Search tips
Search criteria

Results 1-25 (976308)

Clipboard (0)

Related Articles

1.  Rho and Anillin-dependent Control of mDia2 Localization and Function in Cytokinesis 
Molecular Biology of the Cell  2010;21(18):3193-3204.
Diaphanous-related formin, mDia, is an actin nucleation/polymerization factor functioning downstream of the small GTPase Rho. We found that, in addition to the Rho GTPase-mediated activation, the interaction between mDia2 and anillin is required for the localization and function of mDia2 in cytokinesis.
Diaphanous-related formin, mDia, is an actin nucleation/polymerization factor functioning downstream of the small GTPase Rho. Although Rho is critically involved in cytokinesis, it remains elusive how Rho effectors and other regulators of cytoskeletons work together to accomplish this process. Here we focused on mDia2, an mDia isoform involved in cytokinesis of NIH 3T3 cells, and analyzed mechanisms of its localization in cytokinesis. We found that targeting of mDia2 to the cleavage furrow requires not only its binding to RhoA but also its diaphanous-inhibitory domain (DID). We then performed pulldown assays using a fragment containing the latter domain as a bait and identified anillin as a novel mDia2 interaction partner. The anillin-binding is competitive with the diaphanous autoregulatory domain (DAD) of mDia2 in its autoinhibitory interaction. A series of RNA interference and functional rescue experiments has revealed that, in addition to the Rho GTPase-mediated activation, the interaction between mDia2 and anillin is required for the localization and function of mDia2 in cytokinesis.
PMCID: PMC2938385  PMID: 20660154
2.  Novel Roles of Formin mDia2 in Lamellipodia and Filopodia Formation in Motile Cells  
PLoS Biology  2007;5(11):e317.
Actin polymerization-driven protrusion of the leading edge is a key element of cell motility. The important actin nucleators formins and the Arp2/3 complex are believed to have nonoverlapping functions in inducing actin filament bundles in filopodia and dendritic networks in lamellipodia, respectively. We tested this idea by investigating the role of mDia2 formin in leading-edge protrusion by loss-of-function and gain-of-function approaches. Unexpectedly, mDia2 depletion by short interfering RNA (siRNA) severely inhibited lamellipodia. Structural analysis of the actin network in the few remaining lamellipodia suggested an mDia2 role in generation of long filaments. Consistently, constitutively active mDia2 (ΔGBD-mDia2) induced accumulation of long actin filaments in lamellipodia and increased persistence of lamellipodial protrusion. Depletion of mDia2 also inhibited filopodia, whereas expression of ΔGBD-mDia2 promoted their formation. Correlative light and electron microscopy showed that ΔGBD-mDia2–induced filopodia were formed from lamellipodial network through gradual convergence of long lamellipodial filaments into bundles. Efficient filopodia induction required mDia2 targeting to the membrane, likely through a scaffolding protein Abi1. Furthermore, mDia2 and Abi1 interacted through the N-terminal regulatory sequences of mDia2 and the SH3-containing Abi1 sequences. We propose that mDia2 plays an important role in formation of lamellipodia by nucleating and/or protecting from capping lamellipodial actin filaments, which subsequently exhibit high tendency to converge into filopodia.
Author Summary
Cell motility is a cyclic process, with the protrusion of the leading edge followed by retraction of the rear. Protrusion is driven by polymerization of actin filaments, with the spatial organization of these filaments determining the shape of the protrusions. For example, the spike-like filopodia contain bundles of long actin filaments, whereas the sheet-like lamellipodia contain branched actin networks. In biochemical assays, two stimulators of actin polymerization, Arp2/3 complex and formins, induce branched or individual filaments, respectively. In cells, Arp2/3 complex and formins also appear to be implicated in the formation of lamellipodia and filopodia, respectively. However, when we investigated the role of mDia2 formin by functional approaches, we unexpectedly found that it is essential, not only for filopodia, but also for lamellipodia. Moreover, functions of mDia2 in lamellipodia and filopodia appeared intimately linked. We recorded behavior of cells by light microscopy and then used electron microscopy to study actin architecture in the same cells. We found that an activated form of mDia2 was first recruited to lamellipodia, where it induced many long, unbranched filaments, and from there, drove formation of filopodia through gradual convergence of these lamellipodial filaments into bundles. These data demonstrate a strong relationship between structurally different actin filament arrays and molecular machineries involved in their formation.
Formin mDia2 was believed to function mainly in the generation of filopodia in migrating cells. We unexpectedly found that mDia2 is also important for lamellipodia and induces filopodia in association with lamellipodia.
PMCID: PMC2229861  PMID: 18044991
3.  RhoD activated by fibroblast growth factor induces cytoneme-like cellular protrusions through mDia3C 
Molecular Biology of the Cell  2012;23(23):4647-4661.
The small GTPase RhoD, activated by fibroblast growth factor (FGF) signaling, forms actin-based, cytoneme-like, thin and long cellular protrusions through activating mDia3C. These protrusions transmit FGF receptors toward the cell body. They are likely to be responsible for intercellular communication between FGF-producing cells and target cells.
The small GTPase RhoD regulates actin cytoskeleton to collapse actin stress fibers and focal adhesions, resulting in suppression of cell migration and cytokinesis. It also induces alignment of early endosomes along actin filaments and reduces their motility. We show here that a constitutively activated RhoD generated two types of actin-containing thin peripheral cellular protrusions distinct from Cdc42-induced filopodia. One was longer, almost straight, immotile, and sensitive to fixation, whereas the other was shorter, undulating, motile, and resistant to fixation. Moreover, cells expressing wild-type RhoD extended protrusions toward fibroblast growth factor (FGF) 2/4/8–coated beads. Stimulation of wild-type RhoD-expressing cells with these FGFs also caused formation of cellular protrusions. Nodules moved through the RhoD-induced longer protrusions, mainly toward the cell body. Exogenously expressed FGF receptor was associated with these moving nodules containing endosome-like vesicles. These results suggest that the protrusions are responsible for intercellular communication mediated by FGF and its receptor. Accordingly, the protrusions are morphologically and functionally equivalent to cytonemes. RhoD was activated by FGF2/4/8. Knockdown of RhoD interfered with FGF-induced protrusion formation. Activated RhoD specifically bound to mDia3C and facilitated actin polymerization together with mDia3C. mDia3C was localized to the tips or stems of the protrusions. In addition, constitutively activated mDia3C formed protrusions without RhoD or FGF stimulation. Knockdown of mDia3 obstructed RhoD-induced protrusion formation. These results imply that RhoD activated by FGF signaling forms cytoneme-like protrusions through activation of mDia3C, which induces actin filament formation.
PMCID: PMC3510025  PMID: 23034183
4.  Actin-capping protein promotes microtubule stability by antagonizing the actin activity of mDia1 
Molecular Biology of the Cell  2012;23(20):4032-4040.
Actin-capping protein induced stable microtubules in an mDia1-dependent manner and inhibited the translocation of mDia on the ends of growing actin filaments. Knockdown of capping protein by small interfering RNA reduced stable microtubule levels in proliferating cells and in starved cells stimulated with lysophosphatidic acid.
In migrating fibroblasts, RhoA and its effector mDia1 regulate the selective stabilization of microtubules (MTs) polarized in the direction of migration. The conserved formin homology 2 domain of mDia1 is involved both in actin polymerization and MT stabilization, and the relationship between these two activities is unknown. We found that latrunculin A (LatA) and jasplakinolide, actin drugs that release mDia1 from actin filament barbed ends, stimulated stable MT formation in serum-starved fibroblasts and caused a redistribution of mDia1 onto MTs. Knockdown of mDia1 by small interfering RNA (siRNA) prevented stable MT induction by LatA, whereas blocking upstream Rho or integrin signaling had no effect. In search of physiological regulators of mDia1, we found that actin-capping protein induced stable MTs in an mDia1-dependent manner and inhibited the translocation of mDia on the ends of growing actin filaments. Knockdown of capping protein by siRNA reduced stable MT levels in proliferating cells and in starved cells stimulated with lysophosphatidic acid. These results show that actin-capping protein is a novel regulator of MT stability that functions by antagonizing mDia1 activity toward actin filaments and suggest a novel form of actin–MT cross-talk in which a single factor acts sequentially on actin and MTs.
PMCID: PMC3469518  PMID: 22918941
5.  Essential and nonredundant roles for Diaphanous formins in cortical microtubule capture and directed cell migration 
Molecular Biology of the Cell  2014;25(5):658-668.
The Diaphanous formins mDia1, mDia2, and mDia3 are involved in the capture of cortical microtubules and ErbB2-dependent directed migration. These functions are independent of actin. They are mediated by mDia FH2 domains, which associate with distinct sets of proteins. Rab6IP2 is a novel interactor of mDia1 that contributes to microtubule tethering.
Formins constitute a large family of proteins that regulate the dynamics and organization of both the actin and microtubule cytoskeletons. Previously we showed that the formin mDia1 helps tether microtubules at the cell cortex, acting downstream of the ErbB2 receptor tyrosine kinase. Here we further study the contributions of mDia1 and its two most closely related formins, mDia2 and mDia3, to cortical microtubule capture and ErbB2-dependent breast carcinoma cell migration. We find that depletion of each of these three formins strongly disrupts chemotaxis without significantly affecting actin-based structures. Further, all three formins are required for formation of cortical microtubules in a nonredundant manner, and formin proteins defective in actin polymerization remain active for microtubule capture. Using affinity purification and mass spectrometry analysis, we identify differential binding partners of the formin-homology domain 2 (FH2) of mDia1, mDia2, and mDia3, which may explain their nonredundant roles in microtubule capture. The FH2 domain of mDia1 specifically interacts with Rab6-interacting protein 2 (Rab6IP2). Further, mDia1 is required for cortical localization of Rab6IP2, and concomitant depletion of Rab6IP2 and IQGAP1 severely disrupts cortical capture of microtubules, demonstrating the coinvolvement of mDia1, IQGAP1, and Rab6IP2 in microtubule tethering at the leading edge.
PMCID: PMC3937091  PMID: 24403606
6.  mDia2 Induces the Actin Scaffold for the Contractile Ring and Stabilizes Its Position during Cytokinesis in NIH 3T3 Cells 
Molecular Biology of the Cell  2008;19(5):2328-2338.
mDia proteins are mammalian homologues of Drosophila diaphanous and belong to the formin family proteins that catalyze actin nucleation and polymerization. Although formin family proteins of nonmammalian species such as Drosophila diaphanous are essential in cytokinesis, whether and how mDia proteins function in cytokinesis remain unknown. Here we depleted each of the three mDia isoforms in NIH 3T3 cells by RNA interference and examined this issue. Depletion of mDia2 selectively increased the number of binucleate cells, which was corrected by coexpression of RNAi-resistant full-length mDia2. mDia2 accumulates in the cleavage furrow during anaphase to telophase, and concentrates in the midbody at the end of cytokinesis. Depletion of mDia2 induced contraction at aberrant sites of dividing cells, where contractile ring components such as RhoA, myosin, anillin, and phosphorylated ERM accumulated. Treatment with blebbistatin suppressed abnormal contraction, corrected localization of the above components, and revealed that the amount of F-actin at the equatorial region during anaphase/telophase was significantly decreased with mDia2 RNAi. These results demonstrate that mDia2 is essential in mammalian cell cytokinesis and that mDia2-induced F-actin forms a scaffold for the contractile ring and maintains its position in the middle of a dividing cell.
PMCID: PMC2366861  PMID: 18287523
7.  mDia1-3 in mammalian filopodia 
mDia proteins are members of the formin family of actin nucleating proteins that polymerize linear actin filaments. Such filaments form the core of thin, tubular, membrane-bound cell surface protrusions known as filopodia, which are a major feature of mammalian cell morphology. Filopodia are dynamic structures that help cells sense environmental cues, and play a role in cell migration, axon guidance, angiogenesis and other processes. RhoGTPases bind to and control the activity of mDia proteins, and several other binding partners of the three mDia1 isoforms—mDia1, mDia2 and mDia3—have been documented. Two independent pathways controlling mammalian filopodium formation have emerged, with one driven by the RhoGTPase Cdc42, and the other by Rif. While mDia2 has been the main formin implicated in forming filopodia, mDia1 has recently surfaced as the key formin utilized by both the Cdc42 and Rif pathways to drive filopodial protrusion.
PMCID: PMC3460838  PMID: 23060957
formins; mDia; Rho GTPases; filopodia; actin; cell morphology
8.  Involvement of the Rho–mDia1 pathway in the regulation of Golgi complex architecture and dynamics 
Molecular Biology of the Cell  2011;22(16):2900-2911.
A study of the role of actin cytoskeleton regulation in Golgi organization and function shows that Rho regulates Golgi fragmentation into ministacks, as well as formation of Rab6-positive Golgi-derived vesicles, via mDia1 formin activation. The Rho–mDia1 pathway affects the Golgi complex by controlling fusion and fission of Golgi membranes.
In mammalian cells, the Golgi apparatus is a ribbon-like, compact structure composed of multiple membrane stacks connected by tubular bridges. Microtubules are known to be important to Golgi integrity, but the role of the actin cytoskeleton in the maintenance of Golgi architecture remains unclear. Here we show that an increase in Rho activity, either by treatment of cells with lysophosphatidic acid or by expression of constitutively active mutants, resulted in pronounced fragmentation of the Golgi complex into ministacks. Golgi dispersion required the involvement of mDia1 formin, a downstream target of Rho and a potent activator of actin polymerization; moreover, constitutively active mDia1, in and of itself, was sufficient for Golgi dispersion. The dispersion process was accompanied by formation of dynamic F-actin patches in the Golgi area. Experiments with cytoskeletal inhibitors (e.g., latrunculin B, blebbistatin, and Taxol) revealed that actin polymerization, myosin-II–driven contractility, and microtubule-based intracellular movement were all involved in the process of Golgi dispersion induced by Rho–mDia1 activation. Live imaging of Golgi recovery revealed that fusion of the small Golgi stacks into larger compartments was repressed in cells with active mDia1. Furthermore, the formation of Rab6-positive transport vesicles derived from the Golgi complex was enhanced upon activation of the Rho–mDia1 pathway. Transient localization of mDia1 to Rab6-positive vesicles was detected in cells expressing active RhoA. Thus, the Rho–mDia1 pathway is involved in regulation of the Golgi structure, affecting remodeling of Golgi membranes.
PMCID: PMC3154885  PMID: 21680709
9.  mDia1 Targets v-Src to the Cell Periphery and Facilitates Cell Transformation, Tumorigenesis, and Invasion ▿ †  
Molecular and Cellular Biology  2010;30(19):4604-4615.
The small GTPase Rho regulates cell morphogenesis through remodeling of the actin cytoskeleton. While Rho is overexpressed in many clinical cancers, the role of Rho signaling in oncogenesis remains unknown. mDia1 is a Rho effector producing straight actin filaments. Here we transduced mouse embryonic fibroblasts from mDia1-deficient mice with temperature-sensitive v-Src and examined the involvement and mechanism of the Rho-mDia1 pathway in Src-induced oncogenesis. We showed that in v-Src-transduced mDia1-deficient cells, formation of actin filaments is suppressed, and v-Src in the perinuclear region does not move to focal adhesions upon a temperature shift. Consequently, membrane translocation of v-Src, v-Src-induced morphological transformation, and podosome formation are all suppressed in mDia1-deficient cells with impaired tyrosine phosphorylation. mDia1-deficient cells show reduced transformation in vitro as examined by focus formation and colony formation in soft agar and exhibit suppressed tumorigenesis and invasion when implanted in nude mice in vivo. Given overexpression of c-Src in various cancers, these findings suggest that Rho-mDia1 signaling facilitates malignant transformation and invasion by manipulating the actin cytoskeleton and targeting Src to the cell periphery.
PMCID: PMC2950524  PMID: 20679479
10.  Distinct Actions and Cooperative Roles of ROCK and mDia in Rho Small G Protein-induced Reorganization of the Actin Cytoskeleton in Madin–Darby Canine Kidney Cells 
Molecular Biology of the Cell  1999;10(8):2481-2491.
Rho, a member of the Rho small G protein family, regulates the formation of stress fibers and focal adhesions in various types of cultured cells. We investigated here the actions of ROCK and mDia, both of which have been identified to be putative downstream target molecules of Rho, in Madin–Darby canine kidney cells. The dominant active mutant of RhoA induced the formation of parallel stress fibers and focal adhesions, whereas the dominant active mutant of ROCK induced the formation of stellate stress fibers and focal adhesions, and the dominant active mutant of mDia induced the weak formation of parallel stress fibers without affecting the formation of focal adhesions. In the presence of C3 ADP-ribosyltransferase for Rho, the dominant active mutant of ROCK induced the formation of stellate stress fibers and focal adhesions, whereas the dominant active mutant of mDia induced only the diffuse localization of actin filaments. These results indicate that ROCK and mDia show distinct actions in reorganization of the actin cytoskeleton. The dominant negative mutant of either ROCK or mDia inhibited the formation of stress fibers and focal adhesions, indicating that both ROCK and mDia are necessary for the formation of stress fibers and focal adhesions. Moreover, inactivation and reactivation of both ROCK and mDia were necessary for the 12-O-tetradecanoylphorbol-13-acetate–induced disassembly and reassembly, respectively, of stress fibers and focal adhesions. The morphologies of stress fibers and focal adhesions in the cells expressing both the dominant active mutants of ROCK and mDia were not identical to those induced by the dominant active mutant of Rho. These results indicate that at least ROCK and mDia cooperatively act as downstream target molecules of Rho in the Rho-induced reorganization of the actin cytoskeleton.
PMCID: PMC25478  PMID: 10436006
11.  The Rho-mDia1 Pathway Regulates Cell Polarity and Focal Adhesion Turnover in Migrating Cells through Mobilizing Apc and c-Src†  
Molecular and Cellular Biology  2006;26(18):6844-6858.
Directed cell migration requires cell polarization and adhesion turnover, in which the actin cytoskeleton and microtubules work critically. The Rho GTPases induce specific types of actin cytoskeleton and regulate microtubule dynamics. In migrating cells, Cdc42 regulates cell polarity and Rac works in membrane protrusion. However, the role of Rho in migration is little known. Rho acts on two major effectors, ROCK and mDia1, among which mDia1 produces straight actin filaments and aligns microtubules. Here we depleted mDia1 by RNA interference and found that mDia1 depletion impaired directed migration of rat C6 glioma cells by inhibiting both cell polarization and adhesion turnover. Apc and active Cdc42, which work together for cell polarization, localized in the front of migrating cells, while active c-Src, which regulates adhesion turnover, localized in focal adhesions. mDia1 depletion impaired localization of these molecules at their respective sites. Conversely, expression of active mDia1 facilitated microtubule-dependent accumulation of Apc and active Cdc42 in the polar ends of the cells and actin-dependent recruitment of c-Src in adhesions. Thus, the Rho-mDia1 pathway regulates polarization and adhesion turnover by aligning microtubules and actin filaments and delivering Apc/Cdc42 and c-Src to their respective sites of action.
PMCID: PMC1592856  PMID: 16943426
12.  Flightless-I (Fli-I) Regulates the Actin Assembly Activity of Diaphanous-related Formins (DRFs) Daam1 and mDia1 in Cooperation with Active Rho GTPase* 
The Journal of Biological Chemistry  2010;285(21):16231-16238.
Eukaryotic cells dynamically reorganize the actin cytoskeleton to regulate various cellular activities, such as cell shape change, cell motility, cytokinesis, and vesicular transport. Diaphanous-related formins (DRFs), such as Daam1 and mDia1, play central roles in actin dynamics through assembling linear actin filaments. It has been reported that the GTP-bound active Rho binds directly to DRFs and partially unleashes the intramolecular autoinhibition of DRFs. However, whether proteins other than Rho involve the regulation of the actin assembly activity of DRFs has been unclear. Here, we show that Flightless-I (Fli-I), a gelsolin family protein essential for early development, binds directly to Daam1 and mDia1. Fli-I enhances the intrinsic actin assembly activity of Daam1 and mDia1 in vitro and is required for Daam1-induced actin assembly in living cells. Furthermore, Fli-I promotes the GTP-bound active Rho-mediated relief of the autoinhibition of Daam1 and mDia1. Thus, Fli-I is a novel positive regulator of Rho-induced linear actin assembly mediated by DRFs.
PMCID: PMC2871490  PMID: 20223827
Cytoskeleton/Actin; G Proteins/Low Molecular Weight; Signal Transduction/G-proteins; Subcellular Organelles/Cytoskeleton; Rho; Cell Shape; Cytoskeletal Reorganization; Formin
13.  The Diaphanous-related Formin mDia1 Controls Serum Response Factor Activity through its Effects on Actin Polymerization 
Molecular Biology of the Cell  2002;13(11):4088-4099.
SRF-dependent transcription is regulated by the small GTPase RhoA via its effects on actin dynamics. The diaphanous-related formin (DRF) proteins have been identified as candidate RhoA effectors mediating signaling to SRF. Here we investigate the relationship between SRF activation and actin polymerization by the DRF mDia1. We show that the ability of mDia1 to potentiate SRF activity is strictly correlated with its ability to promote F-actin assembly. Both processes can occur independently of the mDia1 FH1 domain but require sequences in an extended C-terminal region encompassing the conserved FH2 domain. mDia-mediated SRF activation, but not F-actin assembly, can be blocked by a nonpolymerizable actin mutant, placing actin downstream of mDia in the signal pathway. The SRF activation assay was used to identify inactive mDia1 derivatives that inhibit serum- and LPA-induced signaling to SRF. We show that these interfering mutants also block F-actin assembly, whether induced by mDia proteins or extracellular signals. These results identify novel functional elements of mDia1 and show that it regulates SRF activity by inducing depletion of the cellular pool of G-actin.
PMCID: PMC133616  PMID: 12429848
14.  An mDia2/ROCK Signaling Axis Regulates Invasive Egress from Epithelial Ovarian Cancer Spheroids 
PLoS ONE  2014;9(2):e90371.
Multi-cellular spheroids are enriched in ascites of epithelial ovarian cancer (OvCa) patients. They represent an invasive and chemoresistant cellular population fundamental to metastatic dissemination. The molecular mechanisms triggering single cell invasive egress from spheroids remain enigmatic. mDia formins are Rho GTPase effectors that are key regulators of F-actin cytoskeletal dynamics. We hypothesized that mDia2-driven F-actin dynamics promote single cell invasive transitions in clinically relevant three-dimensional (3D) OvCa spheroids. The current study is a dissection of the contribution of the F-actin assembly factor mDia2 formin in invasive transitions and using a clinically relevant ovarian cancer spheroid model. We show that RhoA-directed mDia2 activity is required for tight spheroid organization, and enrichment of mDia2 in the invasive cellular protrusions of collagen-embedded OVCA429 spheroids. Depleting mDia2 in ES-2 spheroids enhanced invasive dissemination of single amoeboid-shaped cells. This contrasts with spheroids treated with control siRNA, where a mesenchymal invasion program predominated. Inhibition of another RhoA effector, ROCK, had no impact on ES-2 spheroid formation but dramatically inhibited spheroid invasion through induction of a highly elongated morphology. Concurrent inhibition of ROCK and mDia2 blocked single cell invasion from ES-2 spheroids more effectively than inhibition of either protein alone, indicating that invasive egress of amoeboid cells from mDia2-depleted spheroids is ROCK-dependent. Our findings indicate that multiple GTPase effectors must be suppressed in order to fully block invasive egress from ovarian cancer spheroids. Furthermore, tightly regulated interplay between ROCK and mDia2 signaling pathways dictates the invasive capacities and the type of invasion program utilized by motile spheroid-derived ovarian cancer cells. As loss of the gene encoding mDia2, DRF3, has been linked to cancer progression and metastasis, our results set the stage for understanding molecular mechanisms involved in mDia2-dependent egress of invasive cells from primary epithelial tumors.
PMCID: PMC3938721  PMID: 24587343
15.  Mechanisms of plasma membrane targeting of formin mDia2 through its amino terminal domains 
Molecular Biology of the Cell  2011;22(2):189-201.
We investigated the poorly understood mechanism of plasma membrane targeting of formin mDia2 and found that its N terminus plays important roles in this process by binding acidic phospholipids through its N-terminal basic domain and by binding small GTPase Rif through direct interaction with the GTPase binding region and the diaphanous inhibitory domain.
The formin mDia2 mediates the formation of lamellipodia and filopodia during cell locomotion. The subcellular localization of activated mDia2 depends on interactions with actin filaments and the plasma membrane. We investigated the poorly understood mechanism of plasma membrane targeting of mDia2 and found that the entire N-terminal region of mDia2 preceding the actin-polymerizing formin homology domains 1 and 2 (FH1–FH2) module was potently targeted to the membrane. This localization was enhanced by Rif, but not by other tested small GTPases, and depended on a positively charged N-terminal basic domain (BD). The BD bound acidic phospholipids in vitro, suggesting that in vivo it may associate with the plasma membrane through electrostatic interactions. Unexpectedly, a fragment consisting of the GTPase-binding region and the diaphanous inhibitory domain (G-DID), thought to mediate the interaction with GTPases, was not targeted to the plasma membrane even in the presence of constitutively active Rif. Addition of the BD or dimerization/coiled coil domains to G-DID rescued plasma membrane targeting in cells. Direct binding of Rif to mDia2 N terminus required the presence of both G and DID. These results suggest that the entire N terminus of mDia2 serves as a coincidence detection module, directing mDia2 to the plasma membrane through interactions with phospholipids and activated Rif.
PMCID: PMC3020915  PMID: 21119010
16.  The Formin mDia1 Mediates Vascular Remodeling via Integration of Oxidative & Signal Transduction Pathways 
Circulation Research  2012;110(10):1279-1293.
The mammalian Diaphanous-related formin, mDia1, governs microtubule and microfilament dynamics while functioning as an effector for Rho small GTP-binding proteins during key cellular processes such as adhesion, cytokinesis, cell polarity and morphogenesis. The cytoplasmic domain of the receptor for advanced glycation endproducts (RAGE) binds to the formin homology 1 (FH1) domain of mDia1; mDia1 is required for RAGE ligand-induced cellular migration in transformed cells.
As a key mechanism in vascular remodeling is the induction of smooth muscle cell migration, we tested the role of mDia1 in this process.
Methods and Results
We report that endothelial denudation injury to the murine femoral artery significantly upregulates mDia1 mRNA transcripts and protein in the injured vessel, particularly in vascular smooth muscle cells within the expanding neointima. Loss of mDia1 expression significantly reduces pathological neointimal expansion consequent to injury. In primary murine aortic smooth muscle cells, mDia1 is required for RAGE ligand-induced membrane translocation of c-Src, which leads to Rac1 activation, redox phosphorylation of AKT/GSK3β and consequent smooth muscle cell migration.
We conclude that mDia1 integrates oxidative and signal transduction pathways triggered, at least in part by RAGE ligands, therefore regulates pathological neointimal expansion.
PMCID: PMC3381909  PMID: 22511750
restenosis; vascular smooth muscle cell; signal transduction; formin; cellular migration
17.  Ena/VASP regulates mDia2-initiated filopodial length, dynamics, and function 
Molecular Biology of the Cell  2014;25(17):2604-2619.
Filopodia are actin-based cell extensions that contribute to cell adhesion and spreading. The cytoskeleton regulators mDia2 and VASP have distinct roles in filopodia assembly and function, and VASP controls the length, dynamics, stability, and integrin-dependent adhesion of filopodia formed by mDia2.
Filopodia are long plasma membrane extensions involved in the formation of adhesive, contractile, and protrusive actin-based structures in spreading and migrating cells. Whether filopodia formed by different molecular mechanisms equally support these cellular functions is unresolved. We used Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP)–deficient MVD7 fibroblasts, which are also devoid of endogenous mDia2, as a model system to investigate how these different actin regulatory proteins affect filopodia morphology and dynamics independently of one another. Filopodia initiated by either Ena/VASP or mDia2 contained similar molecular inventory but differed significantly in parameters such as number, length, F-actin organization, lifetime, and protrusive persistence. Moreover, in the absence of Ena/VASP, filopodia generated by mDia2 did not support initiation of integrin-dependent signaling cascades required for adhesion and subsequent lamellipodial extension, thereby causing a defect in early cell spreading. Coexpression of VASP with constitutively active mDia2M/A rescued these early adhesion defects. We conclude that Ena/VASP and mDia2 support the formation of filopodia with significantly distinct properties and that Ena/VASP regulates mDia2-initiated filopodial morphology, dynamics, and function.
PMCID: PMC4148250  PMID: 24989797
18.  Structure and activity of full-length formin mDia1 
Cytoskeleton (Hoboken, N.J.)  2012;69(6):393-405.
Formins are a conserved family of actin assembly-promoting factors with essential and diverse biological roles. Most of our biochemical understanding of formin effects on actin dynamics is derived from studies using formin fragments. In addition, all structural information on formins has been limited to fragments. This has left open key questions about the structure, activity and regulation of intact formin proteins. Here, we isolated full-length mouse mDia1 (mDia1-FL) and found that it forms tightly autoinhibited dimers that can only be partially activated by RhoA. We solved the structure of autoinhibited mDia1-FL using electron microscopy and single particle analysis. Docking of crystal structures into the 3D reconstruction revealed that the fork-shaped N-terminal DID-CC region hangs over the ring-shaped FH2 domain, suggesting that autoinhibition results from steric obstruction of actin binding. Deletion of the C-terminal DAD domain extended mDia1 structure and activated it for actin assembly. Using TIRF microscopy, we observed that RhoA-activated mDia1-FL persistently accelerated filament elongation in the presence of profilin similar to mDia1 FH1-FH2 fragment. These observations validate the known activities of FH1-FH2 fragments as reflecting those of the intact molecule. Our results further suggest that mDia1-FL does not readily snap back into the autoinhibited conformation and dissociate from growing filament ends, and thus additional factors may be required to displace formins and restrict filament length.
PMCID: PMC3416746  PMID: 22605659
actin; formin; autoinhibition; TIRF; diaphanous
19.  The Formin mDia Regulates GSK3β through Novel PKCs to Promote Microtubule Stabilization but Not MTOC Reorientation in Migrating Fibroblasts 
Molecular Biology of the Cell  2006;17(12):5004-5016.
In migrating cells, external signals polarize the microtubule (MT) cytoskeleton by stimulating the formation of oriented, stabilized MTs and inducing the reorientation of the MT organizing center (MTOC). Glycogen synthase kinase 3β (GSK3β) has been implicated in each of these processes, although whether it regulates both processes in a single system and how its activity is regulated are unclear. We examined these issues in wound-edge, serum-starved NIH 3T3 fibroblasts where MT stabilization and MTOC reorientation are triggered by lysophosphatidic acid (LPA), but are regulated independently by distinct Rho GTPase-signaling pathways. In the absence of other treatments, the GSK3β inhibitors, LiCl or SB216763, induced the formation of stable MTs, but not MTOC reorientation, in starved fibroblasts. Overexpression of GSK3β in starved fibroblasts inhibited LPA-induced stable MTs without inhibiting MTOC reorientation. Analysis of factors involved in stable MT formation (Rho, mDia, and EB1) showed that GSK3β functioned upstream of EB1, but downstream of Rho-mDia. mDia was both necessary and sufficient for inducing stable MTs and for up-regulating GSK3β phosphorylation on Ser9, an inhibitory site. mDia appears to regulate GSK3β through novel class PKCs because PKC inhibitors and dominant negative constructs of novel PKC isoforms prevented phosphorylation of GSK3β Ser9 and stable MT formation. Novel PKCs also interacted with mDia in vivo and in vitro. These results identify a new activity for the formin mDia in regulating GSK3β through novel PKCs and implicate novel PKCs as new factors in the MT stabilization pathway.
PMCID: PMC1679669  PMID: 16987962
20.  The formin mDia2 stabilizes microtubules independently of its actin nucleation activity 
The Journal of Cell Biology  2008;181(3):523-536.
A critical microtubule (MT) polarization event in cell migration is the Rho/mDia-dependent stabilization of a subset of MTs oriented toward the direction of migration. Although mDia nucleates actin filaments, it is unclear whether this or a separate activity of mDia underlies MT stabilization. We generated two actin mutants (K853A and I704A) in a constitutively active version of mDia2 containing formin homology domains 1 and 2 (FH1FH2) and found that they still induced stable MTs and bound to the MT TIP proteins EB1 and APC, which have also been implicated in MT stabilization. A dimerization-impaired mutant of mDia2 (W630A) also generated stable MTs in cells. We examined whether FH1FH2mDia2 had direct activity on MTs in vitro and found that it bound directly to MTs, stabilized MTs against cold- and dilution-induced disassembly, and reduced the rates of growth and shortening during MT assembly and disassembly, respectively. These results indicate that mDia2 has a novel MT stabilization activity that is separate from its actin nucleation activity.
PMCID: PMC2364705  PMID: 18458159
21.  Loss of RhoB Expression Enhances the Myelodysplastic Phenotype of Mammalian Diaphanous-Related Formin mDia1 Knockout Mice 
PLoS ONE  2009;4(9):e7102.
Myelodysplastic syndrome (MDS) is characterized by ineffective hematopoiesis and hyperplastic bone marrow. Complete loss or interstitial deletions of the long arm of chromosome 5 occur frequently in MDS. One candidate tumor suppressor on 5q is the mammalian Diaphanous (mDia)-related formin mDia1, encoded by DIAPH1 (5q31.3). mDia-family formins act as effectors for Rho-family small GTP-binding proteins including RhoB, which has also been shown to possess tumor suppressor activity. Mice lacking the Drf1 gene that encodes mDia1 develop age-dependent myelodysplastic features. We crossed mDia1 and RhoB knockout mice to test whether the additional loss of RhoB expression would compound the myelodysplastic phenotype. Drf1−/−RhoB−/− mice are fertile and develop normally. Relative to age-matched Drf1−/−RhoB+/− mice, the age of myelodysplasia onset was earlier in Drf1−/−RhoB−/− animals—including abnormally shaped erythrocytes, splenomegaly, and extramedullary hematopoiesis. In addition, we observed a statistically significant increase in the number of activated monocytes/macrophages in both the spleen and bone marrow of Drf1−/−RhoB−/− mice relative to Drf1−/−RhoB+/− mice. These data suggest a role for RhoB-regulated mDia1 in the regulation of hematopoietic progenitor cells.
PMCID: PMC2740832  PMID: 19768111
22.  The Formin Protein mDia2 Serves as a Marker of Spindle Pole Dynamics in Vitrified-Warmed Mouse Oocytes 
PLoS ONE  2013;8(9):e75729.
The mouse diaphanous 2 (mDia2) protein belongs to the formin family and has been shown to nucleate actin filaments and stabilize microtubules, thus indicating a role in cytoskeleton organization. Our previous study, which showed that mDia2 specifically localizes to spindle poles of metaphase I mouse oocytes and NIH3T3 cells, provided the first evidence of its spindle pole-associated cellular function. In the present study, we aim to determine whether spindle pole proteins, such as mDia2 and pericentrin, can be used to monitor the status of spindle poles in cryopreserved mouse oocytes. We show herein that mDia2 exhibits an overlapping distribution with pericentrin, which is a crucial component of centrosomes and microtubule organizing centers (MTOCs). In vitrified-warmed oocytes, the overlapping distribution of mDia2 and pericentrin was immediately detected after thawing, thereby suggesting that mDia2 maintains a tight association with the spindle pole machinery. Interestingly, we observed that microtubules extend from mDia2 clusters in cytoplasmic MTOCs after thawing. This result suggests that mDia2 is a major MTOC component that is closely associated with pericentrin and that it plays a role in microtubule growth from MTOCs. Collectively, our results provide evidence that mDia2 is a novel marker of spindle pole dynamics before and after cryopreservation.
PMCID: PMC3777981  PMID: 24069443
23.  Deficiency of mDia, an Actin Nucleator, Disrupts Integrity of Neuroepithelium and Causes Periventricular Dysplasia 
PLoS ONE  2011;6(9):e25465.
During development of the central nervous system, the apical-basal polarity of neuroepithelial cells is critical for homeostasis of proliferation and differentiation of neural stem cells. While adherens junctions at the apical surface of neuroepithelial cells are important for maintaining the polarity, the molecular mechanism regulating integrity of these adherens junctions remains largely unknown. Given the importance of actin cytoskeleton in adherens junctions, we have analyzed the role of mDia, an actin nucleator and a Rho effector, in the integrity of the apical adherens junction. Here we show that mDia1 and mDia3 are expressed in the developing brain, and that mDia3 is concentrated in the apical surface of neuroepithelium. Mice deficient in both mDia1 and mDia3 develop periventricular dysplastic mass widespread throughout the developing brain, where neuroepithelial cell polarity is impaired with attenuated apical actin belts and loss of apical adherens junctions. In addition, electron microscopic analysis revealed abnormal shrinkage and apical membrane bulging of neuroepithelial cells in the remaining areas. Furthermore, perturbation of Rho, but not that of ROCK, causes loss of the apical actin belt and adherens junctions similarly to mDia-deficient mice. These results suggest that actin cytoskeleton regulated by Rho-mDia pathway is critical for the integrity of the adherens junctions and the polarity of neuroepithelial cells, and that loss of this signaling induces aberrant, ectopic proliferation and differentiation of neural stem cells.
PMCID: PMC3182227  PMID: 21980468
24.  Enzymatically active Rho and Rac small-GTPases are involved in the establishment of the vacuolar membrane after Toxoplasma gondii invasion of host cells 
BMC Microbiology  2013;13:125.
GTPases are the family of hydrolases that bind and hydrolyze guanosine triphosphate. The large Immunity-related GTPases and the small GTPase ADP-ribosylation factor-6 in host cells are known to accumulate on the parasitophorous vacuole membrane (PVM) of Toxoplasma gondii and play critical roles in this parasite infection, but these GTPases cannot explain the full extent of infection.
In this research, RhoA and Rac1 GTPases from the host cell were found to accumulate on the PVM regardless of the virulence of the T. gondii strains after T. gondii invasion, and this accumulation was dependent on their GTPase activity. The real-time micrography of T. gondii tachyzoites invading COS-7 cells overexpressing CFP-RhoA showed that this GTPase was recruited to the PVM at the very beginning of the invasion through the host cell membrane or from the cytosol. Host cell RhoA and Rac1 were also activated after T. gondii tachyzoites invasion, which was needed for host cell cytoskeleton reorganization to facilitate intracellular pathogens invasion. The decisive domains for the RhoA accumulation on the PVM included the GTP/Mg2+ binding site, the mDia effector interaction site, the G1 box, the G2 box and the G5 box, respectively, which were related to the binding of GTP for enzymatic activity and mDia for the regulation of microtubules. The recruited CFP-RhoA on the PVM could not be activated by epithelial growth factor (EGF) and no translocation was observed, unlike the unassociated RhoA in the host cell cytosol that migrated to the cell membrane towards the EGF activation spot. This result supported the hypothesis that the recruited RhoA or Rac1 on the PVM were in the GTP-bound active form. Wild-type RhoA or Rac1 overexpressed cells had almost the same infection rates by T. gondii as the mock-treated cells, while RhoA-N19 or Rac1-N17 transfected cells and RhoA, Rac1 or RhoA + Rac1 siRNA-treated cells showed significantly diminished infection rates compared to mock cells.
The accumulation of the RhoA and Rac1 on the PVM and the requisite of their normal GTPase activity for efficient invasion implied their involvement and function in T. gondii invasion.
PMCID: PMC3681593  PMID: 23721065
Toxoplasma gondii; Parasitophorous vacuole membrane; RhoA; Rac1; GTPase; Accumulate; Activate
25.  Overexpression of RhoA Induces Preneoplastic Transformation of Primary Mammary Epithelial Cells 
Cancer research  2009;69(2):483-491.
Rho family small GTPases serve as molecular switches in the regulation of diverse cellular functions, including actin cytoskeleton remodeling, cell migration, gene transcription, and cell proliferation. Importantly, Rho overexpression is frequently seen in many carcinomas. However, published studies have almost invariably used immortal or tumorigenic cell lines to study Rho GTPase functions and there are no studies on the potential of Rho small GTPase to overcome senescence checkpoints and induce preneoplastic transformation of human mammary epithelial cells (hMEC). We show here that ectopic expression of wild-type (WT) RhoA as well as a constitutively active RhoA mutant (G14V) in two independent primary hMEC strains led to their immortalization and preneoplastic transformation. These cells have continued to grow over 300 population doublings (PD) with no signs of senescence, whereas cells expressing the vector or dominant-negative RhoA mutant (T19N) senesced after 20 PDs. Significantly, RhoA-T37A mutant, known to be incapable of interacting with many well-known Rho effectors including Rho kinase, PKN, mDia1, and mDia2, was also capable of immortalizing hMECs. Notably, similar to parental normal cells, Rho-immortalized cells have WT p53 and intact G1 cell cycle arrest on Adriamycin treatment. Rho-immortalized cells were anchorage dependent and were unable to form tumors when implanted in nude mice. Lastly, microarray expression profiling of Rho-immortalized versus parental cells showed altered expression of several genes previously implicated in immortalization and breast cancer progression. Taken together, these results show that RhoA can induce the preneoplastic transformation of hMECs by altering multiple pathways linked to cellular transformation and breast cancer.
PMCID: PMC2792911  PMID: 19147561

Results 1-25 (976308)