Search tips
Search criteria

Results 1-25 (20703)

Clipboard (0)

Related Articles

1.  Immune Recruitment and Therapeutic Synergy: Keys to Optimizing Oncolytic Viral Therapy? 
Oncolytic viruses consist of a diverse range of DNA and RNA viruses traditionally thought to mediate their effects by exploiting aberrations in tumor pathways, allowing preferential viral replication in, and killing of, tumor cells. Clinical development has progressed to late phase trials, potentially heralding their introduction into clinical practice. However, despite this promise, the activity of oncolytic viruses has yet to achieve the potential suggested in preclinical models. To address this disparity, we need to recognise the complex interaction between oncolytic viruses, tumor, chemotherapy, host immune system, and appreciate that direct oncolysis may not be the only factor to play an important role in oncolytic virus-mediated anti-tumor efficacy.
Although key in inactivating viruses, the host immune system can also act as an ally against tumors, interacting with oncolytic viruses under the right conditions to generate useful and long-lasting anti-tumor immunity.
Preclinical data also suggest that oncolytic viruses demonstrate synergy with standard therapies, which may offer improved clinical response rates. Here we explore clinical and preclinical data on clinically relevant oncolytic viruses, highlighting areas of progress, uncertainty and translational opportunity, with respect to immune recruitment and therapeutic synergy.
PMCID: PMC3131422  PMID: 21576084
Oncolytic virus; oncolysis; anti-tumor immune response; chemotherapy; synergy
2.  Oncolytic virotherapy in veterinary medicine: current status and future prospects for canine patients 
Oncolytic viruses refer to those that are able to eliminate malignancies by direct targeting and lysis of cancer cells, leaving non-cancerous tissues unharmed. Several oncolytic viruses including adenovirus strains, canine distemper virus and vaccinia virus strains have been used for canine cancer therapy in preclinical studies. However, in contrast to human studies, clinical trials with oncolytic viruses for canine cancer patients have not been reported. An 'ideal' virus has yet to be identified. This review is focused on the prospective use of oncolytic viruses in the treatment of canine tumors - a knowledge that will undoubtedly contribute to the development of oncolytic viral agents for canine cancer therapy in the future.
PMCID: PMC3398296  PMID: 22216938
cancer; canine cancer therapy; oncolytic virus; oncolysis; target molecule, combination therapy
3.  Ex Vivo Infection of Live Tissue with Oncolytic Viruses 
Oncolytic Viruses (OVs) are novel therapeutics that selectively replicate in and kill tumor cells1. Several clinical trials evaluating the effectiveness of a variety of oncolytic platforms including HSV, Reovirus, and Vaccinia OVs as treatment for cancer are currently underway2-5. One key characteristic of oncolytic viruses is that they can be genetically modified to express reporter transgenes which makes it possible to visualize the infection of tissues by microscopy or bio-luminescence imaging6,7. This offers a unique advantage since it is possible to infect tissues from patients ex vivo prior to therapy in order to ascertain the likelihood of successful oncolytic virotherapy8. To this end, it is critical to appropriately sample tissue to compensate for tissue heterogeneity and assess tissue viability, particularly prior to infection9. It is also important to follow viral replication using reporter transgenes if expressed by the oncolytic platform as well as by direct titration of tissues following homogenization in order to discriminate between abortive and productive infection. The object of this protocol is to address these issues and herein describes 1. The sampling and preparation of tumor tissue for cell culture 2. The assessment of tissue viability using the metabolic dye alamar blue 3. Ex vivo infection of cultured tissues with vaccinia virus expressing either GFP or firefly luciferase 4. Detection of transgene expression by fluorescence microscopy or using an In Vivo Imaging System (IVIS) 5. Quantification of virus by plaque assay. This comprehensive method presents several advantages including ease of tissue processing, compensation for tissue heterogeneity, control of tissue viability, and discrimination between abortive infection and bone fide viral replication.
PMCID: PMC3197059  PMID: 21730946
4.  Expression of CCL19 from Oncolytic Vaccinia Enhances Immunotherapeutic Potential while Maintaining Oncolytic Activity12 
Neoplasia (New York, N.Y.)  2012;14(12):1115-1121.
Promising phase II clinical results have been reported recently for several oncolytic viral therapeutics, including strains based on vaccinia virus. One reason for this has been an increased appreciation of the critical therapeutic importance of the immune response raised by these viruses. However, the most commonly used approaches to enhance these immunotherapeutic effects in oncolytic viruses, typically though expression of cytokine transgenes, often also result in a reduction in oncolytic activity and premature clearance of the virotherapy from the tumor. Approaches that enhance the immunotherapeutic effects while maintaining oncolytic activity would therefore be beneficial. Here, it is demonstrated that the expression of the chemokine CCL19 (ELC) from an oncolytic vaccinia virus (vvCCL19) results in increased antitumor effects in syngeneic mouse tumor models. This corresponded with increased t cell and dendritic cell infiltration into the tumor. However, vvCCL19 persisted in the tumor at equivalent levels to a control virus without CCL19, demonstrating that oncolytic activity was not curtailed. Instead, vvCCL19 was cleared rapidly and selectively from normal tissues and organs, indicating a potentially increased safety profile. The therapeutic activity of vvCCL19 could be further significantly increased through combination with adoptive transfer of therapeutic immune cells expressing CCR7, the receptor for CCL19. This approach therefore represents a means to increase the safety and therapeutic benefit of oncolytic viruses, used alone or in combination with immune cell therapies.
PMCID: PMC3540938  PMID: 23308044
5.  Trial watch 
Oncoimmunology  2013;2(6):e24612.
Oncolytic virotherapy is emerging as a promising approach for the treatment of several neoplasms. The term “oncolytic viruses” is generally employed to indicate naturally occurring or genetically engineered attenuated viral particles that cause the demise of malignant cells while sparing their non-transformed counterparts. From a conceptual standpoint, oncolytic viruses differ from so-called “oncotropic viruses” in that only the former are able to kill cancer cells, even though both display a preferential tropism for malignant tissues. Of note, such a specificity can originate at several different steps of the viral cycle, including the entry of virions (transductional specificity) as well as their intracellular survival and replication (post-transcriptional and transcriptional specificity). During the past two decades, a large array of replication-competent and replication-incompetent oncolytic viruses has been developed and engineered to express gene products that would specifically promote the death of infected (cancer) cells. However, contrarily to long-standing beliefs, the antineoplastic activity of oncolytic viruses is not a mere consequence of the cytopathic effect, i.e., the lethal outcome of an intense, productive viral infection, but rather involves the elicitation of an antitumor immune response. In line with this notion, oncolytic viruses genetically modified to drive the local production of immunostimulatory cytokines exert more robust therapeutic effects than their non-engineered counterparts. Moreover, the efficacy of oncolytic virotherapy is significantly improved by some extent of initial immunosuppression (facilitating viral replication and spread) followed by the administration of immunostimulatory molecules (boosting antitumor immune responses). In this Trial Watch, we will discuss the results of recent clinical trials that have evaluated/are evaluating the safety and antineoplastic potential of oncolytic virotherapy.
PMCID: PMC3716755  PMID: 23894720
GM-CSF; HSV; immunotherapy; JX594; reolysin; talimogene laherparepvec
6.  “Armed” oncolytic herpes simplex viruses for brain tumor therapy 
Cell Adhesion & Migration  2008;2(3):208-213.
Genetically engineered, conditionally replicating herpes simplex viruses type 1 (HSV-1) are promising therapeutic agents for brain tumors and other solid cancers. They can replicate in situ, spread and exhibit oncolytic activity via a direct cytocidal effect. One of the advantages of HSV-1 is the capacity to incorporate large and/or multiple transgenes within the viral genome. Oncolytic HSV-1 can therefore be “armed” to add certain functions. Recently, the field of armed oncolytic HSV-1 has drastically advanced, due to development of recombinant HSV-1 generation systems that utilize bacterial artificial chromosome and multiple DNA recombinases. Because antitumor immunity is induced in the course of oncolytic activities of HSV-1, transgenes encoding immunomodulatory molecules have been most frequently used for arming. Other armed oncolytic HSV-1 include those that express antiangiogenic factors, fusogenic membrane glycoproteins, suicide gene products, and proapoptotic proteins. Provided that the transgene product does not interfere with viral replication, such arming of oncolytic HSV-1 results in augmentation of antitumor efficacy. Immediate-early viral promoters are often used to control the arming transgenes, but strict-late viral promoters have been shown useful to restrict the expression in the late stage of viral replication when desirable. Some armed oncolytic HSV-1 have been created for the purpose of noninvasive in vivo imaging of viral infection and replication. Development of a wide variety of armed oncolytic HSV-1 will lead to an establishment of a new genre of therapy for brain tumors as well as other cancers.
PMCID: PMC2634086  PMID: 19262110
oncolytic virus therapy; gene therapy; herpes simplex virus; viral vectors; G47Δ; G207; antitumor immunity
7.  Feasibility of herpes simplex virus type 1 mutants labeled with radionuclides for tumor treatment 
For over one hundred years, viruses have been recognized as capable of killing tumor cells. At present, people are still researching and constructing more suitable oncolytic viruses for treating different malignant tumors. Although extensive studies have demonstrated that herpes simplex virus type 1 (HSV-1) is the most potential oncolytic virus, therapies based on herpes simplex virus type 1 vectors still arouse bio-safety and risk management issues. Researchers have therefore introduced the new idea of treating cancer with HSV-1 mutants labeled with radionuclides, combining radionuclide and oncolytic virus therapies. This overview briefly summarizes the status and mechanisms by which oncolytic viruses kill tumor cells, discusses the application of HSV-1 and HSV-1 derived vectors for tumor therapy, and demonstrates the feasibility and prospect of HSV-1 mutants labeled with radionuclides for treating tumors.
PMCID: PMC2693676  PMID: 18322942
Oncolytic virus; Herpes simplex virus type 1; Mutant; Radionuclide; Tumor therapy
8.  Oncolytic Viruses for Cancer Therapy: Overcoming the Obstacles 
Viruses  2010;2(1):78-106.
Targeted therapy of cancer using oncolytic viruses has generated much interest over the past few years in the light of the limited efficacy and side effects of standard cancer therapeutics for advanced disease. In 2006, the world witnessed the first government-approved oncolytic virus for the treatment of head and neck cancer. It has been known for many years that viruses have the ability to replicate in and lyse cancer cells. Although encouraging results have been demonstrated in vitro and in animal models, most oncolytic viruses have failed to impress in the clinical setting. The explanation is multifactorial, determined by the complex interactions between the tumor and its microenvironment, the virus, and the host immune response. This review focuses on discussion of the obstacles that oncolytic virotherapy faces and recent advances made to overcome them, with particular reference to adenoviruses.
PMCID: PMC2883714  PMID: 20543907
oncolytic virus; adenovirus; vaccinia virus; cancer gene; host immune response
9.  Oncolytic Viruses for Cancer Therapy: Overcoming the Obstacles 
Viruses  2010;2(1):78-106.
Targeted therapy of cancer using oncolytic viruses has generated much interest over the past few years in the light of the limited efficacy and side effects of standard cancer therapeutics for advanced disease. In 2006, the world witnessed the first government-approved oncolytic virus for the treatment of head and neck cancer. It has been known for many years that viruses have the ability to replicate in and lyse cancer cells. Although encouraging results have been demonstrated in vitro and in animal models, most oncolytic viruses have failed to impress in the clinical setting. The explanation is multifactorial, determined by the complex interactions between the tumor and its microenvironment, the virus, and the host immune response. This review focuses on discussion of the obstacles that oncolytic virotherapy faces and recent advances made to overcome them, with particular reference to adenoviruses.
PMCID: PMC2883714  PMID: 20543907
oncolytic virus; adenovirus; vaccinia virus; cancer gene; host immune response
10.  Oncolytic Effects of a Novel Influenza A Virus Expressing Interleukin-15 from the NS Reading Frame 
PLoS ONE  2012;7(5):e36506.
Oncolytic influenza A viruses with deleted NS1 gene (delNS1) replicate selectively in tumour cells with defective interferon response and/or activated Ras/Raf/MEK/ERK signalling pathway. To develop a delNS1 virus with specific immunostimulatory properties, we used an optimised technology to insert the interleukin-15 (IL-15) coding sequence into the viral NS gene segment (delNS1-IL-15). DelNS1 and delNS1-IL-15 exerted similar oncolytic effects. Both viruses replicated and caused caspase-dependent apoptosis in interferon-defective melanoma cells. Virus replication was required for their oncolytic activity. Cisplatin enhanced the oncolytic activity of delNS1 viruses. The cytotoxic drug increased delNS1 replication and delNS1-induced caspase-dependent apoptosis. Interference with MEK/ERK signalling by RNAi-mediated depletion or the MEK inhibitor U0126 did not affect the oncolytic effects of the delNS1 viruses. In oncolysis sensitive melanoma cells, delNS1-IL-15 (but not delNS1) infection resulted in the production of IL-15 levels ranging from 70 to 1140 pg/mL in the cell culture supernatants. The supernatants of delNS1-IL-15-infected (but not of delNS1-infected) melanoma cells induced primary human natural killer cell-mediated lysis of non-infected tumour cells. In conclusion, we constructed a novel oncolytic influenza virus that combines the oncolytic activity of delNS1 viruses with immunostimulatory properties through production of functional IL-15. Moreover, we showed that the oncolytic activity of delNS1 viruses can be enhanced in combination with cytotoxic anti-cancer drugs.
PMCID: PMC3341362  PMID: 22563505
11.  Replicating viral vectors for cancer therapy: strategies to synergize with host immune responses 
Microbial biotechnology  2012;5(2):251-259.
Tumour‐specific replicating (oncolytic) viruses are novel anticancer agents, currently under intense investigation in preclinical studies and phase I–III clinical trials. Until recently, most studies have focused on the direct antitumour properties of these viruses. There is now an increasing body of evidence indicating that host immune responses may be critical to the efficacy of oncolytic virotherapy. Although the immune response to oncolytic viruses can rapidly restrict viral replication, thereby limiting the efficacy of therapy, oncolytic virotherapy also has the potential to induce potent antitumoural immune effectors that destroy those cancer cells, which are not directly lysed by virus. In this review, we discuss the role of the immune system in terms of antiviral and antitumoural responses, as well as strategies to evade or promote these responses in favour of improved therapeutic potentials.
PMCID: PMC3815785  PMID: 21923638
12.  Imaging and Therapy of Malignant Pleural Mesothelioma using Replication-competent Herpes Simplex Viruses 
The journal of gene medicine  2006;8(5):603-615.
Malignant pleural mesothelioma (MPM) is an aggressive cancer that is refractory to current treatment modalities. Oncolytic herpes simplex viruses (HSV) used for gene therapy are genetically engineered, replication-competent viruses that selectively target tumor cells while sparing normal host tissue. The localized nature, the potential accessibility and the relative lack of distant metastasis, make MPM a particularly suitable disease for oncolytic viral therapy.
The infectivity, selective replication, vector spread and cytotoxic ability of three oncolytic HSV: G207, NV1020 and NV1066 were tested against eleven pathological types of MPM cell lines including those that are resistant to radiation therapy, gemcitabine or cisplatin. The therapeutic efficacy and the effect on survival of NV1066 were confirmed in a murine MPM model.
All three oncolytic HSV were highly effective against all the MPM cell lines tested. Even at very low concentrations of MOI 0.01 (MOI: multiplicity of viral infection, ratio of viral particles per cancer cell), HSV were highly effective against MPM cells that are resistant to radiation, gemcitabine and cisplatin. NV1066, an oncolytic HSV that expresses green fluorescent protein (GFP) was able to delineate the extent of the disease in a murine model of MPM due to selective infection and expression of GFP in tumor cells. Furthermore, NV1066 was able to reduce the tumor burden and prolong survival even when treated at an advanced stage of the disease.
These findings support the continued investigation of oncolytic HSV as potential therapy for patients with therapy resistant malignant pleural mesothelioma.
PMCID: PMC1804293  PMID: 16475242
Gene therapy; Herpes simplex virus; NV1066
13.  Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18 
Virology Journal  2011;8:22.
Many RNA viruses are displaying great promise in the field of oncolytic virotherapy. Previously, we reported that the picornavirus Coxsackievirus A21 (CVA21) possessed potent oncolytic activity against cultured malignant melanoma cells and melanoma xenografts in mice. In the present study, we demonstrate that three additional Group A Coxsackieviruses; Coxsackievirus A13 (CVA13), Coxsackievirus A15 (CVA15) and Coxsackievirus A18 (CVA18), also have similar oncolytic activity against malignant melanoma. Each of the viruses grew quickly to high titers in cancer cells expressing ICAM-1 and intratumoral injection of preformed subcutaneous SK-Mel-28 xenografts in mice with CVA13, CVA15 and CVA18 resulted in significant tumor volume reduction.
As preexisting immunity could potentially hinder oncolytic virotherapy, sera from stage IV melanoma patients and normal controls were tested for levels of protective antibody against the panel of oncolytic Coxsackieviruses. Serum neutralization assays revealed that 3 of 21 subjects possessed low levels of anti-CVA21 antibodies, while protective antibodies for CVA13, CVA15 and CVA18 were not detected in any sample. Serum from individuals who were seropositive for CVA21 failed to exhibit cross-neutralization of CVA13, CVA15 and CVA18. From these studies it can be concluded that the administration of CVA13, CVA15 or CVA18 could be employed as a potential multivalent oncolytic therapy against malignant melanoma.
PMCID: PMC3033357  PMID: 21241513
14.  Targeting Pediatric Cancer Stem Cells with Oncolytic Virotherapy 
Pediatric research  2012;71(4 Pt 2):500-510.
Cancer stem cells (CSC), also termed “cancer initiating cells” or “cancer progenitor cells”, which have the ability to self-renew, proliferate, and maintain the neoplastic clone, have recently been discovered in a wide variety of pediatric tumors. These CSC are thought to be responsible for tumorigenesis, tumor maintenance, aggressiveness and recurrence due to inherent resistance to current treatment modalities such as chemotherapy and radiation. Oncolytic virotherapy offers a novel, targeted approach for eradicating pediatric CSC by utilizing mechanisms of cell killing that differ from conventional therapies. Moreover, oncolytic viruses have the ability to target specific features of CSC such as cell surface proteins, transcription factors, and the CSC microenvironment. Through genetic engineering, a wide variety of foreign genes may be expressed by oncolytic viruses to augment the oncolytic effect. We review the current data regarding the ability of several types of oncolytic viruses (herpes simplex virus-1 (HSV-1), adenovirus, reovirus, Seneca Valley virus, vaccinia virus, Newcastle disease virus, myxoma virus, vesicular stomatitis virus) to target and kill both CSC and tumor cells in pediatric tumors. We highlight advantages and limitations of each virus and potential ways next-generation engineered viruses may target resilient CSC.
PMCID: PMC3607376  PMID: 22430386
15.  Targeting of Interferon-Beta to Produce a Specific, Multi-Mechanistic Oncolytic Vaccinia Virus 
PLoS Medicine  2007;4(12):e353.
Oncolytic viruses hold much promise for clinical treatment of many cancers, but a lack of systemic delivery and insufficient tumor cell killing have limited their usefulness. We have previously demonstrated that vaccinia virus strains are capable of systemic delivery to tumors in mouse models, but infection of normal tissues remains an issue. We hypothesized that interferon-beta (IFN-β) expression from an oncolytic vaccinia strain incapable of responding to this cytokine would have dual benefits as a cancer therapeutic: increased anticancer effects and enhanced virus inactivation in normal tissues. We report the construction and preclinical testing of this virus.
Methods and Findings
In vitro screening of viral strains by cytotoxicity and replication assay was coupled to cellular characterization by phospho-flow cytometry in order to select a novel oncolytic vaccinia virus. This virus was then examined in vivo in mouse models by non-invasive imaging techniques. A vaccinia B18R deletion mutant was selected as the backbone for IFN-β expression, because the B18R gene product neutralizes secreted type-I IFNs. The oncolytic B18R deletion mutant demonstrated IFN-dependent cancer selectivity and efficacy in vitro, and tumor targeting and efficacy in mouse models in vivo. Both tumor cells and tumor-associated vascular endothelial cells were targeted. Complete tumor responses in preclinical models were accompanied by immune-mediated protection against tumor rechallenge. Cancer selectivity was also demonstrated in primary human tumor explant tissues and adjacent normal tissues. The IFN-β gene was then cloned into the thymidine kinase (TK) region of this virus to create JX-795 (TK−/B18R−/IFN-β+). JX-795 had superior tumor selectivity and systemic intravenous efficacy when compared with the TK−/B18R− control or wild-type vaccinia in preclinical models.
By combining IFN-dependent cancer selectivity with IFN-β expression to optimize both anticancer effects and normal tissue antiviral effects, we were able to achieve, to our knowledge for the first time, tumor-specific replication, IFN-β gene expression, and efficacy following systemic delivery in preclinical models.
Stephen Thorne and colleagues describe, in a mouse model, an oncolytic vaccinia virus with interferon-dependent cancer selectivity that allows tumor-specific replication; it also expresses the IFN-β gene and hence has efficacy against tumors.
Editors' Summary
Normally, throughout life, cell division (which produces new cells) and cell death are carefully balanced to keep the body in good working order. But sometimes cells acquire changes (mutations) in their genetic material that allow them to divide uncontrollably to form cancers—disorganized masses of cells. Cancers can develop anywhere in the body and, as they develop, their cells acquire other genetic changes that enable them to move and start new tumors (metastases) elsewhere. Chemotherapy drugs kill rapidly dividing cancer cells but, because some normal cells are also sensitive to these drugs, it is hard to destroy the cancer without causing serious side effects. Consequently, researchers are trying to develop “targeted” therapies that attack the changes in cancer cells that allow them to divide uncontrollably but leave normal cells unscathed. One promising class of targeted therapies is oncolytic viruses. These viruses make numerous copies of themselves inside cancer cells (but not inside normal cells). Eventually the cancer cell bursts open (lyses), releases more of the therapeutic agent, and dies.
Why Was This Study Done?
Existing oncolytic viruses have two major disadvantages: they have to be injected directly into tumors, and therefore they can't destroy distant metastases; and they don't kill cancer cells particularly efficiently. In this study, the researchers have tried to adapt vaccinia virus (a virus that infects humans and which has recently been shown to kill tumor cells when injected into the bloodstream) in two ways: to both infect cancer cells selectively and then to kill them effectively.
They hypothesized that putting a gene that causes expression of a protein called interferon-beta (IFN-β) in a particular virus strain that is itself incapable of responding to IFN-β might achieve these aims. Human cells infected with viruses usually release IFNs, which induce an antiviral state in nearby cells. But vaccinia virus makes anti-IFN proteins that prevent IFN release. If the viral genes that encode these proteins are removed from the virus, the virus cannot spread through normal cells. However, many cancer cells have defective IFN signaling pathways so the virus can spread through them. IFN-β expression by the virus, however, should improve its innate anticancer effects because IFN-β stops cancer cells dividing, induces an antitumor immune response, and stops tumors developing good blood supplies.
What Did the Researchers Do and Find?
The researchers selected a vaccinia virus strain called WR-delB18R in which the B18R gene, which encodes an anti-IFN protein, had been removed from the virus. (WR is a wild-type virus.) In laboratory experiments, IFN treatment blocked the spread of WR-delB18R in normal human cells but not in human tumor cells. After being injected into the veins of tumor-bearing mice, WR-delB18R was rapidly cleared from normal tissues but persisted in the tumors. A single injection of WR-delB18R directly into the tumor killed most of the tumor cells. A similar dose injected into a vein was less effective but nevertheless increased the survival time of some of the mice by directly killing the tumor cells, by targeting the blood supply of the tumors, and by inducing antitumor immunity. Finally, when the researchers inserted the IFN-β gene into this WR-delB18R, the new virus—JX-795—was much better at killing tumors after intravenous injection than either WR or WR-delB18R.
What Do These Findings Mean?
These findings indicate that the vaccinia virus can be adapted so that it replicates only in tumor cells and kills these cells effectively after intravenous injection. In particular, they show that the strategy adopted by the researchers both optimizes the anticancer effects of the virus and minimizes viral replication in normal tissues. JX-795 is a promising oncolytic virus, therefore, particularly since vaccinia virus has been safely used for many years to vaccinate people against smallpox. Nevertheless, it will be some years before JX-795 can be used clinically. Vaccinia virus constructs like this need to be tested extensively in the laboratory and in animals before any attempt is made to test them in people and, even if they passes all these preclinical tests with flying colors, only clinical trials will reveal whether they can treat human cancer. Several related strains of vaccinia virus are currently undergoing clinical testing.
Additional Information.
Please access these Web sites via the online version of this summary at
The US National Cancer Institute provides information on all aspects of cancer (in English and Spanish)
CancerQuest, from Emory University, provides information on all aspects of cancer (in several languages)
The UK charity Cancerbackup also provides information on all aspects of cancer
Wikipedia has a page on oncolytic viruses (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
A short interview about oncolytic viruses with researcher Dr. John Bell is available on the Insidermedicine Web site
The Oncolytic virus Web page provides lists of oncolytic viruses classified by type
PMCID: PMC2222946  PMID: 18162040
16.  Use of an Oncolytic Virus Secreting GM-CSF as Combined Oncolytic and Immunotherapy for Treatment of Colorectal and Hepatic Adenocarcinomas 
Surgery  2007;141(4):520-529.
Oncolytic cancer therapy using herpes simplex viruses (HSV) that have direct tumoricidal effects and cancer immunotherapy using the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) have each been effective in preclinical testing. NV1034 is a multi-mutated oncolytic HSV carrying the gene for murine GM-CSF that attempts to combine these two anticancer strategies. The purpose of this study was to compare NV1034 to NV1023, the parent HSV mutants lacking GM-CSF, in order to determine if such combined oncolytic and immunotherapy using a single vector has advantages over oncolytic therapy alone. In vitro, expression GM-CSF did not alter the infectivity, in vitro cytotoxicity, or replication of NV1034 compared to the non-cytokine secreting control. Tumors infected with NV1034 produced GM-CSF in picogram quantities. In vivo efficacy of the viruses against murine colorectal carcinoma CT26 and murine hepatoma Hepa l–6 was then tested in subcutaneous tumors in syngeneic Balb/c and C57 L/J mice respectively. In these immune competent models, NV1034 or NV1023 each demonstrated potent antitumor activity. Treatment with NV1034 had significantly better antitumor effect compared to treatment with NV1023. Furthermore, in mice depleted of CD4+ and CD8+ T-lymphocytes, there was no difference in the antitumor efficacy of these viruses. Viral vectors combining oncolytic and immunotherapy are promising agents in treatment of colorectal carcinoma and hepatoma.
PMCID: PMC2559995  PMID: 17383529
Colorectal tumor; Hepatoma; HSV; Immunotherapy; Oncolytic therapy
17.  The immunologic aspects of poxvirus oncolytic therapy 
Cancer Immunology, Immunotherapy  2009;58(9):1355-1362.
The concept of using replicating, oncolytic viruses in cancer therapy dates to the beginning of the 20th century. However, in the last few years an increasing number of pre-clinical and clinical trials have been carried out with promising preliminarily results. Novel, indeed, is the suggestion that viral oncolytic therapy might not operate exclusively through an oncolysis-mediated process but additionally requires the “assistance” of the host’s immune system. Originally, the host’s immune response was believed to play a predominantly obstructive role against viral replication, hence limiting the anti-tumor efficacy of viral vectors. Recent data, however, suggests that the immune response may also play a key role in promoting tumor destruction in association with the oncolytic process. In fact, immune effector pathways activated during oncolytic virus-induced tumor rejection seem to follow a similar pattern to those observed when the broader phenomenon of immune-mediated tissue-specific rejection occurs in other immune-related pathologies. We recently formulated the “Immunologic Constant of Rejection” hypothesis, emphasizing commonalties in transcriptional patterns observed when tissue-destruction occurs: whether with a favorable outcome, such as in tumor rejection and pathogen clearance; or a destructive one, such as in allograft rejection or autoimmunity. Here, we propose that a similar mechanism induces clearance of virally-infected tumors and that such a mechanism is primarily dependent on innate immune functions.
PMCID: PMC3404612  PMID: 19266198
Vaccinia Virus; oncolytic therapy; innate immunity; tumor rejection
18.  Posttranslational Modification of Vesicular Stomatitis Virus Glycoprotein, but Not JNK Inhibition, Is the Antiviral Mechanism of SP600125 
Journal of Virology  2012;86(9):4844-4855.
Vesicular stomatitis virus (VSV), a negative-sense single-stranded-RNA rhabdovirus, is an extremely promising oncolytic agent for cancer treatment. Since oncolytic virotherapy is moving closer to clinical application, potentially synergistic combinations of oncolytic viruses and molecularly targeted antitumor agents are becoming a meaningful strategy for cancer treatment. Mitogen-activated protein kinase (MAPK) inhibitors have been shown to impair liver cell proliferation and tumor development, suggesting their potential use as therapeutic agents for hepatocellular carcinoma (HCC). In this work, we show that the impairment of MAPK in vitro did not interfere with the oncolytic properties of VSV in HCC cell lines. Moreover, the administration of MAPK inhibitors did not restore the responsiveness of HCC cells to alpha/beta interferon (IFN-α/β). In contrast to previous reports, we show that JNK inhibition by the inhibitor SP600125 is not responsible for VSV attenuation in HCC cells and that this compound acts by causing a posttranslational modification of the viral glycoprotein.
PMCID: PMC3347359  PMID: 22345438
19.  Oncolytic Measles Virus Encoding Thyroidal Sodium Iodide Symporter for Squamous Cell Cancer of the Head and Neck Radiovirotherapy 
Human Gene Therapy  2011;23(3):295-301.
Oncolytic measles virus (MV) encoding the human thyroidal sodium iodide symporter (MV-NIS) has proved to be safe after intraperitoneal or intravenous administration in patients with ovarian cancer or multiple myeloma, respectively, but it has not yet been administered through intratumoral injection in humans. Squamous cell carcinoma (SCC) of the head and neck (SCCHN) usually is locally invasive and spreads to the cervical lymph nodes, which are suitable for the intratumoral administration of oncolytic viruses. To test whether oncolytic MV is an effective treatment for SCCHN, we used oncolytic MV-NIS to infect SCCHN in vitro and in vivo. The data show that SCCHN cells were infected and killed by MV-NIS in vitro. Permissiveness of the tumor cells to MV infection was not affected by irradiation after viral addition. Monitored noninvasively through radioiodine-based single-photon emission computed tomography/computed tomography, intratumorally virus-delivered NIS has concentrated the radioiodine in the MV-NIS–treated tumors in the FaDu mouse xenograft model of human SCCHN, and the antitumor effect could be boosted significantly (p<0.05) either with concomitant cyclophosphamide therapy or with appropriately timed administration of radioiodine 131I. MV-NIS could be a promising new anticancer agent that may substantially enhance the outcomes of standard therapy after intratumoral administration in patients with locally advanced SCCHN.
Li and colleagues investigate the use of oncolytic measles virus encoding human thyroidal sodium iodide symporter (MV-NIS) to treat squamous cell carcinoma of the head and neck (SCCHN) in vitro and in vivo. MV-NIS-treated tumors are able to concentrate administered radioiodine in a mouse xenograft model of human SCCHN, and the antitumor effect is significantly boosted by cyclophosphamide therapy.
PMCID: PMC3300082  PMID: 22235810
20.  Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin 
BMC Cancer  2014;14:206.
Medulloblastoma is the most common type of pediatric brain tumor. Although numerous factors influence patient survival rates, more than 30% of all cases will ultimately be refractory to conventional therapies. Current standards of care are also associated with significant morbidities, giving impetus for the development of new treatments. We have previously shown that oncolytic measles virotherapy is effective against medulloblastoma, leading to significant prolongation of survival and even cures in mouse xenograft models of localized and metastatic disease. Because medulloblastomas are known to be highly vascularized tumors, we reasoned that the addition of angiogenesis inhibitors could further enhance the efficacy of oncolytic measles virotherapy. Toward this end, we have engineered an oncolytic measles virus that express a fusion protein of endostatin and angiostatin, two endogenous and potent inhibitors of angiogenesis.
Oncolytic measles viruses encoding human and mouse variants of a secretable endostatin/angiostatin fusion protein were designed and rescued according to established protocols. These viruses, known as MV-hE:A and MV-mE:A respectively, were then evaluated for their anti-angiogenic potential and efficacy against medulloblastoma cell lines and orthotopic mouse models of localized disease.
Medulloblastoma cells infected by MV-E:A readily secrete endostatin and angiostatin prior to lysis. The inclusion of the endostatin/angiostatin gene did not negatively impact the measles virus’ cytotoxicity against medulloblastoma cells or alter its growth kinetics. Conditioned media obtained from these infected cells was capable of inhibiting multiple angiogenic factors in vitro, significantly reducing endothelial cell tube formation, viability and migration compared to conditioned media derived from cells infected by a control measles virus. Mice that were given a single intratumoral injection of MV-E:A likewise showed reduced numbers of tumor-associated blood vessels and a trend for increased survival compared to mice treated with the control virus.
These data suggest that oncolytic measles viruses encoding anti-angiogenic proteins may have therapeutic benefit against medulloblastoma and support ongoing efforts to target angiogenesis in medulloblastoma.
PMCID: PMC3995427  PMID: 24646176
Oncolytic measles virus; Angiogenesis; Endostatin; Angiostatin; Medulloblastoma
21.  A three-dimensional assay for measurement of viral-induced oncolysis 
Cancer gene therapy  2007;14(4):421-430.
Oncolytic viruses represent a novel cancer treatment strategy. Despite their promising preclinical data, however, corresponding clinical trials have disappointed. To aid preclinical analyses, we hypothesized that three-dimensional tumor cell clusters or spheroids might provide an assay system superior to conventional monolayer cell cultures. Spheroids show viral infection, replication and oncolytic patterns distinct from conventional monolayer assays. Therefore, viral tumor penetration and oncolysis measurements may be improved with such three-dimensional models. Also, preclinical analyses of oncolytic viruses frequently measure mitochondrial activity, but more accurate measures of oncolysis might involve quantitation of intracellular protein release. Therefore, we measured luciferase released from luciferase-expressing spheroids and found unique patterns that maintained consistency with various viruses and doses. The relative variations between viruses and doses may represent temporal differences in oncolysis dynamics. Analysis of five recombinant replicative adenoviruses with promise for clinical application showed that Ad5/3-Δ24 produced the most luciferase release 1 week after infection and achieved the earliest and highest peak luciferase release level. Ad5/3-Δ24 also effected the earliest subtotal spheroid cell death. These findings closely parallel monolayer oncolysis assays with these agents. Therefore, the luciferase-expressing tumor spheroid assay represents a promising three-dimensional model for preclinical analysis of replicative oncolytic agents.
PMCID: PMC2203214  PMID: 17235353
adenovirus; oncolytic virus; ovarian cancer; replication-competent viruses; spheroid
22.  Advances in Oncolytic Virus Therapy for Glioma 
The World Health Organization grossly classifies the various types of astrocytomas using a grade system with grade IV gliomas having the worst prognosis. Oncolytic virus therapy is a novel treatment option for GBM patients. Several patents describe various oncolytic viruses used in preclinical and clinical trials to evaluate safety and efficacy. These viruses are natural or genetically engineered from different viruses such as HSV-1, Adenovirus, Reovirus, and New Castle Disease Virus. While several anecdotal studies have indicated therapeutic advantage, recent clinical trials have revealed the safety of their usage, but demonstration of significant efficacy remains to be established. Oncolytic viruses are being redesigned with an interest in combating the tumor microenvironment in addition to defeating the cancerous cells. Several patents describe the inclusion of tumor microenvironment modulating genes within the viral backbone and in particular those which attack the tumor angiotome. The very innovative approaches being used to improve therapeutic efficacy include: design of viruses which can express cytokines to activate a systemic antitumor immune response, inclusion of angiostatic genes to combat tumor vasculature, and also enzymes capable of digesting tumor extra cellular matrix (ECM) to enhance viral spread through solid tumors. As increasingly more novel viruses are being tested and patented, the future battle against glioma looks promising.
PMCID: PMC2720101  PMID: 19149710
Patent; glioma; astrocytoma; oncolytic virus; HSV-1; adenovirus; reovirus; new castle disease virus; angiogenesis; immune system; extra cellular matrix
23.  Development of a Regulatable Oncolytic Herpes Simplex Virus Type 1 Recombinant Virus for Tumor Therapy ▿  
Journal of Virology  2010;84(16):8163-8171.
Oncolytic viruses are genetically modified viruses that preferentially replicate in host cancer cells, leading to the production of new viruses and, ultimately, cell death. Currently, no oncolytic viruses that are able to kill only tumor cells while leaving normal cells intact are available. Using T-REx (Invitrogen, Carlsbad, CA) gene switch technology and a self-cleaving ribozyme, we have constructed a novel oncolytic HSV-1 recombinant, KTR27, whose replication can be tightly controlled and regulated by tetracycline in a dose-dependent manner. Infection of normal replicating cells as well as multiple human cancer cell types with KTR27 in the presence of tetracycline led to 1,000- to 250,000-fold-higher progeny virus production than in the absence of tetracycline, while little viral replication and virus-associated cytotoxicity was observed in infected growth-arrested normal human cells. We show that intratumoral inoculation with KTR27 markedly inhibits tumor growth in a xenograft model of human non-small-cell lung cancer in nude mice. It is shown further that replication of KTR27 in the inoculated tumors can be efficiently controlled by local codelivery of tetracycline to the target tumors at the time of KTR27 inoculation. Collectively, KTR27 possesses a unique pharmacological feature that can limit its replication to the targeted tumor microenvironment with localized tetracycline delivery, thus minimizing unwanted viral replication in distant tissues following local virotherapy. This regulatory mechanism would also allow the replication of the virus to be quickly shut down should adverse effects be detected.
PMCID: PMC2916535  PMID: 20519407
24.  Viruses as anticancer drugs 
Oncolytic viruses are being developed as anticancer drugs. They propagate selectively in tumor tissue and destroy it without causing excessive damage to normal non-cancerous tissues. When used as drugs, they must meet stringent criteria for safety and efficacy and be amenable to pharmacological study in human subjects. Specificity for neoplastic tissue is the key to safety, and this goal can be achieved through a variety of ingenious virus-engineering strategies. Antiviral immunity remains a significant barrier to the clinical efficacy of oncolytic viruses but this is being addressed by using novel immune-evasive delivery strategies and immunosuppressive drugs. Noninvasive pharmacokinetic monitoring is facilitated by engineering marker genes into the viral genome. Clinical data on the pharmacokinetics of oncolytic viruses will be the key to accelerating their development and approval as effective anticancer drugs. This review introduces concepts relevant to the use of viruses as anticancer drugs, emphasizing targeting mechanisms as well as safety and efficacy issues that are currently limiting their clinical success.
PMCID: PMC3125087  PMID: 17573126
25.  Oncolytic Virotherapy for Multiple Myeloma: Past, Present, and Future 
Bone Marrow Research  2011;2011:632948.
Multiple myeloma (MM) is a B-cell malignancy that is currently felt to be incurable. Despite recently approved novel targeted treatments such as lenalidomide and bortezomib, most MM patients' relapse is emphasizing the need for effective and well-tolerated therapies for this deadly disease. The use of oncolytic viruses has garnered significant interest as cancer therapeutics in recent years, and are currently under intense clinical investigation. Both naturally occurring and engineered DNA and RNA viruses have been investigated preclinically as treatment modalities for several solid and hematological malignancies. Presently, only a genetically modified measles virus is in human clinical trials for MM. The information obtained from this and other future clinical trials will guide clinical application of oncolytic viruses as anticancer agents for MM. This paper provides a timely overview of the history of oncolytic viruses for the treatment of MM and future strategies for the optimization of viral therapy for this disease.
PMCID: PMC3199974  PMID: 22046569

Results 1-25 (20703)