PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (427132)

Clipboard (0)
None

Related Articles

1.  Sequential Analysis of Trans-SNARE Formation in Intracellular Membrane Fusion 
PLoS Biology  2012;10(1):e1001243.
SM proteins stabilize cis-SNARE complexes leading to a specific preferred topology for trans-SNARE formation.
SNARE complexes are required for membrane fusion in the endomembrane system. They contain coiled-coil bundles of four helices, three (Qa, Qb, and Qc) from target (t)-SNAREs and one (R) from the vesicular (v)-SNARE. NSF/Sec18 disrupts these cis-SNARE complexes, allowing reassembly of their subunits into trans-SNARE complexes and subsequent fusion. Studying these reactions in native yeast vacuoles, we found that NSF/Sec18 activates the vacuolar cis-SNARE complex by selectively displacing the vacuolar Qa SNARE, leaving behind a QbcR subcomplex. This subcomplex serves as an acceptor for a Qa SNARE from the opposite membrane, leading to Qa-QbcR trans-complexes. Activity tests of vacuoles with diagnostic distributions of inactivating mutations over the two fusion partners confirm that this distribution accounts for a major share of the fusion activity. The persistence of the QbcR cis-complex and the formation of the Qa-QbcR trans-complex are both sensitive to the Rab-GTPase inhibitor, GDI, and to mutations in the vacuolar tether complex, HOPS (HOmotypic fusion and vacuolar Protein Sorting complex). This suggests that the vacuolar Rab-GTPase, Ypt7, and HOPS restrict cis-SNARE disassembly and thereby bias trans-SNARE assembly into a preferred topology.
Author Summary
Cellular components often travel between organelles in vesicular entities. This intracellular traffic usually involves production of a vesicle containing cargo from one organelle membrane, movement of the vesicle to its destination, and then fusion of the vesicle with the target organelle. Thus, membrane fusion is a fundamental process required for these intracellular trafficking events. SNARE proteins and SM proteins mediate this fusion process. SNAREs form complexes that are either located on the same membrane or vesicle (called cis-SNARE complexes) or bridge two membrane compartments or vesicles (trans-SNARE complexes). The cis-SNARE complexes must be activated before trans-SNARE complexes can form and allow the membranes to fuse. We investigated the mechanism of cis-SNARE activation and trans-SNARE formation by studying the fusion of highly purified yeast vacuoles. We found that cis-SNARE activation involves the selective removal of a single SNARE protein from a pre-existing cis-SNARE complex, which is replaced by a similar SNARE originating from the other fusion partner. The activated cis-SNARE complexes depended on SM proteins for their stability. Thus, we have shown that the preferred topology of trans-SNARE formation is determined by cis-SNARE–SM protein interactions.
doi:10.1371/journal.pbio.1001243
PMCID: PMC3260307  PMID: 22272185
2.  HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites 
Molecular Biology of the Cell  2011;22(14):2601-2611.
The homotypic fusion and protein sorting (HOPS) tethering complex of the yeast vacuole is involved in multiple fusion reactions. We demonstrate that HOPS has two binding sites for SNAREs and that binding to the minimal SNARE complex is necessary for HOPS-stimulated fusion. Our data highlight the dual role of HOPS in Rab-mediated tethering and SNARE-driven fusion.
Membrane fusion within the endomembrane system follows a defined order of events: membrane tethering, mediated by Rabs and tethers, assembly of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes, and lipid bilayer mixing. Here we present evidence that the vacuolar HOPS tethering complex controls fusion through specific interactions with the vacuolar SNARE complex (consisting of Vam3, Vam7, Vti1, and Nyv1) and the N-terminal domains of Vam7 and Vam3. We show that homotypic fusion and protein sorting (HOPS) binds Vam7 via its subunits Vps16 and Vps18. In addition, we observed that Vps16, Vps18, and the Sec1/Munc18 protein Vps33, which is also part of the HOPS complex, bind to the Q-SNARE complex. In agreement with this observation, HOPS-stimulated fusion was inhibited if HOPS was preincubated with the minimal Q-SNARE complex. Importantly, artificial targeting of Vam7 without its PX domain to membranes rescued vacuole morphology in vivo, but resulted in a cytokinesis defect if the N-terminal domain of Vam3 was also removed. Our data thus support a model of HOPS-controlled membrane fusion by recognizing different elements of the SNARE complex.
doi:10.1091/mbc.E11-02-0104
PMCID: PMC3135484  PMID: 21613544
3.  HOPS Initiates Vacuole Docking by Tethering Membranes before trans-SNARE Complex Assembly 
Molecular Biology of the Cell  2010;21(13):2297-2305.
Large oligomeric tethering complexes such as exocyst, TRAPP, and HOPS have been implicated in Rab- and SNARE-dependent membrane fusion. This paper shows that HOPS directly tethers liposomes that bear vacuolar lipids or the Rab Ypt7p and that tethering is the main mechanism by which HOPS stimulates trans-SNARE complex formation and fusion.
Vacuole homotypic fusion has been reconstituted with all purified components: vacuolar lipids, four soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, Sec17p, Sec18p, the Rab Ypt7p, and the hexameric homotypic fusion and vacuole protein sorting complex (HOPS). HOPS is a Rab-effector with direct affinity for SNAREs (presumably via its Sec1-Munc18 homologous subunit Vps33p) and for certain vacuolar lipids. Each of these pure vacuolar proteins was required for optimal proteoliposome clustering, raising the question of which was most directly involved. We now present model subreactions of clustering and fusion that reveal that HOPS is the direct agent of tethering. The Rab and vacuole lipids contribute to tethering by supporting the membrane association of HOPS. HOPS indirectly facilitates trans-SNARE complex formation by tethering membranes, because the synthetic liposome tethering factor polyethylene glycol can also stimulate trans-SNARE complex formation and fusion. SNAREs further stabilize the associations of HOPS-tethered membranes. HOPS then protects newly formed trans-SNARE complexes from disassembly by Sec17p/Sec18p.
doi:10.1091/mbc.E10-01-0044
PMCID: PMC2893992  PMID: 20462954
4.  The tethering complex HOPS catalyzes assembly of the soluble SNARE Vam7 into fusogenic trans-SNARE complexes 
Molecular Biology of the Cell  2013;24(23):3746-3753.
Large tethering complexes play an essential role in many intracellular membrane fusion events, yet their mode of action is poorly understood. A new function of the HOPS complex is uncovered in facilitating vacuolar fusion, the specific recruitment of the soluble SNARE Vam7 for the formation of fusogenic trans-SNARE complexes.
The fusion of yeast vacuolar membranes depends on the disassembly of cis–soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes and the subsequent reassembly of new SNARE complexes in trans. The disassembly of cis-SNARE complexes by Sec17/Sec18p releases the soluble SNARE Vam7p from vacuolar membranes. Consequently, Vam7p needs to be recruited to the membrane at future sites of fusion to allow the formation of trans-SNARE complexes. The multisubunit tethering homotypic fusion and vacuole protein sorting (HOPS) complex, which is essential for the fusion of vacuolar membranes, was previously shown to have direct affinity for Vam7p. The functional significance of this interaction, however, has been unclear. Using a fully reconstituted in vitro fusion reaction, we now show that HOPS facilitates membrane fusion by recruiting Vam7p for fusion. In the presence of HOPS, unlike with other tethering agents, very low levels of added Vam7p suffice to induce vigorous fusion. This is a specific recruitment of Vam7p rather than an indirect stimulation of SNARE complex formation through tethering, as HOPS does not facilitate fusion with a low amount of a soluble form of another vacuolar SNARE, Vti1p. Our findings establish yet another function among the multiple tasks that HOPS performs to catalyze the fusion of yeast vacuoles.
doi:10.1091/mbc.E13-07-0419
PMCID: PMC3843000  PMID: 24088569
5.  Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion 
eLife  2014;3:e01879.
Like other intracellular fusion events, the homotypic fusion of yeast vacuoles requires a Rab GTPase, a large Rab effector complex, SNARE proteins which can form a 4-helical bundle, and the SNARE disassembly chaperones Sec17p and Sec18p. In addition to these proteins, specific vacuole lipids are required for efficient fusion in vivo and with the purified organelle. Reconstitution of vacuole fusion with all purified components reveals that high SNARE levels can mask the requirement for a complex mixture of vacuole lipids. At lower, more physiological SNARE levels, neutral lipids with small headgroups that tend to form non-bilayer structures (phosphatidylethanolamine, diacylglycerol, and ergosterol) are essential. Membranes without these three lipids can dock and complete trans-SNARE pairing but cannot rearrange their lipids for fusion.
DOI: http://dx.doi.org/10.7554/eLife.01879.001
eLife digest
All cells are enclosed with a membrane that is made of phospholipid molecules, and many of the structures found inside cells—such as the vacuoles in plant and fungal cells—are also enclosed with a phospholipid membrane. To form a membrane, the phospholipid molecules—which have a phosphate head and two fatty acid tails—arrange themselves in two layers, with the fatty acid tails pointing into the membrane, and the phosphate heads pointing outwards. This structure is known as a phospholipid bilayer.
Vacuoles are filled with water that contains various proteins and molecules in solution, and adjust their volume to keep the concentrations of substances in the cell in balance. To do this, the vacuoles fuse with each other. This fusion process requires dramatic spatial rearrangements of the phospholipid molecules.
The SNARE family of proteins plays a key role in membrane fusion. As the two membranes come together, SNARE proteins located on each membrane form a complex known as a trans-SNARE complex. This docks the vacuole in place beside another vacuole while the phospholipid molecules in the two membranes rearrange. However, much less is known about the phospholipid molecules that are involved in the fusion process.
Now, Zick et al. have shown that three types of phospholipid molecules must be present for membrane fusion to be completed. These have in common that their phosphate ‘headgroups’ are small and they do not tend to form bilayers. The vacuoles can dock beside each other if these small headgroup phospholipid molecules are not present, but the bilayer lipids in the vacuole membranes cannot rearrange themselves in the absence of these particular lipids.
The importance of these nonbilayer lipid molecules had not previously been established, as the majority of experiments investigating membrane fusion used concentrations of SNARE proteins that were much higher than those found physiologically. At such high concentrations, fusion can go ahead without the nonbilayer lipid molecules being present.
DOI: http://dx.doi.org/10.7554/eLife.01879.002
doi:10.7554/eLife.01879
PMCID: PMC3937803  PMID: 24596153
membrane fusion; SNAREs; ergosterol; diacylglycerol; phosphatidylethanolamine; S. cerevisiae
6.  Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion 
The Journal of Cell Biology  2003;160(3):365-374.
Vacuole tethering, docking, and fusion proteins assemble into a “vertex ring” around the apposed membranes of tethered vacuoles before catalyzing fusion. Inhibitors of the fusion reaction selectively interrupt protein assembly into the vertex ring, establishing a causal assembly hierarchy: (a) The Rab GTPase Ypt7p mediates vacuole tethering and forms the initial vertex ring, independent of t-SNAREs or actin; (b) F-actin disassembly and GTP-bound Ypt7p direct the localization of other fusion factors; (c) The t-SNAREs Vam3p and Vam7p regulate each other's vertex enrichment, but do not affect Ypt7p localization. The v-SNARE Vti1p is enriched at vertices by a distinct pathway that is independent of the t-SNAREs, whereas both t-SNAREs will localize to vertices when trans-pairing of SNAREs is blocked. Thus, trans-SNARE pairing is not required for SNARE vertex enrichment; and (d) The t-SNAREs regulate the vertex enrichment of both G-actin and the Ypt7p effector complex for homotypic fusion and vacuole protein sorting (HOPS). In accord with this hierarchy concept, the HOPS complex, at the end of the vertex assembly hierarchy, is most enriched at those vertices with abundant Ypt7p, which is at the start of the hierarchy. Our findings provide a unique view of the functional relationships between GTPases, SNAREs, and actin in membrane fusion.
doi:10.1083/jcb.200209095
PMCID: PMC2172665  PMID: 12566429
membrane fusion; SNAREs; yeast vacuoles; Rab GTPase; actin
7.  HOPS Proofreads the trans-SNARE Complex for Yeast Vacuole Fusion 
Molecular Biology of the Cell  2008;19(6):2500-2508.
The fusion of yeast vacuoles, like other organelles, requires a Rab-family guanosine triphosphatase (Ypt7p), a Rab effector and Sec1/Munc18 (SM) complex termed HOPS (homotypic fusion and vacuole protein sorting), and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The central 0-layer of the four bundled vacuolar SNAREs requires the wild-type three glutaminyl (Q) and one arginyl (R) residues for optimal fusion. Alterations of this layer dramatically increase the Km value for SNAREs to assemble trans-SNARE complexes and to fuse. We now find that added purified HOPS complex strongly suppresses the fusion of vacuoles bearing 0-layer alterations, but it has little effect on the fusion of vacuoles with wild-type SNAREs. HOPS proofreads at two levels, inhibiting the formation of trans-SNARE complexes with altered 0-layers and suppressing the ability of these mismatched 0-layer trans-SNARE complexes to support membrane fusion. HOPS proofreading also extends to other parts of the SNARE complex, because it suppresses the fusion of trans-SNARE complexes formed without the N-terminal Phox homology domain of Vam7p (Qc). Unlike some other SM proteins, HOPS proofreading does not require the Vam3p (Qa) N-terminal domain. HOPS thus proofreads SNARE domain and N-terminal domain structures and regulates the fusion capacity of trans-SNARE complexes, only allowing full function for wild-type SNARE configurations. This is the most direct evidence to date that HOPS is directly involved in the fusion event.
doi:10.1091/mbc.E08-01-0077
PMCID: PMC2397298  PMID: 18385512
8.  Topological arrangement of the intracellular membrane fusion machinery 
Molecular Biology of the Cell  2011;22(14):2612-2619.
The topology of the SNARE complex is strictly restricted: of all the possible topological combinations, only one is fusogenic—the topology compatible with both the basal fusion and the SM activation. A fusogenic SNARE complex must contain a complete set of the QabcR SNARE helices.
Soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) form a four-helix coiled-coil bundle that juxtaposes two bilayers and drives a basal level of membrane fusion. The Sec1/Munc18 (SM) protein binds to its cognate SNARE bundle and accelerates the basal fusion reaction. The question of how the topological arrangement of the SNARE helices affects the reactivity of the fusion proteins remains unanswered. Here we address the problem for the first time in a reconstituted system containing both SNAREs and SM proteins. We find that to be fusogenic a SNARE topology must support both basal fusion and SM stimulation. Certain topological combinations of exocytic SNAREs result in basal fusion but cannot support SM stimulation, whereas other topologies support SM stimulation without inducing basal fusion. It is striking that of all the possible topological combinations of exocytic SNARE helices, only one induces efficient fusion. Our results suggest that the intracellular membrane fusion complex is designed to fuse bilayers according to one genetically programmed topology.
doi:10.1091/mbc.E11-03-0190
PMCID: PMC3135485  PMID: 21633111
9.  Crystal structure of the Habc domain of neuronal syntaxin from the squid Loligo pealei reveals conformational plasticity at its C-terminus 
Background
Intracellular membrane fusion processes are mediated by the spatial and temporal control of SNARE complex assembly that results in the formation of a four-helical bundle, composed of one vesicle SNARE and three target membrane SNARE polypeptide chains. Syntaxins are essential t-SNAREs and are characterized by an N-terminal Habc domain, a flexible linker region, a coiled-coil or SNARE motif and a membrane anchor. The N-terminal Habc domain fulfills important regulatory functions while the coiled-coil motif, present in all SNAREs, is sufficient for SNARE complex formation, which is thought to drive membrane fusion.
Results
Here we report the crystal structure of the Habc domain of neuronal syntaxin from the squid Loligo pealei, s-syntaxin. Squid Habc crystallizes as a dimer and the monomer structure consists of a three-helical bundle. One molecule is strikingly similar to mammalian syntaxin 1A while the second one shows a structural deviation from the common fold in that the C-terminal part of helix C unwinds and adopts an extended conformation.
Conclusion
Conservation of surface residues indicates that the cytosolic part of s-syntaxin can adopt an auto-inhibitory closed conformation that may bind squid neuronal Sec1, s-Sec1, in the same manner as observed in structure of the rat nSec1/syntaxin 1A complex. Furthermore, despite the overall structural similarity, the observed changes at the C-terminus of one molecule indicate structural plasticity in neuronal syntaxin. Implications of the structural conservation and the changes are discussed with respect to potential Habc domain binding partners such as Munc13, which facilitates the transition from the closed to the open conformation.
doi:10.1186/1472-6807-4-6
PMCID: PMC415556  PMID: 15113421
10.  Importance of the N-Terminal Domain of the Qb-SNARE Vti1p for Different Membrane Transport Steps in the Yeast Endosomal System 
PLoS ONE  2013;8(6):e66304.
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) on transport vesicles and target membranes are crucial for vesicle targeting and fusion. They form SNARE complexes, which contain four α-helical SNARE motifs contributed by three or four different SNAREs. Most SNAREs function only in a single transport step. The yeast SNARE Vti1p participates in four distinct SNARE complexes in transport from the trans Golgi network to late endosomes, in transport to the vacuole, in retrograde transport from endosomes to the trans Golgi network and in retrograde transport within the Golgi. So far, all vti1 mutants investigated had mutations within the SNARE motif. Little is known about the function of the N-terminal domain of Vti1p, which forms a three helix bundle called Habc domain. Here we generated a temperature-sensitive mutant of this domain to study the effects on different transport steps. The secondary structure of wild type and vti1-3 Habc domain was analyzed by circular dichroism spectroscopy. The amino acid exchanges identified in the temperature-sensitive vti1-3 mutant caused unfolding of the Habc domain. Transport pathways were investigated by immunoprecipitation of newly synthesized proteins after pulse-chase labeling and by fluorescence microscopy of a GFP-tagged protein cycling between plasma membrane, early endosomes and Golgi. In vti1-3 cells transport to the late endosome and assembly of the late endosomal SNARE complex was blocked at 37°C. Retrograde transport to the trans Golgi network was affected while fusion with the vacuole was possible but slower. Steady state levels of SNARE complexes mediating these steps were less affected than that of the late endosomal SNARE complex. As different transport steps were affected our data demonstrate the importance of a folded Vti1p Habc domain for transport.
doi:10.1371/journal.pone.0066304
PMCID: PMC3680383  PMID: 23776654
11.  Dynamin-SNARE interactions control trans-SNARE formation in intracellular membrane fusion 
Nature communications  2013;4:1704.
The fundamental processes of membrane fission and fusion determine size and copy numbers of intracellular organelles. While SNARE proteins and tethering complexes mediate intracellular membrane fusion, fission requires the presence of dynamin or dynamin-related proteins. Here we study these reactions in native yeast vacuoles and find that the yeast dynamin homolog Vps1 is not only an essential part of the fission machinery, but also controls membrane fusion by generating an active Qa SNARE- tethering complex pool, which is essential for trans-SNARE formation. Our findings provide new insight into the role of dynamins in membrane fusion by directly acting on SNARE proteins.
doi:10.1038/ncomms2724
PMCID: PMC3630463  PMID: 23591871
12.  The N-terminal Domain of the t-SNARE Vam3p Coordinates Priming and Docking in Yeast Vacuole Fusion 
Molecular Biology of the Cell  2001;12(11):3375-3385.
Homotypic fusion of yeast vacuoles requires a regulated sequence of events. During priming, Sec18p disassembles cis-SNARE complexes. The HOPS complex, which is initially associated with the cis-SNARE complex, then mediates tethering. Finally, SNAREs assemble into trans-complexes before the membranes fuse. The t-SNARE of the vacuole, Vam3p, plays a central role in the coordination of these processes. We deleted the N-terminal region of Vam3p to analyze the role of this domain in membrane fusion. The truncated protein (Vam3ΔN) is sorted normally to the vacuole and is functional, because the vacuolar morphology is unaltered in this strain. However, in vitro vacuole fusion is strongly reduced due to the following reasons: Assembly, as well as disassembly of the cis-SNARE complex is more efficient on Vam3ΔN vacuoles; however, the HOPS complex is not associated well with the Vam3ΔN cis-complex. Thus, primed SNAREs from Vam3ΔN vacuoles cannot participate efficiently in the reaction because trans-SNARE pairing is substantially reduced. We conclude that the N-terminus of Vam3p is required for coordination of priming and docking during homotypic vacuole fusion.
PMCID: PMC60262  PMID: 11694574
13.  Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex 
Molecular Biology of the Cell  2012;23(23):4611-4622.
Vps33, a member of the Sec1/Munc18 family of soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) chaperones, is a subunit of the homotypic fusion and protein sorting and class C core vacuole/endosome tethering complexes and essential for endolysosomal transport. In this study, Vps33 interactions with SNARE proteins are investigated using genetic and biochemical approaches.
Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins catalyze membrane fusion events in the secretory and endolysosomal systems, and all SNARE-mediated fusion processes require cofactors of the Sec1/Munc18 (SM) family. Vps33 is an SM protein and subunit of the Vps-C complexes HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering), which are central regulators of endocytic traffic. Here we present biochemical studies of interactions between Saccharomyces cerevisiae vacuolar SNAREs and the HOPS holocomplex or Vps33 alone. HOPS binds the N-terminal Habc domain of the Qa-family SNARE Vam3, but Vps33 is not required for this interaction. Instead, Vps33 binds the SNARE domains of Vam3, Vam7, and Nyv1. Vps33 directly binds vacuolar quaternary SNARE complexes, and the affinity of Vps33 for SNARE complexes is greater than for individual SNAREs. Through targeted mutational analyses, we identify missense mutations of Vps33 that produce a novel set of defects, including cargo missorting and the loss of Vps33-HOPS association. Together these data suggest a working model for membrane docking: HOPS associates with N-terminal domains of Vam3 and Vam7 through Vps33-independent interactions, which are followed by binding of Vps33, the HOPS SM protein, to SNARE domains and finally to the quaternary SNARE complex. Our results also strengthen the hypothesis that SNARE complex binding is a core attribute of SM protein function.
doi:10.1091/mbc.E12-05-0343
PMCID: PMC3510022  PMID: 23051737
14.  The SNARE Complex from Yeast is Partially Unstructured on the Membrane 
Structure (London, England : 1993)  2008;16(7):1138-1146.
SUMMARY
Molecular recognition between cognate SNAREs leads to formation of a four-helix bundle, which facilitates vesicle docking and membrane fusion. For a SNARE system involved in trafficking in yeast, target membrane (t-) SNARE Sso1p and vesicle associated (v-) SNARE Snc2p contribute one SNARE motif each, while another t-SNARE Sec9 donates two N-terminal and C-terminal SNARE motifs SN1 and SN2 to the helical bundle. Using EPR it is found that SN2 has a tendency to be uncoiled, leaving a significant population of the SNARE complexes to be partially unstructured on the membrane. In sharp contrast, SN2 is fully engaged in the four-helix bundle when removed from the membrane, showing that the membrane is the main destabilizing factor. Helix-breaking proline mutations in SN2 did not affect the rate of docking but reduced the rate of lipid mixing significantly, indicating that SN2 plays an essential role in activating the transition from docking to fusion.
doi:10.1016/j.str.2008.03.018
PMCID: PMC3733360  PMID: 18611386
15.  Dual Roles of the Mammalian GARP Complex in Tethering and SNARE Complex Assembly at the trans-Golgi Network▿  
Molecular and Cellular Biology  2009;29(19):5251-5263.
Tethering factors and SNAREs control the last two steps of vesicular trafficking: the initial interaction and the fusion, respectively, of transport vesicles with target membranes. The Golgi-associated retrograde protein (GARP) complex regulates retrograde transport from endosomes to the trans-Golgi network (TGN). Although GARP has been proposed to function as a tethering factor at the TGN, direct evidence for such a role is still lacking. Herein we report novel and specific interactions of the mammalian GARP complex with SNAREs that participate in endosome-to-TGN transport, namely, syntaxin 6, syntaxin 16, and Vamp4. These interactions depend on the N-terminal regions of Vps53 and Vps54 and the SNARE motif of the SNAREs. We show that GARP functions upstream of the SNAREs, regulating their localization and assembly into SNARE complexes. However, interactions of GARP with SNAREs are insufficient to promote retrograde transport, because deletion of the C-terminal region of Vps53 precludes GARP function without affecting GARP-SNARE interactions. Finally, we present in vitro data consistent with a tethering role for GARP, which is disrupted by deletion of the Vps53 C-terminal region. These findings indicate that GARP orchestrates retrograde transport from endosomes to the TGN by promoting vesicle tethering and assembly of SNARE complexes in consecutive, independent steps.
doi:10.1128/MCB.00495-09
PMCID: PMC2747979  PMID: 19620288
16.  Supramolecular SNARE assembly precedes hemifusion in SNARE-mediated membrane fusion 
Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex facilitates intracellular membrane fusion. A single SNARE complex is thought to be insufficient; multiple copies of SNARE complexes must work cooperatively. However, the mechanism by which such a higher-order SNARE protein structure is assembled is unknown. EPR and fluorescence analyses show that at least three copies of target-membrane SNARE proteins self-assemble through the interaction between the transmembrane domains (TMDs), and this multimeric structure serves as scaffolding for trans-SNARE assembly. SNARE core formation in solution induces oligomerization of the TMDs of vesicle-associated SNAREs in the apposing membrane, transiently forming a supramolecular protein structure spanning two membranes. This higher-order protein intermediate evolves, by involving lipid molecules, to the hemifusion state. Hemifusion is subsequently followed by distal leaflet mixing and formation of the cis-SNARE complex.
doi:10.1038/nsmb.1433
PMCID: PMC2575085  PMID: 18552827
17.  Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles 
The Journal of Cell Biology  2004;167(6):1087-1098.
Membrane microdomains are assembled by lipid partitioning (e.g., rafts) or by protein–protein interactions (e.g., coated vesicles). During docking, yeast vacuoles assemble “vertex” ring-shaped microdomains around the periphery of their apposed membranes. Vertices are selectively enriched in the Rab GTPase Ypt7p, the homotypic fusion and vacuole protein sorting complex (HOPS)–VpsC Rab effector complex, SNAREs, and actin. Membrane fusion initiates at vertex microdomains. We now find that the “regulatory lipids” ergosterol, diacylglycerol and 3- and 4-phosphoinositides accumulate at vertices in a mutually interdependent manner. Regulatory lipids are also required for the vertex enrichment of SNAREs, Ypt7p, and HOPS. Conversely, SNAREs and actin regulate phosphatidylinositol 3-phosphate vertex enrichment. Though the PX domain of the SNARE Vam7p has direct affinity for only 3-phosphoinositides, all the regulatory lipids which are needed for vertex assembly affect Vam7p association with vacuoles. Thus, the assembly of the vacuole vertex ring microdomain arises from interdependent lipid and protein partitioning and binding rather than either lipid partitioning or protein interactions alone.
doi:10.1083/jcb.200409068
PMCID: PMC2172599  PMID: 15611334
18.  Synaptic vesicle exocytosis 
Cold Spring Harbor perspectives in biology  2011;3(12):10.1101/cshperspect.a005637 a005637.
Presynaptic nerve terminals release neurotransmitters by synaptic vesicle exocytosis. Membrane fusion mediating synaptic exocytosis and other intracellular membrane traffic is effected by a universal machinery that includes SNARE (for ‘soluble NSF-attachment protein receptor’) and SM (for ‘Sec1/Munc18-like’) proteins. During fusion, vesicular and target SNARE proteins assemble into an α-helical trans-SNARE complex that forces the two membranes tightly together, and SM proteins likely wrap around assembling trans-SNARE complexes to catalyze membrane fusion. After fusion, SNARE complexes are dissociated by the ATPase NSF (for ‘N-ethylmaleimide sensitive factor’). Fusion-competent conformations of SNARE proteins are maintained by chaperone complexes composed of CSPα, Hsc70, and SGT, and by non-enzymatically acting synuclein chaperones; dysfunction of these chaperones results in neurodegeneration. The synaptic membrane-fusion machinery is controlled by synaptotagmin, and additionally regulated by a presynaptic protein matrix (the ‘active zone’) that includes Munc13 and RIM proteins as central components.
doi:10.1101/cshperspect.a005637
PMCID: PMC3225952  PMID: 22026965
19.  Synaptic Vesicle Exocytosis 
Presynaptic nerve terminals release neurotransmitters by synaptic vesicle exocytosis. Membrane fusion mediating synaptic exocytosis and other intracellular membrane traffic is affected by a universal machinery that includes SNARE (for “soluble NSF-attachment protein receptor”) and SM (for “Sec1/Munc18-like”) proteins. During fusion, vesicular and target SNARE proteins assemble into an α-helical trans-SNARE complex that forces the two membranes tightly together, and SM proteins likely wrap around assembling trans-SNARE complexes to catalyze membrane fusion. After fusion, SNARE complexes are dissociated by the ATPase NSF (for “N-ethylmaleimide sensitive factor”). Fusion-competent conformations of SNARE proteins are maintained by chaperone complexes composed of CSPα, Hsc70, and SGT, and by nonenzymatically acting synuclein chaperones; dysfunction of these chaperones results in neurodegeneration. The synaptic membrane-fusion machinery is controlled by synaptotagmin, and additionally regulated by a presynaptic protein matrix (the “active zone”) that includes Munc13 and RIM proteins as central components.
Synaptic vesicle exocytosis is mediated by a hierarchically organized machinery that contains SNARE and SM proteins at its core, is maintained by NSF and SNAPs and by specific SNARE chaperones, and is regulated by active zone proteins.
doi:10.1101/cshperspect.a005637
PMCID: PMC3225952  PMID: 22026965
20.  The Longin SNARE VAMP7/TI-VAMP Adopts a Closed Conformation* 
The Journal of Biological Chemistry  2010;285(23):17965-17973.
SNARE protein complexes are key mediators of exocytosis by juxtaposing opposing membranes, leading to membrane fusion. SNAREs generally consist of one or two core domains that can form a four-helix bundle with other SNARE core domains. Some SNAREs, such as syntaxin target-SNAREs and longin vesicular-SNAREs, have independent, folded N-terminal domains that can interact with their respective SNARE core domains and thereby affect the kinetics of SNARE complex formation. This autoinhibition mechanism is believed to regulate the role of the longin VAMP7/TI-VAMP in neuronal morphogenesis. Here we use nuclear magnetic resonance spectroscopy to study the longin-SNARE core domain interaction for VAMP7. Using complete backbone resonance assignments, chemical shift perturbations analysis, and hydrogen/deuterium exchange experiments, we conclusively show that VAMP7 adopts a preferentially closed conformation in solution. Taken together, the closed conformation of longins is conserved, in contrast to the syntaxin family of SNAREs for which mixtures of open and closed states have been observed. This may indicate different regulatory mechanisms for SNARE complexes containing syntaxins and longins, respectively.
doi:10.1074/jbc.M110.120972
PMCID: PMC2878558  PMID: 20378544
Membrane Fusion; Neurodevelopment; NMR; Protein Conformation; Vesicles; Longin; Synaptobrevin; Syntaxin
21.  Drosophila SNAP-29 Is an Essential SNARE That Binds Multiple Proteins Involved in Membrane Traffic 
PLoS ONE  2014;9(3):e91471.
Each membrane fusion event along the secretory and endocytic pathways requires a specific set of SNAREs to assemble into a 4-helical coiled-coil, the so-called trans-SNARE complex. Although most SNAREs contribute one helix to the trans-SNARE complex, members of the SNAP-25 family contribute two helixes. We report the characterization of the Drosophila homologue of SNAP-29 (dSNAP-29), which is expressed throughout development. Unlike the other SNAP-25 like proteins in fruit fly (i.e., dSNAP-25 and dSNAP-24), which form SDS-resistant SNARE complexes with their cognate SNAREs, dSNAP-29 does not participate in any SDS-resistant complexes, despite its interaction with dsyntaxin1 and dsyntaxin16 in vitro. Immunofluorescence studies indicated that dSNAP-29 is distributed in various tissues, locating in small intracellular puncta and on the plasma membrane, where it associates with EH domain-containing proteins implicated in the endocytic pathway. Overexpression and RNAi studies suggested that dSNAP-29 mediates an essential process in Drosophila development.
doi:10.1371/journal.pone.0091471
PMCID: PMC3953403  PMID: 24626111
22.  Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion 
Scientific Reports  2014;4:4277.
Trans-QabcR-SNARE pairing on opposing membranes is crucial for eukaryotic membrane fusion, but how selective pairs of Qabc- and R-SNARE proteins regulate membrane fusion specificity remains elusive. Here, we studied 14 purified full-length SNAREs that function in yeast endoplasmic reticulum (ER)-Golgi, intra-Golgi, endosomal, and vacuolar transport by comprehensively testing cis-QabcR-SNARE assembly and fusogenicity of reconstituted SNARE proteoliposomes. Strikingly, the cognate ER-Golgi and intra-Golgi SNARE-complex assemblies were highly stringent, whereas endosomal and vacuolar SNAREs assembled rather promiscuously into the non-cognate mixed complexes. However, these patterns of cis-SNARE assemblies cannot solely explain their potency to be fusogenic via trans-SNARE pairing: Only the vacuolar 3Q-SNARE combination is fusogenic in the absence of additional components; endosomal SNARE-dependent fusogenicity requires membrane-tethering factors; and ER-Golgi SNAREs can be fusogenic by synergistic actions of tethering factors and the cognate Sec1/Munc18-family protein Sly1p. Thus, our findings uncover multiple and distinct strategies of SNAREs to directly mediate fusion specificity.
doi:10.1038/srep04277
PMCID: PMC3940976  PMID: 24589832
23.  Complexin Controls the Force Transfer from SNARE Complexes to Membranes in Fusion 
Science (New York, N.Y.)  2009;323(5913):516-521.
Trans-SNARE complexes catalyze fast synaptic vesicle fusion and bind complexin, but the function of complexin binding to SNARE complexes remains unclear. Here we show that in neuronal synapses, complexin simultaneously suppressed spontaneous fusion and activated fast Ca2+-evoked fusion. The dual function of complexin required SNARE binding, and additionally involved distinct N-terminal sequences of complexin that localize to the point where trans-SNARE complexes insert into the fusing membranes, suggesting that complexin controls the force that trans-SNARE complexes apply onto the fusing membranes. Consistent with this hypothesis, a mutation in the membrane insertion sequence of the v-SNARE synaptobrevin/VAMP phenocopied the complexin loss-of-function state without impairing complexin-binding to SNARE complexes. Thus, complexin probably activates and clamps the force-transfer from assembled trans-SNARE complexes onto fusing membranes.
doi:10.1126/science.1166505
PMCID: PMC3235366  PMID: 19164751
24.  Trans-SNARE interactions elicit Ca2+ efflux from the yeast vacuole lumen 
The Journal of Cell Biology  2004;164(2):195-206.
Ca2+ transients trigger many SNARE-dependent membrane fusion events. The homotypic fusion of yeast vacuoles occurs after a release of lumenal Ca2+. Here, we show that trans-SNARE interactions promote the release of Ca2+ from the vacuole lumen. Ypt7p–GTP, the Sec1p/Munc18-protein Vps33p, and Rho GTPases, all of which function during docking, are required for Ca2+ release. Inhibitors of SNARE function prevent Ca2+ release. Recombinant Vam7p, a soluble Q-SNARE, stimulates Ca2+ release. Vacuoles lacking either of two complementary SNAREs, Vam3p or Nyv1p, fail to release Ca2+ upon tethering. Mixing these two vacuole populations together allows Vam3p and Nyv1p to interact in trans and rescues Ca2+ release. Sec17/18p promote sustained Ca2+ release by recycling SNAREs (and perhaps other limiting factors), but are not required at the release step itself. We conclude that trans-SNARE assembly events during docking promote Ca2+ release from the vacuole lumen.
doi:10.1083/jcb.200310105
PMCID: PMC2172329  PMID: 14734531
membrane; docking; fusion; Rab GTPase; SM-protein
25.  The binding of Varp to VAMP7 traps VAMP7 in a closed, fusogenically inactive conformation 
Nature structural & molecular biology  2012;19(12):1300-1309.
SNAREs provide energy and specificity to membrane fusion events. Fusogenic trans-SNARE complexes are assembled from Q-SNAREs embedded in one membrane and an R–SNARE embedded in the other. Regulation of membrane fusion events is crucial for intracellular trafficking. We identify the endosomal protein Varp as an R-SNARE-binding regulator of SNARE complex formation. Varp co-localises with and binds to VAMP7, an R-SNARE involved in both endocytic and secretory pathways. We present the structure of the second ankyrin repeat domain of mammalian Varp in complex with the cytosolic portion of VAMP7. The VAMP7 SNARE motif is trapped between Varp and the VAMP7 longin domain and hence Varp kinetically inhibits VAMP7’s ability to form SNARE complexes. This inhibition will be increased when Varp can also bind to other proteins present on the same membrane as the VAMP7 such as Rab32:GTP.
doi:10.1038/nsmb.2414
PMCID: PMC3605791  PMID: 23104059

Results 1-25 (427132)