PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (730800)

Clipboard (0)
None

Related Articles

1.  Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP 
eLife  2013;2:e00884.
Nucleation promoting factors (NPFs) initiate branched actin network assembly by activating Arp2/3 complex, a branched actin filament nucleator. Cellular actin networks contain multiple NPFs, but how they coordinately regulate Arp2/3 complex is unclear. Cortactin is an NPF that activates Arp2/3 complex weakly on its own, but with WASP/N-WASP, another class of NPFs, potently activates. We dissect the mechanism of synergy and propose a model in which cortactin displaces N-WASP from nascent branches as a prerequisite for nucleation. Single-molecule imaging revealed that unlike WASP/N-WASP, cortactin remains bound to junctions during nucleation, and specifically targets junctions with a ∼160-fold increased on rate over filament sides. N-WASP must be dimerized for potent synergy, and targeted mutations indicate release of dimeric N-WASP from nascent branches limits nucleation. Mathematical modeling shows cortactin-mediated displacement but not N-WASP recycling or filament recruitment models can explain synergy. Our results provide a molecular basis for coordinate Arp2/3 complex regulation.
DOI: http://dx.doi.org/10.7554/eLife.00884.001
eLife digest
Cells constantly sense, and react to, their environments. They can monitor or alter their surroundings by taking up or secreting various substances, and may also migrate toward food supplies, or toward signaling molecules—for example, to clot blood or heal wounds. These actions depend on the cytoskeleton, a protein meshwork that gives cells their shape; allows them to transport materials into, out of, or across their cytoplasms; and enables them to move.
The filaments of the cytoskeleton are constructed from several different types of proteins, one of which is called actin. In response to signals, actin can assemble into linear filaments, or can form branches with one end anchored on an existing filament. Branch formation requires the Arp2/3 complex, which initiates and anchors branches on existing filaments, and also various ‘nucleation-promoting factors’ (NPFs), which turn on the branching activity of the Arp2/3 complex.
Two types of NPFs have been identified: type I interact with individual actin molecules, while type II bind to actin filaments. Previous work has shown that type I NPFs—including the N-WASP protein—have a specialized domain called VCA that binds to both the Arp2/3 complex and to actin molecules. VCA brings actin molecules to the branch site, which initiates branch formation, but how N-WASP collaborates with type II NPFs to build branches is not well understood.
Helgeson and Nolen now examine how a type II NPF called cortactin works with the Arp2/3 complex and N-WASP to construct new branches on actin filaments in vitro. Cortactin appears to displace the VCA domain of N-WASP to stimulate branch formation, and then to remain associated with—and stabilize—the growing branch. Helgeson and Nolen suggest that these NPFs work together to create branches using an “obligatory displacement” model. According to this scheme, N-WASP (or another type I NPF), the Arp2/3 complex and two actin molecules are bound at the site of a future branch on an actin filament, poised for branch formation. However, before more actin molecules can be added, N-WASP must be released, either slowly on its own—as Smith et al. also report in findings published concurrently in eLife—or rapidly with the help of cortactin or other type II NPFs.
Although the rationale for N-WASP removal is not yet understood, type I NPFs are generally attached to the plasma membrane. When N-WASP releases the mother filament, the membrane should no longer be able to block the addition of actin molecules to a growing branch.
DOI: http://dx.doi.org/10.7554/eLife.00884.002
doi:10.7554/eLife.00884
PMCID: PMC3762189  PMID: 24015358
Arp2/3; actin; WASP; cortactin; single molecule; N-WASP; Mouse
2.  Three-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation 
eLife  2013;2:e01008.
During cell locomotion and endocytosis, membrane-tethered WASP proteins stimulate actin filament nucleation by the Arp2/3 complex. This process generates highly branched arrays of filaments that grow toward the membrane to which they are tethered, a conflict that seemingly would restrict filament growth. Using three-color single-molecule imaging in vitro we revealed how the dynamic associations of Arp2/3 complex with mother filament and WASP are temporally coordinated with initiation of daughter filament growth. We found that WASP proteins dissociated from filament-bound Arp2/3 complex prior to new filament growth. Further, mutations that accelerated release of WASP from filament-bound Arp2/3 complex proportionally accelerated branch formation. These data suggest that while WASP promotes formation of pre-nucleation complexes, filament growth cannot occur until it is triggered by WASP release. This provides a mechanism by which membrane-bound WASP proteins can stimulate network growth without restraining it.
DOI: http://dx.doi.org/10.7554/eLife.01008.001
eLife digest
Most cells are neither perfect spheres nor amorphous blobs, but instead have characteristic shapes that enable them to carry out specific roles within tissues or organs. These shapes are established by a type of scaffolding, called the cytoskeleton, that gives structure to the cell, and also forms networks over which other proteins, and even organelles, can travel.
The filaments that make up the cytoskeleton are composed of various proteins, one of which is called actin. Cellular actin filaments can grow by adding new actin molecules, and actin filaments can also have ‘branches’ that fork out from the mother filament. Branches grow out of an assembly of seven proteins known as the Arp2/3 complex, which attaches to the side of the mother filament. Branch growth is triggered by binding to the Arp2/3 complex of an additional protein, WASP, but the sequence of events required to initiate a new branch is not well understood. In particular, WASP is bound to cell membranes; at some point it must detach from the Arp2/3 complex so that the nearness of the membrane does not interfere with the growth of branches. Now, Smith et al. uncover how branch formation is triggered, and define a new role played by WASP in this process.
It is known that a specific region of the WASP protein called the VCA domain binds to both the Arp2/3 complex and actin. Smith et al. studied how this domain could initiate branch formation, and showed that a pair of VCA domains linked to each other, along with an Arp2/3 complex, could interact jointly with an existing actin filament before a new branch formed. However, new branches did not form unless the VCA-domain pair detached from the actin filament, leaving the Arp2/3 complex behind. Additionally, Smith et al. found that mutant VCA-domain pairs detached from the actin filament at different rates, which then determined the chance that a new branch formed.
These findings—and those of Helgeson and Nolen published concurrently in eLife—suggest that, in cells, two WASP proteins first recruit the Arp2/3 complex to the membrane, and that together they interact with an existing actin filament. The WASP proteins then release the filament, and only then does the Arp2/3 complex initiate the formation of an actin branch. Since the Arp2/3 complex is no longer attached to WASP, subsequent growth of the branch is not physically limited by linkage to the membrane.
DOI: http://dx.doi.org/10.7554/eLife.01008.002
doi:10.7554/eLife.01008
PMCID: PMC3762362  PMID: 24015360
TIRF; WH2; nucleation; Wiskott-Aldrich syndrome protein; verprolin homology; activation; Human; S. cerevisiae
3.  Arp2/3 Branched Actin Network Mediates Filopodia-Like Bundles Formation In Vitro 
PLoS ONE  2008;3(9):e3297.
During cellular migration, regulated actin assembly takes place at the cell leading edge, with continuous disassembly deeper in the cell interior. Actin polymerization at the plasma membrane results in the extension of cellular protrusions in the form of lamellipodia and filopodia. To understand how cells regulate the transformation of lamellipodia into filopodia, and to determine the major factors that control their transition, we studied actin self-assembly in the presence of Arp2/3 complex, WASp-VCA and fascin, the major proteins participating in the assembly of lamellipodia and filopodia. We show that in the early stages of actin polymerization fascin is passive while Arp2/3 mediates the formation of dense and highly branched aster-like networks of actin. Once filaments in the periphery of an aster get long enough, fascin becomes active, linking the filaments into bundles which emanate radially from the aster's surface, resulting in the formation of star-like structures. We show that the number of bundles nucleated per star, as well as their thickness and length, is controlled by the initial concentration of Arp2/3 complex ([Arp2/3]). Specifically, we tested several values of [Arp2/3] and found that for given initial concentrations of actin and fascin, the number of bundles per star, as well as their length and thickness are larger when [Arp2/3] is lower. Our experimental findings can be interpreted and explained using a theoretical scheme which combines Kinetic Monte Carlo simulations for aster growth, with a simple mechanistic model for bundles' formation and growth. According to this model, bundles emerge from the aster's (sparsely branched) surface layer. Bundles begin to form when the bending energy associated with bringing two filaments into contact is compensated by the energetic gain resulting from their fascin linking energy. As time evolves the initially thin and short bundles elongate, thus reducing their bending energy and allowing them to further associate and create thicker bundles, until all actin monomers are consumed. This process is essentially irreversible on the time scale of actin polymerization. Two structural parameters, L, which is proportional to the length of filament tips at the aster periphery and b, the spacing between their origins, dictate the onset of bundling; both depending on [Arp2/3]. Cells may use a similar mechanism to regulate filopodia formation along the cell leading edge. Such a mechanism may allow cells to have control over the localization of filopodia by recruiting specific proteins that regulate filaments length (e.g., Dia2) to specific sites along lamellipodia.
doi:10.1371/journal.pone.0003297
PMCID: PMC2538570  PMID: 18820726
4.  Erk/Src Phosphorylation of Cortactin Acts as a Switch On-Switch Off Mechanism That Controls Its Ability To Activate N-WASP 
Molecular and Cellular Biology  2004;24(12):5269-5280.
The Arp2/3 complex can be independently activated to initiate actin polymerization by the VCA domain of WASP family members and by the acidic N-terminal and F-actin-binding repeat region of cortactin, which possesses a C-terminal SH3 domain. Cortactin is a target for phosphorylation by Src tyrosine kinases and by serine/threonine kinases that include Erk. Here we demonstrate that cortactin binds N-WASP and WASP via its SH3 domain, induces in vitro N-WASP-mediated actin polymerization, and colocalizes with N-WASP and WASP at sites of active actin polymerization. Erk phosphorylation and a mimicking S405,418D double mutation enhanced cortactin binding and activation of N-WASP. In contrast, Src phosphorylation inhibited the ability of cortactin previously phosphorylated by Erk, and that of S405,418D double mutant cortactin, to bind and activate N-WASP. Furthermore, Y→D mutation of three tyrosine residues targeted by Src (Y421, Y466, and Y482) inhibited the ability of S405,418D cortactin to activate N-WASP. We propose that Erk phosphorylation liberates the SH3 domain of cortactin from intramolecular interactions with proline-rich regions, causing it to synergize with WASP and N-WASP in activating the Arp2/3 complex, and that Src phosphorylation terminates cortactin activation of N-WASP and WASP.
doi:10.1128/MCB.24.12.5269-5280.2004
PMCID: PMC419870  PMID: 15169891
5.  An Experimental and Computational Study of the Effect of ActA Polarity on the Speed of Listeria monocytogenes Actin-based Motility 
PLoS Computational Biology  2009;5(7):e1000434.
Listeria monocytogenes is a pathogenic bacterium that moves within infected cells and spreads directly between cells by harnessing the cell's dendritic actin machinery. This motility is dependent on expression of a single bacterial surface protein, ActA, a constitutively active Arp2,3 activator, and has been widely studied as a biochemical and biophysical model system for actin-based motility. Dendritic actin network dynamics are important for cell processes including eukaryotic cell motility, cytokinesis, and endocytosis. Here we experimentally altered the degree of ActA polarity on a population of bacteria and made use of an ActA-RFP fusion to determine the relationship between ActA distribution and speed of bacterial motion. We found a positive linear relationship for both ActA intensity and polarity with speed. We explored the underlying mechanisms of this dependence with two distinctly different quantitative models: a detailed agent-based model in which each actin filament and branched network is explicitly simulated, and a three-state continuum model that describes a simplified relationship between bacterial speed and barbed-end actin populations. In silico bacterial motility required a cooperative restraining mechanism to reconstitute our observed speed-polarity relationship, suggesting that kinetic friction between actin filaments and the bacterial surface, a restraining force previously neglected in motility models, is important in determining the effect of ActA polarity on bacterial motility. The continuum model was less restrictive, requiring only a filament number-dependent restraining mechanism to reproduce our experimental observations. However, seemingly rational assumptions in the continuum model, e.g. an average propulsive force per filament, were invalidated by further analysis with the agent-based model. We found that the average contribution to motility from side-interacting filaments was actually a function of the ActA distribution. This ActA-dependence would be difficult to intuit but emerges naturally from the nanoscale interactions in the agent-based representation.
Author Summary
Cells tightly regulate the branched actin networks involved in motility, division, and other important cellular functions through localized activation of the Arp2,3 protein, which nucleates new actin filaments off the sides of existing ones. The pathogenic bacterium, Listeria monocytogenes, expresses its own Arp2,3 activator, ActA, in a polarized fashion and can thus nucleate dynamic actin networks at its surface to generate forces to move through the cytoplasm. This bacterium has thus served as a simplified system for experimental and modeling studies of actin-based motility. We use this bacterial system to quantify the relationship between ActA polarity and bacterial speed of motion by experimentally manipulating this polarity and analyzing the resultant ActA distributions and bacterial trajectories. Like many cellular behaviors, L. monocytogenes motility emerges from a complex set of biochemical and force-based interactions. We therefore probe this polarity-speed relationship with a detailed agent-based simulation which encodes the predominant biochemical reactions and whose agents (actin filaments, ActA proteins, and the bacterium) exchange forces. We contrast conclusions from this agent-based model with those from a simpler mathematical model. From these studies we assert the importance of a heretofore neglected force in this system – friction between actin filaments and the bacterial surface.
doi:10.1371/journal.pcbi.1000434
PMCID: PMC2699634  PMID: 19593363
6.  Enterohemorrhagic E. coli Requires N-WASP for Efficient Type III Translocation but Not for EspFU-Mediated Actin Pedestal Formation 
PLoS Pathogens  2010;6(8):e1001056.
Upon infection of mammalian cells, enterohemorrhagic E. coli (EHEC) O157:H7 utilizes a type III secretion system to translocate the effectors Tir and EspFU (aka TccP) that trigger the formation of F-actin-rich ‘pedestals’ beneath bound bacteria. EspFU is localized to the plasma membrane by Tir and binds the nucleation-promoting factor N-WASP, which in turn activates the Arp2/3 actin assembly complex. Although N-WASP has been shown to be required for EHEC pedestal formation, the precise steps in the process that it influences have not been determined. We found that N-WASP and actin assembly promote EHEC-mediated translocation of Tir and EspFU into mammalian host cells. When we utilized the related pathogen enteropathogenic E. coli to enhance type III translocation of EHEC Tir and EspFU, we found surprisingly that actin pedestals were generated on N-WASP-deficient cells. Similar to pedestal formation on wild type cells, Tir and EspFU were the only bacterial effectors required for pedestal formation, and the EspFU sequences required to interact with N-WASP were found to also be essential to stimulate this alternate actin assembly pathway. In the absence of N-WASP, the Arp2/3 complex was both recruited to sites of bacterial attachment and required for actin assembly. Our results indicate that actin assembly facilitates type III translocation, and reveal that EspFU, presumably by recruiting an alternate host factor that can signal to the Arp2/3 complex, exhibits remarkable versatility in its strategies for stimulating actin polymerization.
Author Summary
The food-borne pathogen enterohemorrhagic E. coli (EHEC) O157:H7 can cause severe diarrhoea and life-threatening systemic illnesses. During infection, EHEC attaches to cells lining the human intestine and injects Tir and EspFU, two bacterial molecules that alter the host cell actin cytoskeleton and stimulate the formation of “pedestals” just beneath bound bacteria. Pedestal formation promotes colonization during the later stages of infection. N-WASP, a host protein known to regulate actin assembly in mammalian cells, was previously shown to be manipulated by Tir and EspFU to stimulate actin assembly, and to be required for EHEC to generate actin pedestals. Surprisingly, we show here that N-WASP promotes the efficient delivery of Tir and EspFU into mammalian cells, and that when we utilized a related E. coli to enhance type III delivery of Tir and EspFU, actin pedestals assembled even in its absence. Thus, EHEC stimulates at least two pathways of actin assembly to generate pedestals, one mediated by N-WASP and one by an unidentified alternate factor. This flexibility likely reflects an important function of pedestal formation by EHEC, and study of the underlying mechanisms may provide new insights into the pathogenesis of infection as well as the regulation of the actin cytoskeleton of mammalian cells.
doi:10.1371/journal.ppat.1001056
PMCID: PMC2924363  PMID: 20808845
7.  A biomimetic motility assay provides insight into the mechanism of actin-based motility 
The Journal of Cell Biology  2003;160(3):387-398.
Abiomimetic motility assay is used to analyze the mechanism of force production by site-directed polymerization of actin. Polystyrene microspheres, functionalized in a controlled fashion by the N-WASP protein, the ubiquitous activator of Arp2/3 complex, undergo actin-based propulsion in a medium that consists of five pure proteins. We have analyzed the dependence of velocity on N-WASP surface density, on the concentration of capping protein, and on external force. Movement was not slowed down by increasing the diameter of the beads (0.2 to 3 μm) nor by increasing the viscosity of the medium by 105-fold. This important result shows that forces due to actin polymerization are balanced by internal forces due to transient attachment of filament ends at the surface. These forces are greater than the viscous drag. Using Alexa®488-labeled Arp2/3, we show that Arp2/3 is incorporated in the actin tail like G-actin by barbed end branching of filaments at the bead surface, not by side branching, and that filaments are more densely branched upon increasing gelsolin concentration. These data support models in which the rates of filament branching and capping control velocity, and autocatalytic branching of filament ends, rather than filament nucleation, occurs at the particle surface.
doi:10.1083/jcb.200207148
PMCID: PMC2172664  PMID: 12551957
actin; cell motility; N-WASP; Arp2/3 complex; biomimetics
8.  Distinct phosphorylation requirements regulate cortactin activation by TirEPEC and its binding to N-WASP 
Background
Cortactin activates the actin-related 2/3 (Arp2/3) complex promoting actin polymerization to remodel cell architecture in multiple processes (e.g. cell migration, membrane trafficking, invadopodia formation etc.). Moreover, it was called the Achilles' heel of the actin cytoskeleton because many pathogens hijack signals that converge on this oncogenic scaffolding protein. Cortactin is able to modulate N-WASP activation in vitro in a phosphorylation-dependent fashion. Thus Erk-phosphorylated cortactin is efficient in activating N-WASP through its SH3 domain, while Src-phosphorylated cortactin is not. This could represent a switch on/off mechanism controlling the coordinated action of both nucleator promoting factors (NPFs). Pedestal formation by enteropathogenic Escherichia coli (EPEC) requires N-WASP activation. N-WASP is recruited by the cell adapter Nck which binds a major tyrosine-phosphorylated site of a bacterial injected effector, Tir (translocated intimin receptor). Tir-Nck-N-WASP axis defines the current major pathway to actin polymerization on pedestals. In addition, it was recently reported that EPEC induces tyrosine phosphorylation of cortactin.
Results
Here we demonstrate that cortactin phosphorylation is absent on N-WASP deficient cells, but is recovered by re-expression of N-WASP. We used purified recombinant cortactin and Tir proteins to demonstrate a direct interaction of both that promoted Arp2/3 complex-mediated actin polymerization in vitro, independently of cortactin phosphorylation.
Conclusion
We propose that cortactin binds Tir through its N-terminal part in a tyrosine and serine phosphorylation independent manner while SH3 domain binding and activation of N-WASP is regulated by tyrosine and serine mediated phosphorylation of cortactin. Therefore cortactin could act on Tir-Nck-N-WASP pathway and control a possible cycling activity of N-WASP underlying pedestal formation.
doi:10.1186/1478-811X-7-11
PMCID: PMC2686683  PMID: 19419567
9.  Distinct Roles for Arp2/3 Regulators in Actin Assembly and Endocytosis 
PLoS Biology  2008;6(1):e1.
The Arp2/3 complex is essential for actin assembly and motility in many cell processes, and a large number of proteins have been found to bind and regulate it in vitro. A critical challenge is to understand the actions of these proteins in cells, especially in settings where multiple regulators are present. In a systematic study of the sequential multicomponent actin assembly processes that accompany endocytosis in yeast, we examined and compared the roles of WASp, two type-I myosins, and two other Arp2/3 activators, along with that of coronin, which is a proposed inhibitor of Arp2/3. Quantitative analysis of high-speed fluorescence imaging revealed individual functions for the regulators, manifested in part by novel phenotypes. We conclude that Arp2/3 regulators have distinct and overlapping roles in the processes of actin assembly that drive endocytosis in yeast. The formation of the endocytic actin patch, the creation of the endocytic vesicle, and the movement of the vesicle into the cytoplasm display distinct dependencies on different Arp2/3 regulators. Knowledge of these roles provides insight into the in vivo relevance of the dendritic nucleation model for actin assembly.
Author Summary
A branched network of growing actin filaments, pushing against a membrane, provides the force for certain cellular movements. The Arp2/3 complex plays a central role in this process by generating new filaments and branch points. A number of proteins bind to and, in some cases, regulate Arp2/3. It is important to determine, in the cell, the precise roles of each of the many Arp2/3 regulators in generating actin networks during a complex, multistep, cellular movement. In yeast, endocytosis occurs at the plasma membrane in association with the assembly and movement of cortical actin patches, which contain six Arp2/3 regulators. We have used the actin patch as a model system to determine the specific roles of these regulators during patch assembly and movement. We used high-speed video microscopy, coupled with computer-aided particle tracking, to monitor the movement of fluorescently labeled actin patches in cells with one or more mutations of the Arp2/3 regulators. The sensitivity of this technique allowed us to identify previously unappreciated functions for Arp2/3 regulators and to assign each of the regulators a specific role during actin patch assembly and movement. Our results demonstrate that Arp2/3 regulatory proteins play overlapping roles at certain stages of actin patch movement, but distinct roles at other stages. In addition, our results provide new insight into how the assembly of an actin filament networks powers the movement of endocytic vesicles away from the membrane.
Branched networks of actin filaments, nucleated by the Arp2/3 complex, power many cellular movements. Quantitative analysis of actin patch motility in budding yeast reveals distinct and overlapping roles for Arp2/3 regulators in endocytosis.
doi:10.1371/journal.pbio.0060001
PMCID: PMC2156081  PMID: 18177206
10.  Repetitive N-WASP–Binding Elements of the Enterohemorrhagic Escherichia coli Effector EspFU Synergistically Activate Actin Assembly 
PLoS Pathogens  2008;4(10):e1000191.
Enterohemorrhagic Escherichia coli (EHEC) generate F-actin–rich adhesion pedestals by delivering effector proteins into mammalian cells. These effectors include the translocated receptor Tir, along with EspFU, a protein that associates indirectly with Tir and contains multiple peptide repeats that stimulate actin polymerization. In vitro, the EspFU repeat region is capable of binding and activating recombinant derivatives of N-WASP, a host actin nucleation-promoting factor. In spite of the identification of these important bacterial and host factors, the underlying mechanisms of how EHEC so potently exploits the native actin assembly machinery have not been clearly defined. Here we show that Tir and EspFU are sufficient for actin pedestal formation in cultured cells. Experimental clustering of Tir-EspFU fusion proteins indicates that the central role of the cytoplasmic portion of Tir is to promote clustering of the repeat region of EspFU. Whereas clustering of a single EspFU repeat is sufficient to bind N-WASP and generate pedestals on cultured cells, multi-repeat EspFU derivatives promote actin assembly more efficiently. Moreover, the EspFU repeats activate a protein complex containing N-WASP and the actin-binding protein WIP in a synergistic fashion in vitro, further suggesting that the repeats cooperate to stimulate actin polymerization in vivo. One explanation for repeat synergy is that simultaneous engagement of multiple N-WASP molecules can enhance its ability to interact with the actin nucleating Arp2/3 complex. These findings define the minimal set of bacterial effectors required for pedestal formation and the elements within those effectors that contribute to actin assembly via N-WASP-Arp2/3–mediated signaling pathways.
Author Summary
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a food-borne pathogen that causes diarrhea and life-threatening systemic illnesses. EHEC colonizes the intestine by adhering tightly to host cells and injecting bacterial molecules that trigger the formation of a “pedestal” below bound bacteria. These pedestals are generated by reorganizing the actin cytoskeleton into densely packed filaments beneath the plasma membrane. Pedestal formation is therefore not only important for EHEC disease, it provides a means to study how mammalian cells control their shape. We show here that two EHEC proteins, Tir and EspFU, are sufficient to trigger pedestal formation. Tir localizes to the mammalian plasma membrane, and its central function is to promote clustering of EspFU. EspFU contains multiple repeat sequences that stimulate actin polymerization by binding N-WASP, a host protein that initiates actin assembly. Although a single repeat of EspFU can generate pedestals, multi-repeat variants promote actin assembly cooperatively. One explanation for this synergy is that tandem repeats can potently trigger the formation of a complex of mammalian proteins that modulate the actin cytoskeleton. These findings define the minimal set of EHEC effectors required for pedestal formation and the elements within those effectors that confer their ability to alter cell shape.
doi:10.1371/journal.ppat.1000191
PMCID: PMC2567903  PMID: 18974829
11.  Processive acceleration of actin barbed-end assembly by N-WASP 
Molecular Biology of the Cell  2014;25(1):55-65.
Clustered N-WASP binds directly to actin-filament barbed ends and can either slow individual filament growth or processively accelerate the assembly of bundled actin filaments. This novel Arp2/3-independent mechanism of N-WASP likely plays a role in invadopodia and podosome formation, in which both N-WASP and actin filaments are tightly clustered.
Neuronal Wiskott–Aldrich syndrome protein (N-WASP)–activated actin polymerization drives extension of invadopodia and podosomes into the basement layer. In addition to activating Arp2/3, N-WASP binds actin-filament barbed ends, and both N-WASP and barbed ends are tightly clustered in these invasive structures. We use nanofibers coated with N-WASP WWCA domains as model cell surfaces and single-actin-filament imaging to determine how clustered N-WASP affects Arp2/3-independent barbed-end assembly. Individual barbed ends captured by WWCA domains grow at or below their diffusion-limited assembly rate. At high filament densities, however, overlapping filaments form buckles between their nanofiber tethers and myosin attachment points. These buckles grew ∼3.4-fold faster than the diffusion-limited rate of unattached barbed ends. N-WASP constructs with and without the native polyproline (PP) region show similar rate enhancements in the absence of profilin, but profilin slows barbed-end acceleration from constructs containing the PP region. Increasing Mg2+ to enhance filament bundling increases the frequency of filament buckle formation, consistent with a requirement of accelerated assembly on barbed-end bundling. We propose that this novel N-WASP assembly activity provides an Arp2/3-independent force that drives nascent filament bundles into the basement layer during cell invasion.
doi:10.1091/mbc.E12-11-0781
PMCID: PMC3873893  PMID: 24227886
12.  Activation of the Cdc42 Effector N-Wasp by the Shigella flexneri Icsa Protein Promotes Actin Nucleation by Arp2/3 Complex and Bacterial Actin-Based Motility 
The Journal of Cell Biology  1999;146(6):1319-1332.
To propel itself in infected cells, the pathogen Shigella flexneri subverts the Cdc42-controlled machinery responsible for actin assembly during filopodia formation. Using a combination of bacterial motility assays in platelet extracts with Escherichia coli expressing the Shigella IcsA protein and in vitro analysis of reconstituted systems from purified proteins, we show here that the bacterial protein IcsA binds N-WASP and activates it in a Cdc42-like fashion. Dramatic stimulation of actin assembly is linked to the formation of a ternary IcsA–N-WASP–Arp2/3 complex, which nucleates actin polymerization. The Arp2/3 complex is essential in initiation of actin assembly and Shigella movement, as previously observed for Listeria monocytogenes. Activation of N-WASP by IcsA unmasks two domains acting together in insertional actin polymerization. The isolated COOH-terminal domain of N-WASP containing a verprolin-homology region, a cofilin-homology sequence, and an acidic terminal segment (VCA) interacts with G-actin in a unique profilin-like functional fashion. Hence, when N-WASP is activated, its COOH-terminal domain feeds barbed end growth of filaments and lowers the critical concentration at the bacterial surface. On the other hand, the NH2-terminal domain of N-WASP interacts with F-actin, mediating the attachment of the actin tail to the bacterium surface. VASP is not involved in Shigella movement, and the function of profilin does not require its binding to proline-rich regions.
PMCID: PMC2156126  PMID: 10491394
Shigella flexneri; IcsA; N-WASP; Arp2/3 complex; actin
13.  Rho Family Gtpase Cdc42 Is Essential for the Actin-Based Motility of Shigella in Mammalian Cells 
The Journal of Experimental Medicine  2000;191(11):1905-1920.
Shigella, the causative agent of bacillary dysentery, is capable of directing its movement within host cells by exploiting actin dynamics. The VirG protein expressed at one pole of the bacterium can recruit neural Wiskott-Aldrich syndrome protein (N-WASP), a downstream effector of Cdc42. Here, we show that Cdc42 is required for the actin-based motility of Shigella. Microinjection of a dominant active mutant Cdc42, but not Rac1 or RhoA, into Swiss 3T3 cells accelerated Shigella motility. In add-back experiments in Xenopus egg extracts, addition of a guanine nucleotide dissociation inhibitor for the Rho family, RhoGDI, greatly diminished the bacterial motility or actin assembly, which was restored by adding activated Cdc42. In N-WASP–depleted extracts, the bacterial movement almost arrested was restored by adding exogenous N-WASP but not H208D, an N-WASP mutant defective in binding to Cdc42. In pyrene actin assay, Cdc42 enhanced VirG-stimulating actin polymerization by N-WASP–actin-related protein (Arp)2/3 complex. Actually, Cdc42 stimulated actin cloud formation on the surface of bacteria expressing VirG in a solution containing N-WASP, Arp2/3 complex, and G-actin. Immunohistological study of Shigella-infected cells expressing green fluorescent protein–tagged Cdc42 revealed that Cdc42 accumulated by being colocalized with actin cloud at one pole of intracellular bacterium. Furthermore, overexpression of H208D mutant in cells interfered with the actin assembly of infected Shigella and diminished the intra- and intercellular spreading. These results suggest that Cdc42 activity is involved in initiating actin nucleation mediated by VirG–N-WASP–Arp2/3 complex formed on intracellular Shigella.
PMCID: PMC2213524  PMID: 10839806
bacterial infections; bacterial protein; microfilament proteins; actins; Wiskott-Aldrich syndrome
14.  Electron Tomography and Simulation of Baculovirus Actin Comet Tails Support a Tethered Filament Model of Pathogen Propulsion 
PLoS Biology  2014;12(1):e1001765.
Electron tomography reveals the structural organization of actin comet tails generated by a baculovirus, providing an understanding of how this pathogen hijacks host machinery to propel itself between cells.
Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion.
Author Summary
Several bacteria and viruses hijack the motile machinery of cells they invade to generate networks of actin filaments (comet tails) to propel themselves from one cell to another. A proper understanding of the mechanism of propulsion has so far been hampered by a lack of information about the structure of the machinery. Using electron tomography we present here the three-dimensional structure of actin comet tails propelling a baculovirus, the smallest pathogen known to recruit the actin nano-machinery. We show that baculovirus is propelled by a fishbone-like array of actin filaments constructed from subsets linked by branch junctions, with an average of four filaments pushing the virus by their fast polymerizing ends at any one time. Using a stochastic mathematical model we have simulated comet tail organization as well as the tracks adopted by baculovirus inside cells. The simulations support a model of baculovirus propulsion in which the actin filaments are continuously tethered to the virus surface as they grow, branch, and push. Since larger pathogens like Listeria, Shigella, and Vaccinia virus generate comet tails exhibiting the same general morphology and components as those of baculovirus, the basic mechanism of their propulsion is likely a scaled up version of the one described here.
doi:10.1371/journal.pbio.1001765
PMCID: PMC3891563  PMID: 24453943
15.  Mechanism of Filament Nucleation and Branch Stability Revealed by the Structure of the Arp2/3 Complex at Actin Branch Junctions 
PLoS Biology  2005;3(11):e383.
Actin branch junctions are conserved cytoskeletal elements critical for the generation of protrusive force during actin polymerization-driven cellular motility. Assembly of actin branch junctions requires the Arp2/3 complex, upon activation, to initiate a new actin (daughter) filament branch from the side of an existing (mother) filament, leading to the formation of a dendritic actin network with the fast growing (barbed) ends facing the direction of movement. Using genetic labeling and electron microscopy, we have determined the structural organization of actin branch junctions assembled in vitro with 1-nm precision. We show here that the activators of the Arp2/3 complex, except cortactin, dissociate after branch formation. The Arp2/3 complex associates with the mother filament through a comprehensive network of interactions, with the long axis of the complex aligned nearly perpendicular to the mother filament. The actin-related proteins, Arp2 and Arp3, are positioned with their barbed ends facing the direction of daughter filament growth. This subunit map brings direct structural insights into the mechanism of assembly and mechanical stability of actin branch junctions.
Genetic labeling and electron microscopy were used to examine actin branch junctions assembled in vitro. The subunit map obtained offers insights into the assembly of these conserved cytoskeletal elements.
doi:10.1371/journal.pbio.0030383
PMCID: PMC1278936  PMID: 16262445
16.  Activation of Arp2/3 Complex: Addition of the First Subunit of the New Filament by a WASP Protein Triggers Rapid ATP Hydrolysis on Arp2 
PLoS Biology  2004;2(4):e91.
In response to activation by WASP-family proteins, the Arp2/3 complex nucleates new actin filaments from the sides of preexisting filaments. The Arp2/3-activating (VCA) region of WASP-family proteins binds both the Arp2/3 complex and an actin monomer and the Arp2 and Arp3 subunits of the Arp2/3 complex bind ATP. We show that Arp2 hydrolyzes ATP rapidly—with no detectable lag—upon nucleation of a new actin filament. Filamentous actin and VCA together do not stimulate ATP hydrolysis on the Arp2/3 complex, nor do monomeric and filamentous actin in the absence of VCA. Actin monomers bound to the marine macrolide Latrunculin B do not polymerize, but in the presence of phalloidin-stabilized actin filaments and VCA, they stimulate rapid ATP hydrolysis on Arp2. These data suggest that ATP hydrolysis on the Arp2/3 complex is stimulated by interaction with a single actin monomer and that the interaction is coordinated by VCA. We show that capping of filament pointed ends by the Arp2/3 complex (which occurs even in the absence of VCA) also stimulates rapid ATP hydrolysis on Arp2, identifying the actin monomer that stimulates ATP hydrolysis as the first monomer at the pointed end of the daughter filament. We conclude that WASP-family VCA domains activate the Arp2/3 complex by driving its interaction with a single conventional actin monomer to form an Arp2–Arp3–actin nucleus. This actin monomer becomes the first monomer of the new daughter filament.
This paper provides the biochemical and biophysical basis for actin filament formation, necessary for cell shape and motility
doi:10.1371/journal.pbio.0020091
PMCID: PMC387265  PMID: 15094799
17.  RELATIVE ACTIN NUCLEATION PROMOTION EFFICIENCY BY WASP AND WAVE PROTEINS IN ENDOTHELIAL CELLS 
The mammalian genome encodes multiple WASP1 (Wiskott-Aldrich Syndrome Protein)/WAVE (WASP-family Verprolin homologous) proteins. Members of this family interact with the Arp (actin related protein) 2/3 complex to promote growth of a branched actin network near the plasma membrane or the surface of moving cargos. Arp2/3 mediated branching can further lead to formation of comet tails (actin rockets). Despite their similar domain structure, different WASP/WAVE family members fulfill unique functions that depend on their subcellular location and activity levels. We measured the relative efficiency of actin nucleation promotion of full length WASP/WAVE proteins in a cytoplasmic extract from primary human umbilical vein endothelial cells (HUVEC). In this assay WAVE2 and WAVE3 complexes showed higher nucleation efficiency than WAVE1 and N-WASP, indicating distinct cellular controls for different family members. Previously, WASP and N-WASP were the only members that were known to stimulate comet formation. We observed that in addition to N-WASP, WAVE3 also induced short actin tails, and the other WAVEs induced formation of asymmetric actin shells. Differences in shape and structure of actin-based growth may reflect varying ability of WASP/WAVE proteins to break symmetry of the actin shell, possibly by differential recruitment of actin bundling or severing (pruning or debranching) factors.
doi:10.1016/j.bbrc.2010.08.123
PMCID: PMC2951009  PMID: 20816932
polymerizing activity; actin based motility; actin comet tails; HUVEC
18.  Fyn and PTP-PEST–mediated Regulation of Wiskott-Aldrich Syndrome Protein (WASp) Tyrosine Phosphorylation Is Required for Coupling T Cell Antigen Receptor Engagement to WASp Effector Function and T Cell Activation 
Involvement of the Wiskott-Aldrich syndrome protein (WASp) in promoting cell activation requires its release from autoinhibitory structural constraints and has been attributed to WASp association with activated cdc42. Here, however, we show that T cell development and T cell receptor (TCR)-induced proliferation and actin polymerization proceed normally in WASp−/− mice expressing a WASp transgene lacking the cdc42 binding domain. By contrast, mutation of tyrosine residue Y291, identified here as the major site of TCR-induced WASp tyrosine phosphorylation, abrogated induction of WASp tyrosine phosphorylation and its effector activities, including nuclear factor of activated T cell transcriptional activity, actin polymerization, and immunological synapse formation. TCR-induced WASp tyrosine phosphorylation was also disrupted in T cells lacking Fyn, a kinase shown here to bind, colocalize with, and phosphorylate WASp. By contrast, WASp was tyrosine dephosphorylated by protein tyrosine phosphatase (PTP)-PEST, a tyrosine phosphatase shown here to interact with WASp via proline, serine, threonine phosphatase interacting protein (PSTPIP)1 binding. Although Fyn enhanced WASp-mediated Arp2/3 activation and was required for synapse formation, PTP-PEST combined with PSTPIP1 inhibited WASp-driven actin polymerization and synapse formation. These observations identify key roles for Fyn and PTP-PEST in regulating WASp and imply that inducible WASp tyrosine phosphorylation can occur independently of cdc42 binding, but unlike the cdc42 interaction, is absolutely required for WASp contributions to T cell activation.
doi:10.1084/jem.20030976
PMCID: PMC1887720  PMID: 14707117
WASp; lymphocyte activation; tyrosine phosphorylation; actin cytoskeletal arrangement
19.  WAVE/SCAR promotes endocytosis and early endosome morphology in polarized C. elegans epithelia 
Developmental biology  2013;377(2):319-332.
Cells can use the force of actin polymerization to drive intracellular transport, but the role of actin in endocytosis is not clear. Studies in single-celled yeast demonstrate the essential role of the branched actin nucleator, Arp2/3, and its activating nucleation promoting factors (NPFs) in the process of invagination from the cell surface through endocytosis. However, some mammalian studies have disputed the need for F-actin and Arp2/3 in Clathrin-Mediated Endocytosis (CME) in multicellular organisms. We investigate the role of Arp2/3 during endocytosis in C. elegans, a multicellular organism with polarized epithelia. Arp2/3 and its NPF, WAVE/SCAR, are essential for C. elegans embryonic morphogenesis. We show that WAVE/SCAR and Arp2/3 regulate endocytosis and early endosome morphology in diverse tissues of C. elegans. Depletion of WAVE/SCAR or Arp2/3, but not of the NPF Wasp, severely disrupts the distribution of molecules proposed to be internalized via CME, and alters the subcellular enrichment of the early endosome regulator RAB-5. Loss of WAVE/SCAR or of the GEFs that regulate RAB-5 results in similar defects in endocytosis in the intestine and coelomocyte cells. This study in a multicellular organism supports an essential role for branched actin regulators in endocytosis, and identifies WAVE/SCAR as a key NPF that promotes Arp2/3 endocytic function in C. elegans.
doi:10.1016/j.ydbio.2013.03.012
PMCID: PMC3700809  PMID: 23510716
morphogenesis; actin nucleation; endocytosis; nucleation promoting factors; early endosomes
20.  Cortactin Is a Substrate of Activated Cdc42-Associated Kinase 1 (ACK1) during Ligand-induced Epidermal Growth Factor Receptor Downregulation 
PLoS ONE  2012;7(8):e44363.
Background
Epidermal growth factor receptor (EGFR) internalization following ligand binding controls EGFR downstream pathway signaling activity. Internalized EGFR is poly-ubiquitinated by Cbl to promote lysosome-mediated degradation and signal downregulation. ACK1 is a non-receptor tyrosine kinase that interacts with ubiquitinated EGFR to facilitate EGFR degradation. Dynamic reorganization of the cortical actin cytoskeleton controlled by the actin related protein (Arp)2/3 complex is important in regulating EGFR endocytosis and vesicle trafficking. How ACK1-mediated EGFR internalization cooperates with Arp2/3-based actin dynamics during EGFR downregulation is unclear.
Methodology/Principal Findings
Here we show that ACK1 directly binds and phosphorylates the Arp2/3 regulatory protein cortactin, potentially providing a direct link to Arp2/3-based actin dynamics during EGFR degradation. Co-immunoprecipitation analysis indicates that the cortactin SH3 domain is responsible for binding to ACK1. In vitro kinase assays demonstrate that ACK1 phosphorylates cortactin on key tyrosine residues that create docking sites for adaptor proteins responsible for enhancing Arp2/3 nucleation. Analysis with phosphorylation-specific antibodies determined that EGFR-induced cortactin tyrosine phosphorylation is diminished coincident with EGFR degradation, whereas ERK1/2 cortactin phosphorylation utilized in promoting activation of the Arp2/3 regulator N-WASp is sustained during EGFR downregulation. Cortactin and ACK1 localize to internalized vesicles containing EGF bound to EGFR visualized by confocal microscopy. RNA interference and rescue studies indicate that ACK1 and the cortactin SH3 domain are essential for ligand-mediated EGFR internalization.
Conclusions/Significance
Cortactin is a direct binding partner and novel substrate of ACK1. Tyrosine phosphorylation of cortactin by ACK1 creates an additional means to amplify Arp2/3 dynamics through N-WASp activation, potentially contributing to the overall necessary tensile and/or propulsive forces utilized during EGFR endocytic internalization and trafficking involved in receptor degradation.
doi:10.1371/journal.pone.0044363
PMCID: PMC3431376  PMID: 22952966
21.  Profilin Enhances Cdc42-Induced Nucleation of Actin Polymerization 
The Journal of Cell Biology  2000;150(5):1001-1012.
We find that profilin contributes in several ways to Cdc42-induced nucleation of actin filaments in high speed supernatant of lysed neutrophils. Depletion of profilin inhibited Cdc42-induced nucleation; re-addition of profilin restored much of the activity. Mutant profilins with a decreased affinity for either actin or poly-l-proline were less effective at restoring activity. Whereas Cdc42 must activate Wiskott-Aldrich Syndrome protein (WASP) to stimulate nucleation by the Arp2/3 complex, VCA (verpolin homology, cofilin, and acidic domain contained in the COOH-terminal fragment of N-WASP) constitutively activates the Arp2/3 complex. Nucleation by VCA was not inhibited by profilin depletion. With purified N-WASP and Arp2/3 complex, Cdc42-induced nucleation did not require profilin but was enhanced by profilin, wild-type profilin being more effective than mutant profilin with reduced affinity for poly-l-proline.
Nucleation by the Arp2/3 complex is a function of the free G-actin concentration. Thus, when profilin addition decreased the free G-actin concentration, it inhibited Cdc42- and VCA-induced nucleation. However, when profilin was added with G-actin in a ratio that maintained the initial free G-actin concentration, it increased the rate of both Cdc42- and VCA-induced nucleation. This enhancement, also seen with purified proteins, was greatest when the free G-actin concentration was low. These data suggest that under conditions present in intact cells, profilin enhances nucleation by activated Arp2/3 complex.
PMCID: PMC2175244  PMID: 10973991
actin polymerization; nucleation; Cdc42; leukocytes; profilin
22.  In Silico Reconstitution of Actin-Based Symmetry Breaking and Motility 
PLoS Biology  2009;7(9):e1000201.
Computational modeling and experimentation in a model system for actin-based force generation explain how actin networks initiate and maintain directional movement.
Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS) model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system.
Author Summary
Networks of actin filaments provide the force that drives eukaryotic cell movement. In a model system for this kind of force generation, a spherical bead coated with an actin nucleating protein builds and rockets around on an actin “comet tail,” much like the tails observed in some cellular systems. How does a spherically symmetric bead break the symmetry of the actin coat and begin to polymerize actin in a directional manner? A previous theoretical model successfully explained how symmetry breaks, but suggested that the subsequent motion was driven by actin squeezing the bead forwards—a prediction refuted by experiment. To understand how motility occurs, we created a parsimonious computer model that predicted novel experimental behaviors, then performed new experiments inspired by the model and confirmed these predictions. Our model demonstrates how the elastic properties of the actin network explain not only symmetry breaking, but also the details of subsequent motion and how the bead maintains direction.
doi:10.1371/journal.pbio.1000201
PMCID: PMC2738636  PMID: 19771152
23.  Exo70 Stimulates the Arp2/3 Complex-mediated Actin Branching for Lamellipodia Formation and Cell Migration 
Current biology : CB  2012;22(16):1510-1515.
Summary
Directional cell migration requires the coordination of actin assembly and membrane remodeling. The exocyst is an octameric protein complex essential for exocytosis and plasma membrane remodeling [1,2]. A component of the exocyst, Exo70, directly interacts with the Arp2/3 complex, a core nucleating factor for the generation of branched actin networks for cell morphogenesis and migration [3-9]. Using in vitro actin polymerization assay and time-lapse TIRF microscopy, we found Exo70 functions as a kinetic activator of the Arp2/3 complex that promotes actin filament nucleation and branching. We further found that the effect of Exo70 on actin is mediated by promoting the interaction of Arp2/3 complex with WAVE2, a member of the N-WASP/WAVE family of nucleation promoting factors (NPFs). At the cellular level, the stimulatory effect of Exo70 on Arp2/3 is required for lamellipodia formation and maintaining directional persistence of cell migration. Our findings provide a novel mechanism for regulating actin polymerization and branching for effective membrane protrusion during cell morphogenesis and migration.
doi:10.1016/j.cub.2012.05.055
PMCID: PMC3427469  PMID: 22748316
24.  WIP Provides an Essential Link between Nck and N-WASP during Arp2/3-Dependent Actin Polymerization 
Current Biology  2013;23(11):999-1006.
Summary
Nck links phosphotyrosine-based signaling to Arp2/3-dependent actin polymerization during many different cellular processes as well as actin-based motility of enteropathogenic Escherichia coli (EPEC) [1, 2], vaccinia [3, 4], and other vertebrate poxviruses [5] by interacting with N-WASP/WASP [6, 7]. Nck also binds WASP-interacting protein (WIP) [8], which inhibits the ability of N-WASP to activate the Arp2/3 complex until it receives an appropriate signaling input [9, 10]. Using mouse embryonic fibroblasts (MEFs) lacking Nck, WIP, or N-WASP [3, 11, 12], we have investigated whether an interaction of Nck with both WIP and N-WASP is required for their recruitment to vaccinia during Arp2/3-dependent actin assembly. We find that WIP or its homolog WIRE is required for N-WASP recruitment and actin-based motility of the virus. WIP contains two Nck-binding sites and is recruited to the virus, bound to N-WASP, by interacting with the second SH3 domain of Nck. N-WASP also contains two Nck-binding sites, but its recruitment is dependent on its interaction with WIP rather than Nck. The first and third SH3 domains of Nck are not required to recruit the WIP:N-WASP complex but are essential to stimulate actin assembly. We have established that WIP acts as an essential link between Nck and N-WASP. Our observations provide important insights into the hierarchy and connections in one of the major cellular signaling networks stimulating Arp2/3 complex-dependent actin polymerization.
Highlights
•Vaccinia-induced actin polymerization is dependent on WIP or WIRE•WIP and N-WASP both contain two Nck-binding sites•The second SH3 domain of Nck recruits a WIP:N-WASP complex via WIP•Recruitment and activation of WIP:N-WASP is mediated by different Nck SH3 domains
doi:10.1016/j.cub.2013.04.051
PMCID: PMC3690476  PMID: 23707428
25.  Reconstitution and Protein Composition Analysis of Endocytic Actin Patches 
Current biology : CB  2010;20(21):1890-1899.
Summary
Background
Clathrin-actin-mediated endocytosis in yeast involves the progressive assembly of at least 60 different proteins at cortical sites. More than half of these proteins are involved in the assembly of a branched network of actin filaments to provide the forces required for plasma membrane invagination.
Results
To gain insights into the regulation of endocytic actin patch dynamics, we developed an in vitro actin assembly assay using microbeads functionalized with the nucleation promoting factor (NPF) Las17 (yeast WASP). When incubated in a yeast extract, these beads assembled actin networks and a significant fraction became motile. Multi dimensional Protein Identification Technology (MudPIT) showed that the recruitment of actin binding proteins to these Las17-derived actin networks is selective. None of the proteins known to exclusively regulate the in vivo formation of actin cables or the actin contractile ring were identified. Intriguingly, our analysis also identified components of three other cortical structures, eisosomes, PIK patches and the TORC2 complex, establishing intriguing biochemical connections between four different yeast cortical complexes. Finally, we identified Aim3 as a regulator of actin dynamics at endocytic sites.
Conclusions
WASP is sufficient to trigger assembly of actin networks composed selectively of actin-patch proteins. These experiments establish that the protein composition of different F-actin structures is determined by the protein factor that initiates the network. The identification of binding partners revealed new biochemical connections between WASP derived networks and other cortical complexes and identified Aim3 as a novel regulator of the endocytic actin patch.
doi:10.1016/j.cub.2010.10.016
PMCID: PMC2998891  PMID: 21035341

Results 1-25 (730800)