma is an often fatal pediatric cancer arising from precursor cells of the sympathetic nervous system. 13-Cis retinoic acid is included in the treatment regime for patients with high-risk disease, and a similar derivative, all-trans retinoic acid (ATRA) causes neuroblastoma cell lines to undergo differentiation. The molecular signaling pathways involved with ATRA induced differentiation are complex, and the role that DNA methylation changes might play are unknown. The purpose of this study was to evaluate the genome-wide effects of ATRA on DNA methylation using methylated DNA immunoprecipitation applied to microarrays representing all known promoter and CpG islands. 402 gene promoters became demethylated, while 88 were hypermethylated post-ATRA. mRNA expression microarrays revealed that 82 of the demethylated genes were over-expressed by >2 fold, while 13 of the hyper methylated genes were under-expressed. Gene ontology analysis indicated that de-methylated and re-expressed genes were enriched for signal transduction pathways, including NOS1, which is required for neural cell differentiation. As a potential mechanism for the DNA methylation changes, we demonstrate the down-regulation of methyltransferases, DNMT1 and DNMT3B, along with the up-regulation of endogenous microRNAs targeting them. Ectopic over-expression of miR-152, targeting DNMT1, also negatively impacted cell invasiveness and anchorage independent growth, contributing in part to the differentiated phenotype. We conclude that functionally important, miRNA-mediated DNA de-methylation changes contribute to the process of ATRA induced differentiation resulting in the activation of NOS1, a critical determinant of neural cell differentiation. Our findings illustrate the plasticity and dynamic nature of the epigenome during cancer cell differentiation.
doi:10.1158/0008-5472.CAN-10-1534
PMCID: PMC2955783  PMID: 20841484
DNA Hypermethylation; MYCN; ATRA; Neuroblastoma; miRNA
13.  Convergence of Mutation and Epigenetic Alterations Identifies Common Genes in Cancer That Predict for Poor Prognosis  
PLoS Medicine  2008;5(5):e114.
Background
The identification and characterization of tumor suppressor genes has enhanced our understanding of the biology of cancer and enabled the development of new diagnostic and therapeutic modalities. Whereas in past decades, a handful of tumor suppressors have been slowly identified using techniques such as linkage analysis, large-scale sequencing of the cancer genome has enabled the rapid identification of a large number of genes that are mutated in cancer. However, determining which of these many genes play key roles in cancer development has proven challenging. Specifically, recent sequencing of human breast and colon cancers has revealed a large number of somatic gene mutations, but virtually all are heterozygous, occur at low frequency, and are tumor-type specific. We hypothesize that key tumor suppressor genes in cancer may be subject to mutation or hypermethylation.
Methods and Findings
Here, we show that combined genetic and epigenetic analysis of these genes reveals many with a higher putative tumor suppressor status than would otherwise be appreciated. At least 36 of the 189 genes newly recognized to be mutated are targets of promoter CpG island hypermethylation, often in both colon and breast cancer cell lines. Analyses of primary tumors show that 18 of these genes are hypermethylated strictly in primary cancers and often with an incidence that is much higher than for the mutations and which is not restricted to a single tumor-type. In the identical breast cancer cell lines in which the mutations were identified, hypermethylation is usually, but not always, mutually exclusive from genetic changes for a given tumor, and there is a high incidence of concomitant loss of expression. Sixteen out of 18 (89%) of these genes map to loci deleted in human cancers. Lastly, and most importantly, the reduced expression of a subset of these genes strongly correlates with poor clinical outcome.
Conclusions
Using an unbiased genome-wide approach, our analysis has enabled the discovery of a number of clinically significant genes targeted by multiple modes of inactivation in breast and colon cancer. Importantly, we demonstrate that a subset of these genes predict strongly for poor clinical outcome. Our data define a set of genes that are targeted by both genetic and epigenetic events, predict for clinical prognosis, and are likely fundamentally important for cancer initiation or progression.
Stephen Baylin and colleagues show that a combined genetic and epigenetic analysis of breast and colon cancers identifies a number of clinically significant genes targeted by multiple modes of inactivation.
Editors' Summary
Background.
Cancer is one of the developed world's biggest killers—over half a million Americans die of cancer each year, for instance. As a result, there is great interest in understanding the genetic and environmental causes of cancer in order to improve cancer prevention, diagnosis, and treatment.
Cancer begins when cells begin to multiply out of control. DNA is the sequence of coded instructions—genes—for how to build and maintain the body. Certain “tumor suppressor” genes, for instance, help to prevent cancer by preventing tumors from developing, but changes that alter the DNA code sequence—mutations—can profoundly affect how a gene works. Modern techniques of genetic analysis have identified genes such as tumor suppressors that, when mutated, are linked to the development of certain cancers.
Why Was This Study Done?
However, in recent years, it has become increasingly apparent that mutations are neither necessary nor sufficient to explain every case of cancer. This has led researchers to look at so-called epigenetic factors, which also alter how a gene works without altering its DNA sequence. An example of this is “methylation,” which prevents a gene from being expressed—deactivates it—by a chemical tag. Methylation of genes is part of the normal functioning of DNA, but abnormal methylation has been linked with cancer, aging, and some rare birth abnormalities.
Previous analysis of DNA from breast and colon cancer cells had revealed 189 “candidate cancer genes”—mutated genes that were linked to the development of breast and colon cancer. However, it was not clear how those mutations gave rise to cancer, and individual mutations were present in only 5% to 15% of specific tumors. The authors of this study wanted to know whether epigenetic factors such as methylation contributed to causing the cancers.
What Did the Researchers Do and Find?
The researchers first identified 56 of the 189 candidate cancer genes as likely tumor suppressors and then determined that 36 of these genes were methylated and deactivated, often in both breast and colon (laboratory-grown) cancer cells. In nearly all cases, the methylated genes were not active but could be reactivated by being demethylated. They further showed that, in normal colon and breast tissue samples, 18 of the 36 genes were unmethylated and functioned normally, but in cells taken from breast and colon cancer tumors they were methylated.
In contrast to the genetic mutations, the 18 genes were frequently methylated across a range of tumor types, and eight genes were methylated in both the breast and colon cancers. The authors found by reviewing the genetics and epigenetics of those 18 genes in breast and colon cancer that they were either mutated, methylated, or both. A literature review showed that at least six of the 18 genes were known to have tumor suppressor properties, and the authors determined that 16 were located in parts of DNA known to be missing from cells taken from a range of cancer tumors.
Finally, the researchers analyzed data on cancer cases to show that methylation of these 18 genes was correlated with reduced function of these genes in tumors and with a greater likelihood that a cancer will be terminal or spread to other parts of the body.
What Do These Findings Mean?
The researchers considered only the 189 candidate cancer genes found in one previous study and not other genes identified elsewhere. They also did not consider the biological effects of the individual mutations found in those genes. Despite this, they have demonstrated that methylation of specific genes is likely to play a role in the development of breast and/or colon cancer cells either together with mutations or independently, most likely by turning off their tumor suppression function.
More broadly, however, the study adds to the evidence that future analysis of the role of genes in cancer should include epigenetic as well as genetic factors. In addition, the authors have also shown that a number of these genes may be useful for predicting clinical outcomes for a range of tumor types.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050114.
A December 2006 PLoS Medicine Perspective article reviews the value of examining methylation as a factor in common cancers and its use for early detection
The Web site of the American Cancer Society has a wealth of information and resources on a variety of cancers, including breast and colon cancer
Breastcancer.org is a nonprofit organization providing information about breast cancer on the Web, including research news
Cancer Research UK provides information on cancer research
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins publishes background information on the authors' research on methylation, setting out its potential for earlier diagnosis and better treatment of cancer
doi:10.1371/journal.pmed.0050114
PMCID: PMC2429944  PMID: 18507500
14.  A Genome-Wide Screen for Promoter Methylation in Lung Cancer Identifies Novel Methylation Markers for Multiple Malignancies  
PLoS Medicine  2006;3(12):e486.
Background
Promoter hypermethylation coupled with loss of heterozygosity at the same locus results in loss of gene function in many tumor cells. The “rules” governing which genes are methylated during the pathogenesis of individual cancers, how specific methylation profiles are initially established, or what determines tumor type-specific methylation are unknown. However, DNA methylation markers that are highly specific and sensitive for common tumors would be useful for the early detection of cancer, and those required for the malignant phenotype would identify pathways important as therapeutic targets.
Methods and Findings
In an effort to identify new cancer-specific methylation markers, we employed a high-throughput global expression profiling approach in lung cancer cells. We identified 132 genes that have 5′ CpG islands, are induced from undetectable levels by 5-aza-2′-deoxycytidine in multiple non-small cell lung cancer cell lines, and are expressed in immortalized human bronchial epithelial cells. As expected, these genes were also expressed in normal lung, but often not in companion primary lung cancers. Methylation analysis of a subset (45/132) of these promoter regions in primary lung cancer (n = 20) and adjacent nonmalignant tissue (n = 20) showed that 31 genes had acquired methylation in the tumors, but did not show methylation in normal lung or peripheral blood cells. We studied the eight most frequently and specifically methylated genes from our lung cancer dataset in breast cancer (n = 37), colon cancer (n = 24), and prostate cancer (n = 24) along with counterpart nonmalignant tissues. We found that seven loci were frequently methylated in both breast and lung cancers, with four showing extensive methylation in all four epithelial tumors.
Conclusions
By using a systematic biological screen we identified multiple genes that are methylated with high penetrance in primary lung, breast, colon, and prostate cancers. The cross-tumor methylation pattern we observed for these novel markers suggests that we have identified a partial promoter hypermethylation signature for these common malignancies. These data suggest that while tumors in different tissues vary substantially with respect to gene expression, there may be commonalities in their promoter methylation profiles that represent targets for early detection screening or therapeutic intervention.
John Minna and colleagues report that a group of genes are commonly methylated in primary lung, breast, colon, and prostate cancer.
Editors' Summary
Background.
Tumors or cancers contain cells that have lost many of the control mechanisms that normally regulate their behavior. Unlike normal cells, which only divide to repair damaged tissues, cancer cells divide uncontrollably. They also gain the ability to move round the body and start metastases in secondary locations. These changes in behavior result from alterations in their genetic material. For example, mutations (permanent changes in the sequence of nucleotides in the cell's DNA) in genes known as oncogenes stimulate cells to divide constantly. Mutations in another group of genes—tumor suppressor genes—disable their ability to restrain cell growth. Key tumor suppressor genes are often completely lost in cancer cells. But not all the genetic changes in cancer cells are mutations. Some are “epigenetic” changes—chemical modifications of genes that affect the amount of protein made from them. In cancer cells, methyl groups are often added to CG-rich regions—this is called hypermethylation. These “CpG islands” lie near gene promoters—sequences that control the transcription of DNA into RNA, the template for protein production—and their methylation switches off the promoter. Methylation of the promoter of one copy of a tumor suppressor gene, which often coincides with the loss of the other copy of the gene, is thought to be involved in cancer development.
Why Was This Study Done?
The rules that govern which genes are hypermethylated during the development of different cancer types are not known, but it would be useful to identify any DNA methylation events that occur regularly in common cancers for two reasons. First, specific DNA methylation markers might be useful for the early detection of cancer. Second, identifying these epigenetic changes might reveal cellular pathways that are changed during cancer development and so identify new therapeutic targets. In this study, the researchers have used a systematic biological screen to identify genes that are methylated in many lung, breast, colon, and prostate cancers—all cancers that form in “epithelial” tissues.
What Did the Researchers Do and Find?
The researchers used microarray expression profiling to examine gene expression patterns in several lung cancer and normal lung cell lines. In this technique, labeled RNA molecules isolated from cells are applied to a “chip” carrying an array of gene fragments. Here, they stick to the fragment that represents the gene from which they were made, which allows the genes that the cells express to be catalogued. By comparing the expression profiles of lung cancer cells and normal lung cells before and after treatment with a chemical that inhibits DNA methylation, the researchers identified genes that were methylated in the cancer cells—that is, genes that were expressed in normal cells but not in cancer cells unless methylation was inhibited. 132 of these genes contained CpG islands. The researchers examined the promoters of 45 of these genes in lung cancer cells taken straight from patients and found that 31 of the promoters were methylated in tumor tissues but not in adjacent normal tissues. Finally, the researchers looked at promoter methylation of the eight genes most frequently and specifically methylated in the lung cancer samples in breast, colon, and prostate cancers. Seven of the genes were frequently methylated in both lung and breast cancers; four were extensively methylated in all the tumor types.
What Do These Findings Mean?
These results identify several new genes that are often methylated in four types of epithelial tumor. The observation that these genes are methylated in multiple independent tumors strongly suggests, but does not prove, that loss of expression of the proteins that they encode helps to convert normal cells into cancer cells. The frequency and diverse patterning of promoter methylation in different tumor types also indicates that methylation is not a random event, although what controls the patterns of methylation is not yet known. The identification of these genes is a step toward building a promoter hypermethylation profile for the early detection of human cancer. Furthermore, although tumors in different tissues vary greatly with respect to gene expression patterns, the similarities seen in this study in promoter methylation profiles might help to identify new therapeutic targets common to several cancer types.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030486.
US National Cancer Institute, information for patients on understanding cancer
CancerQuest, information provided by Emory University about how cancer develops
Cancer Research UK, information for patients on cancer biology
Wikipedia pages on epigenetics (note that Wikipedia is a free online encyclopedia that anyone can edit)
The Epigenome Network of Excellence, background information and latest news about epigenetics
doi:10.1371/journal.pmed.0030486
PMCID: PMC1716188  PMID: 17194187
15.  Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements 
Gene  2009;448(2):151-167.
Close to 50 % of the human genome harbors repetitive sequences originally derived from mobile DNA elements, and in normal cells this sequence compartment is tightly regulated by epigenetic silencing mechanisms involving chromatin-mediated repression. In cancer cells, repetitive DNA elements suffer abnormal demethylation, with potential loss of silencing. We used a genome-wide microarray approach to measure DNA methylation changes in cancers of the head and neck, and to compare these changes to alterations found in adjacent non-tumor tissues. We observed specific alterations at thousands of small clusters of CpG dinucletides associated with DNA repeats. Among the 257,599 repetitive elements probed, 5 to 8% showed disease-related DNA methylation alterations. In dysplasia, a large number of local events of loss of methylation appear in apparently stochastic fashion. Loss of DNA methylation is most pronounced for certain members of the SVA, HERV, LINE-1P, AluY, and MaLR families. The methylation levels of retrotransposons are discretely stratified, with younger elements being highly methylated in healthy tissues, while in tumors these young elements suffer the most dramatic loss of methylation. Wilcoxon test statistics reveal that a subset of primate LINE-1 elements is demethylated preferentially in tumors, as compared to non-tumoral adjacent tissue. Sequence analysis of these strongly demethylated elements reveals genomic loci harboring full-length, as opposed to truncated elements, while possible enrichment for functional LINE-1 ORFs is weaker. Our analysis suggests that in non-tumor adjacent tissues there is generalized and highly variable disruption of epigenetic control across the repetitive DNA compartment, while in tumor cells a specific subset of LINE-1 retrotransposons that arose during primate evolution suffers the most dramatic DNA methylation alterations.
doi:10.1016/j.gene.2009.08.006
PMCID: PMC2783545  PMID: 19699787
mobile DNA; natural selection; methylation; epigenetic control; disease progression; DNA repair
16.  Adapt locally and act globally: strategy to maintain high chemoreceptor sensitivity in complex environments 
In bacterial chemotaxis, several types of receptors form mixed clusters. Receptor adaptation is shown to depend on the receptor's own conformational state rather than on the cluster's global activity, enabling cells to differentiate stimuli in complex environments.
We develop here a model for mixed chemoreceptor clusters in which receptors interact directly with their nearest neighbors.A local adaptation scheme is used to describe the methylation kinetics of individual receptors.Predictions made by this model were tested by direct measurements of the receptor methylation dynamics for both Tar and Tsr in response to ligands sensed by either receptor.We show that the local adaptation mechanism tunes each receptor in the mixed cluster to its most responsive state, to maintain the cell's high sensitivity in complex environments with multiple cues.This mechanism also prevents the saturation of the whole receptor cluster with exposure to environments with extreme level of one type of stimulus.
In environments with multiple cues, organisms need to sense different signals and to respond accordingly to enhance their chances of survival (Adler and Tso, 1974). In bacterial chemotaxis systems (see Hazelbauer et al (2008) for a recent review), different chemical stimuli are sensed by different types of chemoreceptors. In Escherichia coli cells, different types of chemoreceptors, e.g., the aspartate-sensing Tar receptor and the serine-sensing Tsr receptor, form mixed receptor cluster (Maddock and Shapiro, 1993; Ames et al, 2002), within which different types of chemoreceptors interact with each other cooperatively to amplify external signals (Bray et al, 1998; Sourjik and Berg, 2002; Mello and Tu, 2003b). The bacterial chemosensory system also adapts to prolonged stimuli by covalently modifying the chemoreceptors (methylation and demethylation). However, despite strong interactions between different receptors in the mixed cluster, the adaptive covalent modifications of individual receptors are observed to be insulated from each other. At moderate stimulation, only the receptors that bind the respective ligand adjust their methylation levels significantly in the adapted state (Silverman and Simon, 1977; Sanders and Koshland, 1988; Antommattei et al, 2004). This observed ligand-specific receptor methylation pattern challenges all-or-none allosteric models, such as the Monod–Wyman–Changdeux model (Monod et al, 1965; Sourjik and Berg, 2004; Mello and Tu, 2005; Keymer et al, 2006), that are commonly used to describe behavior of chemoreceptor clusters. It prompts the fundamental questions of how a highly cooperative mixed chemoreceptor complex adapts to multiple stimuli and whether it can distinguish different signals.
In this paper, we combine theoretical and experimental methods to understand the adaptation mechanism of mixed chemoreceptor clusters. We propose a local adaptation mechanism (model) for the mixed receptor cluster (Figure 1). In our model, receptors interact with their neighboring receptors in the mixed cluster (Figure 1D) and thus act collectively to generate strong response to small external signals. However, the adaptation of an individual receptor in the mixed cluster depends predominantly on its own local conformational state (Figure 1B), rather than the activity of the entire cluster (Figure 1A and C). Much to our surprise, despite strong interaction between different receptors, our model predicts that only the receptor which binds with the external ligand changes its methylation level in steady state when the system adapts, while other types of receptors only change their methylation levels transiently during adaptation. Our model also predicts that permanent (steady state) methylation crosstalk occurs only when the system fails to adapt accurately, and there exists a direct connection between the adaptation error and the degree of permanent methylation crosstalk. Both predictions are verified by direct quantitative measurements of the dynamics of the Tar and Tsr methylation levels in response to MeAsp and serine (Figure 5). These experimental results cannot be explained by the existing models, such as the MWC-type model and the recently proposed independent receptor model by Goldman et al (2009). The predicted transient adaptation dynamics for a mixed receptor cluster also provides a mechanistic explanation for the previously observed overshoot of activity when E. coli cells adapt to a large step stimulus (Berg and Tedesco, 1975).
After establishing the validity of the local adaptation mechanism in E. coli, we next explore the possible advantages of this adaptation mechanism for bacterial chemotaxis. We show that while the previously proposed global adaptation mechanisms compress different external environmental information, e.g., concentrations of different types of attractant ligands into one quantity (the overall activity of the cluster), the local adaptation mechanism preserves environmental information. The concentrations of different chemoeffectors are encoded (‘remembered') by the specific receptor methylation levels in the local adaptation model. These ligand-specific information can then be used by bacterial cells to precisely tune each type of receptor in the mixed cluster to its most responsive state, therefore maintaining high sensitivity and responsiveness in complex environments with multiple stimuli. The local adaptation mechanism, by effectively preventing methylation crosstalk, also prevents the poisoning effect by methylation contamination when bacterial cells are exposed to environments with extreme level of one type of stimulus. In summary, we have developed a modeling framework for understanding how a mixed chemoreceptor cluster adapts to complex environments with multiple cues. The local adaptation and global activation mechanism of the mixed receptor cluster proposed in this paper resolves the seemingly conflicting observations between strong receptor–receptor interactions and the absence of permanent receptor methylation crosstalk within a unified and predictive model. Direct quantitative measurements of the receptor methylation dynamics have confirmed the model predictions. The proposed model also predicts several characteristic consequences of the local adaptation mechanism, e.g., elimination of sensory poisoning, which may be tested in future experiments. Bacterial chemosensory machinery is a paradigm for studying adaptive sensory systems for detecting and adapting to environmental changes and signals, and we expect that the strategy of ‘adapting locally (individually) and acting globally (collectively)' may be used by other sensory systems that utilize multiple receptors to respond complex environmental changes.
In bacterial chemotaxis, several types of ligand-specific receptors form mixed clusters, wherein receptor–receptor interactions lead to signal amplification and integration. However, it remains unclear how a mixed receptor cluster adapts to individual stimuli and whether it can differentiate between different types of ligands. Here, we combine theoretical modeling with experiments to reveal the adaptation dynamics of the mixed chemoreceptor cluster in Escherichia coli. We show that adaptation occurs locally and is ligand-specific: only the receptor that binds the external ligand changes its methylation level when the system adapts, whereas other types of receptors change methylation levels transiently. Permanent methylation crosstalk occurs when the system fails to adapt accurately. This local adaptation mechanism enables cells to differentiate individual stimuli by encoding them into the methylation levels of corresponding types of chemoreceptors. It tunes each receptor to its most responsive state to maintain high sensitivity in complex environments and prevents saturation of the cluster by one signal.
doi:10.1038/msb.2011.8
PMCID: PMC3094069  PMID: 21407212
bacterial chemotaxis; high sensitivity to multiple signals; methylation crosstalk; mixed receptor cluster; sensory adaptation
17.  DNA Methylation Changes Separate Allergic Patients from Healthy Controls and May Reflect Altered CD4+ T-Cell Population Structure 
PLoS Genetics  2014;10(1):e1004059.
Altered DNA methylation patterns in CD4+ T-cells indicate the importance of epigenetic mechanisms in inflammatory diseases. However, the identification of these alterations is complicated by the heterogeneity of most inflammatory diseases. Seasonal allergic rhinitis (SAR) is an optimal disease model for the study of DNA methylation because of its well-defined phenotype and etiology. We generated genome-wide DNA methylation (Npatients = 8, Ncontrols = 8) and gene expression (Npatients = 9, Ncontrols = 10) profiles of CD4+ T-cells from SAR patients and healthy controls using Illumina's HumanMethylation450 and HT-12 microarrays, respectively. DNA methylation profiles clearly and robustly distinguished SAR patients from controls, during and outside the pollen season. In agreement with previously published studies, gene expression profiles of the same samples failed to separate patients and controls. Separation by methylation (Npatients = 12, Ncontrols = 12), but not by gene expression (Npatients = 21, Ncontrols = 21) was also observed in an in vitro model system in which purified PBMCs from patients and healthy controls were challenged with allergen. We observed changes in the proportions of memory T-cell populations between patients (Npatients = 35) and controls (Ncontrols = 12), which could explain the observed difference in DNA methylation. Our data highlight the potential of epigenomics in the stratification of immune disease and represents the first successful molecular classification of SAR using CD4+ T cells.
Author Summary
T-cells, a type of white blood cell, are an important part of the immune-system in humans. T-cells allow us to adapt our immune-response to the various infectious agents we encounter during life. However, T-cells can also cause disease when they target the body's own cells, e.g. Psoriasis, or when they react to a harmless particle or ‘antigen’, i.e. allergy. Much evidence supports an environmental, or ‘epigenetic’, component to allergy. Surprisingly, although allergy is viewed as a T-cell disease with an epigenetic component, no studies have identified epigenetic differences between healthy individuals and allergic individuals. Using a state-of-the-art genome-wide approach, we found that we could clearly and robustly separate allergic patients from healthy controls. It is often assumed that these changes reflect changes in DNA methylation in a given type of cell; however such differences can also result from different mixtures of T-cell subtypes in the samples. Indeed, we found that allergic patients had different proportions of T-cell sub-types compared to healthy controls. These changes in T-cell proportions may explain the difference in DNA methylation profile we observed between patients and controls. Our study is the first successful molecular classification of allergy using CD4+ T cells.
doi:10.1371/journal.pgen.1004059
PMCID: PMC3879208  PMID: 24391521
18.  The Honey Bee Epigenomes: Differential Methylation of Brain DNA in Queens and Workers 
PLoS Biology  2010;8(11):e1000506.
Using genome-wide methylation profiles in honey bee queen and worker brains to understand how contrasting organismal outputs are generated from the same genotype.
In honey bees (Apis mellifera) the behaviorally and reproductively distinct queen and worker female castes derive from the same genome as a result of differential intake of royal jelly and are implemented in concert with DNA methylation. To determine if these very different diet-controlled phenotypes correlate with unique brain methylomes, we conducted a study to determine the methyl cytosine (mC) distribution in the brains of queens and workers at single-base-pair resolution using shotgun bisulfite sequencing technology. The whole-genome sequencing was validated by deep 454 sequencing of selected amplicons representing eight methylated genes. We found that nearly all mCs are located in CpG dinucleotides in the exons of 5,854 genes showing greater sequence conservation than non-methylated genes. Over 550 genes show significant methylation differences between queens and workers, revealing the intricate dynamics of methylation patterns. The distinctiveness of the differentially methylated genes is underscored by their intermediate CpG densities relative to drastically CpG-depleted methylated genes and to CpG-richer non-methylated genes. We find a strong correlation between methylation patterns and splicing sites including those that have the potential to generate alternative exons. We validate our genome-wide analyses by a detailed examination of two transcript variants encoded by one of the differentially methylated genes. The link between methylation and splicing is further supported by the differential methylation of genes belonging to the histone gene family. We propose that modulation of alternative splicing is one mechanism by which DNA methylation could be linked to gene regulation in the honey bee. Our study describes a level of molecular diversity previously unknown in honey bees that might be important for generating phenotypic flexibility not only during development but also in the adult post-mitotic brain.
Author Summary
The queen honey bee and her worker sisters do not seem to have much in common. Workers are active and intelligent, skillfully navigating the outside world in search of food for the colony. They never reproduce; that task is left entirely to the much larger and longer-lived queen, who is permanently ensconced within the colony and uses a powerful chemical influence to exert control. Remarkably, these two female castes are generated from identical genomes. The key to each female's developmental destiny is her diet as a larva: future queens are raised on royal jelly. This specialized diet is thought to affect a particular chemical modification, methylation, of the bee's DNA, causing the same genome to be deployed differently. To document differences in this epigenomic setting and hypothesize about its effects on behavior, we performed high-resolution bisulphite sequencing of whole genomes from the brains of queen and worker honey bees. In contrast to the heavily methylated human genome, we found that only a small and specific fraction of the honey bee genome is methylated. Most methylation occurred within conserved genes that provide critical cellular functions. Over 550 genes showed significant methylation differences between the queen and the worker, which may contribute to the profound divergence in behavior. How DNA methylation works on these genes remains unclear, but it may change their accessibility to the cellular machinery that controls their expression. We found a tantalizing clue to a mechanism in the clustering of methylation within parts of genes where splicing occurs, suggesting that methylation could control which of several versions of a gene is expressed. Our study provides the first documentation of extensive molecular differences that may allow honey bees to generate different phenotypes from the same genome.
doi:10.1371/journal.pbio.1000506
PMCID: PMC2970541  PMID: 21072239
19.  Role of DNA Methylation and Epigenetic Silencing of HAND2 in Endometrial Cancer Development 
PLoS Medicine  2013;10(11):e1001551.
TB filled in by Laureen
Please see later in the article for the Editors' Summary
Background
Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development.
Methods and Findings
Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression.
Conclusions
HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Cancer, which is responsible for 13% of global deaths, can develop anywhere in the body, but all cancers are characterized by uncontrolled cell growth and reduced cellular differentiation (the process by which unspecialized cells such as “stem” cells become specialized during development, tissue repair, and normal cell turnover). Genetic alterations—changes in the sequence of nucleotides (DNA's building blocks) in specific genes—are required for this cellular transformation and subsequent cancer development (carcinogenesis). However, recent evidence suggests that epigenetic modifications—reversible, heritable changes in gene function that occur in the absence of nucleotide sequence changes—may also be involved in carcinogenesis. For example, the addition of methyl groups to a set of genes called stem cell polycomb group target genes (PCGTs; polycomb genes control the expression of their target genes by modifying their DNA or associated proteins) is one of the earliest molecular changes in human cancer development, and increasing evidence suggests that hypermethylation of PCGTs is an epigenetic hallmark of cancer.
Why Was This Study Done?
The methylation of PCGTs, which is triggered by age and by environmental factors that are associated with cancer development, reduces cellular differentiation and leads to the accumulation of undifferentiated cells that are susceptible to cancer development. It is unclear, however, whether epigenetic modifications have a causal role in carcinogenesis. Here, the researchers investigate the involvement of epigenetic factors in the development of endometrial (womb) cancer. The risk of endometrial cancer (which affects nearly 50,000 women annually in the United States) is largely determined by environmental and lifestyle factors. Specifically, the risk of this cancer is increased in women in whom estrogen (a hormone that drives cell proliferation in the endometrium) is functionally dominant over progesterone (a hormone that inhibits endometrial proliferation and causes cell differentiation); obese women and women who have taken estrogen-only hormone replacement therapies fall into this category. Thus, endometrial cancer is an ideal model in which to study whether epigenetic mechanisms underlie carcinogenesis.
What Did the Researchers Do and Find?
The researchers collected data on genome-wide DNA methylation at cytosine- and guanine-rich sites in endometrial cancers and normal endometrium and integrated this information with the human interactome and transcriptome (all the physical interactions between proteins and all the genes expressed, respectively, in a cell) using an algorithm called Functional Epigenetic Modules (FEM). This analysis identified HAND2 as the hub of the most highly ranked differential methylation hotspot in endometrial cancer. HAND2 is a progesterone-regulated stem cell PCGT. It encodes a transcription factor that is expressed in the endometrial stroma (the connective tissue that lies below the epithelial cells in which most endometrial cancers develop) and that suppresses the production of the growth factors that mediate the growth-inducing effects of estrogen on the endometrial epithelium. The researchers hypothesized, therefore, that epigenetic deregulation of HAND2 could be a key step in endometrial cancer development. In support of this hypothesis, the researchers report that HAND2 methylation was increased in premalignant endometrial lesions (cancer-prone, abnormal-looking tissue) compared to normal endometrium, and was associated with suppression of HAND2 expression. Moreover, a high level of endometrial HAND2 methylation in premalignant lesions predicted a poor response to progesterone treatment (which stops the growth of some endometrial cancers), and analysis of HAND2 methylation in endometrial secretions collected from women with postmenopausal bleeding (a symptom of endometrial cancer) accurately identified individuals with early stage endometrial cancer. Finally, mice in which the Hand2 gene was specifically deleted in the endometrium developed precancerous endometrial lesions with age.
What Do These Findings Mean?
These and other findings identify HAND2 methylation as a common, key molecular alteration in endometrial cancer. These findings need to be confirmed in more women, and studies are needed to determine the immediate molecular and cellular consequences of HAND2 silencing in endometrial stromal cells. Nevertheless, these results suggest that HAND2 methylation could potentially be used as a biomarker for the early detection of endometrial cancer and for predicting treatment response. More generally, these findings support the idea that methylation of HAND2 (and, by extension, the methylation of other PCGTs) is not a passive epigenetic feature of cancer but is functionally involved in cancer development, and provide a framework for identifying other genes that are epigenetically regulated and functionally important in carcinogenesis.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001551
The US National Cancer Institute provides information on all aspects of cancer and has detailed information about endometrial cancer for patients and professionals (in English and Spanish)
The not-for-profit organization American Cancer Society provides information on cancer and how it develops and specific information on endometrial cancer (in several languages)
The UK National Health Service Choices website includes an introduction to cancer, a page on endometrial cancer, and a personal story about endometrial cancer
The not-for-profit organization Cancer Research UK provides general information about cancer and specific information about endometrial cancer
Wikipedia has a page on cancer epigenetics (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The Eve Appeal charity that supported this research provides useful information on gynecological cancers
doi:10.1371/journal.pmed.1001551
PMCID: PMC3825654  PMID: 24265601
20.  Aberrant DNA Methylation of OLIG1, a Novel Prognostic Factor in Non-Small Cell Lung Cancer 
PLoS Medicine  2007;4(3):e108.
Background
Lung cancer is the leading cause of cancer-related death worldwide. Currently, tumor, node, metastasis (TNM) staging provides the most accurate prognostic parameter for patients with non-small cell lung cancer (NSCLC). However, the overall survival of patients with resectable tumors varies significantly, indicating the need for additional prognostic factors to better predict the outcome of the disease, particularly within a given TNM subset.
Methods and Findings
In this study, we investigated whether adenocarcinomas and squamous cell carcinomas could be differentiated based on their global aberrant DNA methylation patterns. We performed restriction landmark genomic scanning on 40 patient samples and identified 47 DNA methylation targets that together could distinguish the two lung cancer subgroups. The protein expression of one of those targets, oligodendrocyte transcription factor 1 (OLIG1), significantly correlated with survival in NSCLC patients, as shown by univariate and multivariate analyses. Furthermore, the hazard ratio for patients negative for OLIG1 protein was significantly higher than the one for those patients expressing the protein, even at low levels.
Conclusions
Multivariate analyses of our data confirmed that OLIG1 protein expression significantly correlates with overall survival in NSCLC patients, with a relative risk of 0.84 (95% confidence interval 0.77–0.91, p < 0.001) along with T and N stages, as indicated by a Cox proportional hazard model. Taken together, our results suggests that OLIG1 protein expression could be utilized as a novel prognostic factor, which could aid in deciding which NSCLC patients might benefit from more aggressive therapy. This is potentially of great significance, as the addition of postoperative adjuvant chemotherapy in T2N0 NSCLC patients is still controversial.
Christopher Plass and colleagues find thatOLIG1 expression correlates with survival in lung cancer patients and suggest that it could be used in deciding which patients are likely to benefit from more aggressive therapy.
Editors' Summary
Background.
Lung cancer is the commonest cause of cancer-related death worldwide. Most cases are of a type called non-small cell lung cancer (NSCLC). Like other cancers, treatment of NCSLC depends on the “TNM stage” at which the cancer is detected. Staging takes into account the size and local spread of the tumor (its T classification), whether nearby lymph nodes contain tumor cells (its N classification), and whether tumor cells have spread (metastasized) throughout the body (its M classification). Stage I tumors are confined to the lung and are removed surgically. Stage II tumors have spread to nearby lymph nodes and are treated with a combination of surgery and chemotherapy. Stage III tumors have spread throughout the chest, and stage IV tumors have metastasized around the body; patients with both of these stages are treated with chemotherapy alone. About 70% of patients with stage I or II lung cancer, but only 2% of patients with stage IV lung cancer, survive for five years after diagnosis.
Why Was This Study Done?
TNM staging is the best way to predict the likely outcome (prognosis) for patients with NSCLC, but survival times for patients with stage I and II tumors vary widely. Another prognostic marker—maybe a “molecular signature”—that could distinguish patients who are likely to respond to treatment from those whose cancer will inevitably progress would be very useful. Unlike normal cells, cancer cells divide uncontrollably and can move around the body. These behavioral changes are caused by alterations in the pattern of proteins expressed by the cells. But what causes these alterations? The answer in some cases is “epigenetic changes” or chemical modifications of genes. In cancer cells, methyl groups are aberrantly added to GC-rich gene regions. These so-called “CpG islands” lie near gene promoters (sequences that control the transcription of DNA into mRNA, the template for protein production), and their methylation stops the promoters working and silences the gene. In this study, the researchers have investigated whether aberrant methylation patterns vary between NSCLC subtypes and whether specific aberrant methylations are associated with survival and can, therefore, be used prognostically.
What Did the Researchers Do and Find?
The researchers used “restriction landmark genomic scanning” (RLGS) to catalog global aberrant DNA methylation patterns in human lung tumor samples. In RLGS, DNA is cut into fragments with a restriction enzyme (a protein that cuts at specific DNA sequences), end-labeled, and separated using two-dimensional gel electrophoresis to give a pattern of spots. Because methylation stops some restriction enzymes cutting their target sequence, normal lung tissue and lung tumor samples yield different patterns of spots. The researchers used these patterns to identify 47 DNA methylation targets (many in CpG islands) that together distinguished between adenocarcinomas and squamous cell carcinomas, two major types of NSCLCs. Next, they measured mRNA production from the genes with the greatest difference in methylation between adenocarcinomas and squamous cell carcinomas. OLIG1 (the gene that encodes a protein involved in nerve cell development) had one of the highest differences in mRNA production between these tumor types. Furthermore, three-quarters of NSCLCs had reduced or no expression of OLIG1 protein and, when the researchers analyzed the association between OLIG1 protein expression and overall survival in patients with NSCLC, reduced OLIG1 protein expression was associated with reduced survival.
What Do These Findings Mean?
These findings indicate that different types of NSCLC can be distinguished by examining their aberrant methylation patterns. This suggests that the establishment of different DNA methylation patterns might be related to the cell type from which the tumors developed. Alternatively, the different aberrant methylation patterns might reflect the different routes that these cells take to becoming tumor cells. This research identifies a potential new prognostic marker for NSCLC by showing that OLIG1 protein expression correlates with overall survival in patients with NSCLC. This correlation needs to be tested in a clinical setting to see if adding OLIG1 expression to the current prognostic parameters can lead to better treatment choices for early-stage lung cancer patients and ultimately improve these patients' overall survival.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040108.
Patient and professional information on lung cancer, including staging (in English and Spanish), is available from the US National Cancer Institute
The MedlinePlus encyclopedia has pages on non-small cell lung cancer (in English and Spanish)
Cancerbackup provides patient information on lung cancer
CancerQuest, provided by Emory University, has information about how cancer develops (in English, Spanish, Chinese and Russian)
Wikipedia pages on epigenetics (note that Wikipedia is a free online encyclopedia that anyone can edit)
The Epigenome Network of Excellence gives background information and the latest news about epigenetics (in several European languages)
doi:10.1371/journal.pmed.0040108
PMCID: PMC1831740  PMID: 17388669
21.  5-Methylcytosine DNA glycosylase participates in the genome-wide loss of DNA methylation occurring during mouse myoblast differentiation 
Nucleic Acids Research  2001;29(21):4452-4461.
Changes in gene expression during mouse myoblast differentiation were monitored by DNA microarray hybridisation. Four days after the onset of differentiation 2.37% of the genes increased in activity from a value of zero, whereas during the same time 1.68% of total genes had decreased expression. During the first 24 h of differentiation an average of 700 000 CpG sites per haploid genome were demethylated. Maximal loss of DNA methylation is attained after 2 days of differentiation, followed by a gradual remethylation. The highest demethylation is observed in highly repeated DNA sequences, followed by single copy sequences. When DNA replication is inhibited by aphidicolin or l-mimosine this genome-wide demethylation is still observed. During the first 3 h of differentiation there is an increase in the number of hemimethylated CpG sites, which disappear rapidly during the course of genome-wide hypomethylation. Transfection of cells with an antisense morpholino oligonucleotide to 5-methylcytosine DNA glycosylase (G/T mismatch DNA glycosylase) decreases both the activity of the enzyme and genome-wide demethylation. It is concluded that the genome-wide loss of DNA methylation in differentiating mouse myoblasts occurs in part by formation of hemimethylated CpG sites, which can serve as the substrate for 5-methylcytosine-DNA glycosylase.
PMCID: PMC60186  PMID: 11691933
22.  The role of X-chromosome inactivation in female predisposition to autoimmunity 
Arthritis Research  2000;2(5):399-406.
We propose that the phenomenon of X-chromosome inactivation in females may constitute a risk factor for loss of T-cell tolerance; specifically that skewed X-chromosome inactivation in the thymus may lead to inadequate thymic deletion. Using a DNA methylation assay, we have examined the X-chromosome inactivation patterns in peripheral blood from normal females (n = 30), female patients with a variety of autoimmune diseases (n = 167). No differences between patients and controls were observed. However, locally skewed X-chromsome inactivation may exist in the thymus, and therefore the underlying hypothesis remains to be disproved.
Introduction:
A reduction in the sex ratio (male : female) is characteristic of most autoimmune disorders. The increased prevalence in females ranges from a modest 2:1 for multiple sclerosis [1], to approximately 10:1 for systemic lupus erythematosus [2]. This tendency toward autoimmunity in females is often ascribed to hormonal differences, because in a number of experimental disease models estrogens exacerbated disease, and androgens can inhibit disease activity [3,4]. However, human studies have failed to demonstrate a clear-cut influence of hormonal environment on disease susceptibility to lupus or other autoimmune disorders. In addition, many childhood forms of autoimmunity, such as juvenile rheumatoid arthritis, exhibit female predominance [5]. Interestingly, juvenile (type 1) diabetes is an exception to this general trend, with a sex ratio close to 1 in most studies [6]. Therefore, it is reasonable to consider alternative explanations for the increased prevalence of autoimmune diseases in human females.
A unifying feature of autoimmune disorders appears to be the loss of immunologic tolerance to self-antigens, and in many of these diseases there is evidence that T-cell tolerance has been broken. The most profound form of T-cell tolerance involves deletion of potentially self-reactive T cells during thymic selection. Thus, lack of exposure to a self-antigen in the thymus may lead to the presence of autoreactive T cells and may increase the risk of autoimmunity. An elegant example of this has recently been reported [7].
The existence of X-chromosome inactivation in females offers a potential mechanism whereby X-linked self-antigens may escape presentation in the thymus or in other peripheral sites that are involved in tolerance induction. Early in female development, one of the two X chromosomes in each cell undergoes an ordered process of inactivation, with subsequent silencing of most genes on the inactive X chromosome [8]. This phenomenon occurs at a very early embryonic stage [9], and thus all females are mosaic and may occasionally exhibit extreme skewing towards one or the other parental X chromosome. In theory, this may result in a situation in which polymorphic self-antigens on one X chromosome may fail to be expressed at sufficiently high levels in a tolerizing compartment, such as the thymus, and yet may be expressed at a considerable frequency in the peripheral soma. Thus, females may be predisposed to a situation in which they can occasionally express X-linked autoantigens in the periphery to which they have been inefficiently tolerized. Stewart [10] has recently speculated that such a mechanism may play a role in the predisposition to systemic lupus.
This hypothesis predicts that females with autoimmunity may be particularly prone to this mechanism of `inadequate tolerization' by virtue of extremely skewed X-chromosome inactivation. We therefore performed a comprehensive analysis of X-chromosome inactivation patterns in populations of females with multiple sclerosis, systemic lupus erythematosus, juvenile rheumatoid arthritis, and type 1 (insulin-dependent) diabetes mellitus, and in female control individuals. The results do not provide support for a major role for skewed X-chromosome inactivation in female predisposition to autoimmunity; however, neither is the underlying hypothesis disproved by the present data.
Materials and method:
DNA was obtained from female patients from the following sources: 45 persons with juvenile diabetes seen at the Virginia Mason Research Center in Seattle, Washington; 58 multiple sclerosis patients seen at the New York Hospital Multiple Sclerosis Center; 46 patients with systemic lupus erythematosus seen at the Hospital for Special Surgery (New York); 18 patients with juvenile rheumatoid arthritis seen at the Children's Hospital Medical Center in Cleveland. In addition, 30 healthy age-matched females were studied as normal controls.
Employing a modification of previously described methods [11], we utilized a fluorescent Hpa II/PCR assay of the androgen receptor (AR) locus to assess X-chromosome inactivation patterns. The AR gene contains a polymorphic CAG repeat, which is flanked by Hpa II sites. These Hpa II sites are methylated on the inactive X chromosome, and are unmethylated on the active X chromosome. By performing PCR amplification across this region after cutting with the methylation-sensitive enzyme Hpa II, the relative amounts of the methylated AR alleles can be quantitatively determined with a high degree of accuracy; variance on repeated assays is approximately 4% [12].
Skewing of X-chromosome inactivation is expressed as percentage deviation from equal (50:50) inactivation of the upper and lower AR alleles. Therefore, the maximal possible deviation is 50%, in which case all of the X chromosomes bearing one of the AR alleles are inactivated.
Results:
We examined X-chromosome inactivation patterns in several different populations. The results are summarized in Fig. 1. A wide range of X-inactivation skewing was observed in all five groups. Approximately 5% (nine out of 197) of individuals exhibited extreme skewing (greater than 40% deviation from a 50:50 distribution). However, there was no difference between the groups, either in the overall mean skewing, or in the fraction of individuals with extreme skewing (>40%).
Although the present study was not initiated in order to examine allelic variation in the AR gene per se, the data provide an opportunity to address this question. Excessively long CAG repeats in the AR are a rare cause of spinal-bulbar muscular atrophy [13], and AR repeat length appears to have an influence on the biology of certain tumors [14,15]. In this context, it has been shown that transcription of AR correlates inversely with repeat length [16]. We therefore compared AR repeat length in control individuals and patients with autoimmunity. No differences were observed for mean repeat length, or for maximum and minimum repeat length, among the five groups.
Discussion:
The reason for the female predominance in most autoimmune diseases remains obscure. The present study was initiated in order to address the hypothesis that a nonhormonal mechanism related to X inactivation might be involved. The hypothesis rests on the idea that skewing of X inactivation might lead to a deficiency of tolerance induction in the thymus, particularly with respect to polymorphic X-linked autoantigens. The hypothesis predicts that skewed X inactivation would be more prevalent in females with autoimmune diseases than in female control individuals. This was not observed.
Nevertheless, these negative data do not rule out a role for X inactivation in female predisposition to loss of tolerance. A general model for how this mechanism might operate is shown in Fig. 2. Thymocytes undergo selection in the thymic parenchyma and, in the case of negative selection, the selecting elements appear to be derived from the bone marrow and consist mainly of thymic dendritic cells. If the thymic dendritic cell population exhibits random X inactivation, it is highly likely that differentiating thymocytes will contact dendritic cells that express self-antigens on both X chromosomes. This situation is outlined schematically on the left side of Fig. 2. However, if there is extremely skewed X inactivation in the thymic dendritic cell population, a particular thymocyte might not come into contact with dendritic cells that express one of the two X chormosomes. This would lead to a situation where T cells may undergo thymic maturation without having been negatively selected for antigens that are expressed on the predominantly inactive X chromosome. This situation is shown on the right side of Fig. 2.
In order for this mechanism to be physiologically relevant, some assumptions must be made. First, defective tolerance from skewed X inactivation should only be directed at X-linked antigens that are polymorphic, and for which the individual is heterozygous. Thus, this mechanism would not be expected to lead to lack of tolerance commonly, unless there are at least several highly polymorphic X-linked autoantigens in the population that are involved in thymic deletion events. Second, if this actually leads to autoimmunity, it also predicts that the initial break in tolerance that leads to disease should involve an X-linked autoantigen that is expressed in a peripheral nontolerizing site or circumstance.
A recent report [7] has elegantly demonstrated the importance of thymic deletion events in predisposition to autoimmune disease. The proteolipid protein (PLP) autoantigen is expressed in alternatively spliced forms, which exhibit tissue specific expression. A nonspliced variant is expressed in peripheral neural tissue. However, in the thymus a splice variant results in the lack of thymic expression of an immunodominant peptide. This results in loss of tolerace of T cells to this peptide, presumably on the basis of lack of thymic deletion of thymocytes that are reactive with this antigen. Interestingly, PLP is encoded on the X chromsome. However, there is no evidence that genetic polymorphisms control the level splicing of PLP within the thymus. Nevertheless, these data illustrate the potential importance of deficiencies in thymic deletion for autoimmune T-cell reactivity.
The present results suggest that if skewed X inactivation is relevant to thymic tolerance induction, then the effect does not depend on global skewing of X-chromosome inactivation, at least in the hematopoietic compartment. In this study we examined X-inactivation patterns in peripheral blood mononuclear cells, and the results should reflect the state of X inactivation in all mesenchymal tissues, including dendritic cells. X inactivation occurs at a very early time point in development, and thus the results in one tissue should reflect the general situation in the rest of the body. However, there may be exceptions to this. We have occasionally observed differences in X-inactivation patterns between buccal mucosa (an ectodermally derived tissue) and peripheral blood in the same individiual (unpublished observations). This could be a chance event, or it may result from selection for certain X-linked alleles during embryonic development, as has been described in carriers of X-linked immunodeficiencies [17].
Another consideration is that certain tissue microenvironments may be derived from very small numbers of founder cells, and thus may exhibit skewed utilization of one or the other X chromosome, even if the tissue as a whole is not skewed. This situation could vary over time. Thus, there may be time points at which certain thymic microenvironments are populated by dendritic cells that, for stochastic reasons, all utilize the same X chromosome. This would create a `window of opportunity' in which a given thymocyte, in a given selecting location, could escape negative selection by antigens on the inactive X chromosome. The likelihood of this happening would obviously depend on the number of dendritic cells that are usually contacted by a thymocyte during thymic selection. There is limited information on this point, although Stewart [10] has theorized that this number may be as low as 15. If this is the case, then escape from thymic deletion may still occur in females who are heterozygous for a relevant X-linked antigen, even if the hematopoietic cells in general do not exhibit extreme skewing.
In conclusion, we suggest that X-chromosome inactivation needs to be considered as a potential factor in the predominance of females in most autoimmune diseases. Our inability to show an increase in X-chromosome skewing in females with autoimmunity does not eliminate this as an etiologic contributor to loss of immunologic tolerance. Future experiments must be directed at a detailed analysis of tissue patterns of X inactivation, as well as at a search for potential X-linked autoantigens.
PMCID: PMC17816  PMID: 11056674
autoimmunity; gender; immune tolerance; X chromosome
23.  A panel of genes methylated with high frequency in colorectal cancer 
BMC Cancer  2014;14:54.
Background
The development of colorectal cancer (CRC) is accompanied by extensive epigenetic changes, including frequent regional hypermethylation particularly of gene promoter regions. Specific genes, including SEPT9, VIM1 and TMEFF2 become methylated in a high fraction of cancers and diagnostic assays for detection of cancer-derived methylated DNA sequences in blood and/or fecal samples are being developed. There is considerable potential for the development of new DNA methylation biomarkers or panels to improve the sensitivity and specificity of current cancer detection tests.
Methods
Combined epigenomic methods – activation of gene expression in CRC cell lines following DNA demethylating treatment, and two novel methods of genome-wide methylation assessment – were used to identify candidate genes methylated in a high fraction of CRCs. Multiplexed amplicon sequencing of PCR products from bisulfite-treated DNA of matched CRC and non-neoplastic tissue as well as healthy donor peripheral blood was performed using Roche 454 sequencing. Levels of DNA methylation in colorectal tissues and blood were determined by quantitative methylation specific PCR (qMSP).
Results
Combined analyses identified 42 candidate genes for evaluation as DNA methylation biomarkers. DNA methylation profiles of 24 of these genes were characterised by multiplexed bisulfite-sequencing in ten matched tumor/normal tissue samples; differential methylation in CRC was confirmed for 23 of these genes. qMSP assays were developed for 32 genes, including 15 of the sequenced genes, and used to quantify methylation in tumor, adenoma and non-neoplastic colorectal tissue and from healthy donor peripheral blood. 24 of the 32 genes were methylated in >50% of neoplastic samples, including 11 genes that were methylated in 80% or more CRCs and a similar fraction of adenomas.
Conclusions
This study has characterised a panel of 23 genes that show elevated DNA methylation in >50% of CRC tissue relative to non-neoplastic tissue. Six of these genes (SOX21, SLC6A15, NPY, GRASP, ST8SIA1 and ZSCAN18) show very low methylation in non-neoplastic colorectal tissue and are candidate biomarkers for stool-based assays, while 11 genes (BCAT1, COL4A2, DLX5, FGF5, FOXF1, FOXI2, GRASP, IKZF1, IRF4, SDC2 and SOX21) have very low methylation in peripheral blood DNA and are suitable for further evaluation as blood-based diagnostic markers.
doi:10.1186/1471-2407-14-54
PMCID: PMC3924905  PMID: 24485021
Colorectal cancer; DNA methylation; Biomarker
24.  Early demethylation of non-CpG, CpC-rich, elements in the myogenin 5′-flanking region 
Cell Cycle  2010;9(19):3965-3976.
The dynamic changes and structural patterns of DNA methylation of genes without CpG islands are poorly characterized. The relevance of CpG to the non-CpG methylation equilibrium in transcriptional repression is unknown. In this work, we analyzed the DNA methylation pattern of the 5′-flanking of the myogenin gene, a positive regulator of muscle differentiation with no CpG island and low CpG density, in both C2C12 muscle satellite cells and embryonic muscle. Embryonic brain was studied as a non-expressing tissue. High levels of both CpG and non-CpG methylation were observed in non-expressing experimental conditions. Both CpG and non-CpG methylation rapidly dropped during muscle differentiation and myogenin transcriptional activation with active demethylation dynamics. Non-CpG demethylation occurred more rapidly than CpG demethylation. Demethylation spread from initially highly methylated short CpC-rich elements to a virtually unmethylated status. These short elements have a high CpC content and density, share some motifs and largely coincide with putative recognition sequences of some differentiation-related transcription factors. Our findings point to a dynamically controlled equilibrium between CpG and non-CpG active demethylation in the transcriptional control of tissue-specific genes. The short CpC-rich elements are new structural features of the methylation machinery, whose functions may include priming the complete demethylation of a transcriptionally crucial DNA region.
doi:10.4161/cc.9.19.13193
PMCID: PMC3047754  PMID: 20935518
non-CpG methylation; active demethylation; demethylation dynamics; muscle differentiation; transcriptional modulation; non-CpG island genes; short CpC-rich elements
25.  DNA Sequence Explains Seemingly Disordered Methylation Levels in Partially Methylated Domains of Mammalian Genomes 
PLoS Genetics  2014;10(2):e1004143.
For the most part metazoan genomes are highly methylated and harbor only small regions with low or absent methylation. In contrast, partially methylated domains (PMDs), recently discovered in a variety of cell lines and tissues, do not fit this paradigm as they show partial methylation for large portions (20%–40%) of the genome. While in PMDs methylation levels are reduced on average, we found that at single CpG resolution, they show extensive variability along the genome outside of CpG islands and DNase I hypersensitive sites (DHS). Methylation levels range from 0% to 100% in a roughly uniform fashion with only little similarity between neighboring CpGs. A comparison of various PMD-containing methylomes showed that these seemingly disordered states of methylation are strongly conserved across cell types for virtually every PMD. Comparative sequence analysis suggests that DNA sequence is a major determinant of these methylation states. This is further substantiated by a purely sequence based model which can predict 31% (R2) of the variation in methylation. The model revealed CpG density as the main driving feature promoting methylation, opposite to what has been shown for CpG islands, followed by various dinucleotides immediately flanking the CpG and a minor contribution from sequence preferences reflecting nucleosome positioning. Taken together we provide a reinterpretation for the nucleotide-specific methylation levels observed in PMDs, demonstrate their conservation across tissues and suggest that they are mainly determined by specific DNA sequence features.
Author Summary
Methylation is an essential DNA modification, which is attracting a lot of attention as a regulator of gene expression. Recent technological advances have allowed the genome-wide measurement of methylation at single-nucleotide resolution, leading to the discovery of several new types of methylation patterns. One prominent example are partially methylated domains (PMDs), which are regions with reduced average methylation, covering up to 40% of the genome. PMDs are found in only a subset of cell types, particularly in differentiated and cancer cells. An outstanding question is how methylation levels in PMDs are determined and how they can be interpreted at the single-nucleotide level. Here we provide a new model of methylation in PMDs. Single-nucleotide methylation levels in PMDs, albeit reduced on average, are highly variable along the genome. Furthermore, they are precisely set and can be predicted using DNA sequence features, establishing a new link between methylation and the underlying genetic information. This results in a high correlation of methylation levels in PMDs across different cell types. Our findings suggest that in any comparative analyses, PMDs should be analyzed as entities, strongly reducing the complexity of high-resolution DNA methylation analyses.
doi:10.1371/journal.pgen.1004143
PMCID: PMC3923675  PMID: 24550741

Results 1-25 (1343120)