PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (846017)

Clipboard (0)
None

Related Articles

1.  Diverse CRISPRs Evolving in Human Microbiomes 
PLoS Genetics  2012;8(6):e1002441.
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, together with cas (CRISPR–associated) genes, form the CRISPR/Cas adaptive immune system, a primary defense strategy that eubacteria and archaea mobilize against foreign nucleic acids, including phages and conjugative plasmids. Short spacer sequences separated by the repeats are derived from foreign DNA and direct interference to future infections. The availability of hundreds of shotgun metagenomic datasets from the Human Microbiome Project (HMP) enables us to explore the distribution and diversity of known CRISPRs in human-associated microbial communities and to discover new CRISPRs. We propose a targeted assembly strategy to reconstruct CRISPR arrays, which whole-metagenome assemblies fail to identify. For each known CRISPR type (identified from reference genomes), we use its direct repeat consensus sequence to recruit reads from each HMP dataset and then assemble the recruited reads into CRISPR loci; the unique spacer sequences can then be extracted for analysis. We also identified novel CRISPRs or new CRISPR variants in contigs from whole-metagenome assemblies and used targeted assembly to more comprehensively identify these CRISPRs across samples. We observed that the distributions of CRISPRs (including 64 known and 86 novel ones) are largely body-site specific. We provide detailed analysis of several CRISPR loci, including novel CRISPRs. For example, known streptococcal CRISPRs were identified in most oral microbiomes, totaling ∼8,000 unique spacers: samples resampled from the same individual and oral site shared the most spacers; different oral sites from the same individual shared significantly fewer, while different individuals had almost no common spacers, indicating the impact of subtle niche differences on the evolution of CRISPR defenses. We further demonstrate potential applications of CRISPRs to the tracing of rare species and the virus exposure of individuals. This work indicates the importance of effective identification and characterization of CRISPR loci to the study of the dynamic ecology of microbiomes.
Author Summary
Human bodies are complex ecological systems in which various microbial organisms and viruses interact with each other and with the human host. The Human Microbiome Project (HMP) has resulted in >700 datasets of shotgun metagenomic sequences, from which we can learn about the compositions and functions of human-associated microbial communities. CRISPR/Cas systems are a widespread class of adaptive immune systems in bacteria and archaea, providing acquired immunity against foreign nucleic acids: CRISPR/Cas defense pathways involve integration of viral- or plasmid-derived DNA segments into CRISPR arrays (forming spacers between repeated structural sequences), and expression of short crRNAs from these single repeat-spacer units, to generate interference to future invading foreign genomes. Powered by an effective computational approach (the targeted assembly approach for CRISPR), our analysis of CRISPR arrays in the HMP datasets provides the very first global view of bacterial immunity systems in human-associated microbial communities. The great diversity of CRISPR spacers we observed among different body sites, in different individuals, and in single individuals over time, indicates the impact of subtle niche differences on the evolution of CRISPR defenses and indicates the key role of bacteriophage (and plasmids) in shaping human microbial communities.
doi:10.1371/journal.pgen.1002441
PMCID: PMC3374615  PMID: 22719260
2.  Viral Diversity Threshold for Adaptive Immunity in Prokaryotes 
mBio  2012;3(6):e00456-12.
ABSTRACT
Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas−) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological sensors (Lamarckian evolution) are predicted.
IMPORTANCE
A remarkable recent discovery in microbiology is that bacteria and archaea possess systems conferring immunological memory and adaptive immunity. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (CRISPR-Cas) are genomic sensors that allow prokaryotes to acquire DNA fragments from invading viruses and plasmids. Providing immunological memory, these stored fragments destroy matching DNA in future viral and plasmid invasions. CRISPR-Cas systems also provide adaptive immunity, keeping up with mutating viruses and plasmids by continually acquiring new DNA fragments. Surprisingly, less than 50% of mesophilic bacteria, in contrast to almost 90% of thermophilic bacteria and Archaea, maintain CRISPR-Cas immunity. Using mathematical modeling, we probe this dichotomy, showing how increased viral mutation rates can explain the reduced prevalence of CRISPR-Cas systems in mesophiles. Rapidly mutating viruses outrun CRISPR-Cas immune systems, likely decreasing their prevalence in bacterial populations. Thus, viral adaptability may select against, rather than for, immune adaptability in prokaryotes.
doi:10.1128/mBio.00456-12
PMCID: PMC3517865  PMID: 23221803
3.  Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands 
PLoS Genetics  2013;9(4):e1003454.
In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.
Author Summary
Bacteria have evolved mechanisms that provide protection from continual invasion by viruses and other foreign elements. Resistance systems, known as CRISPR/Cas, were recently discovered and equip bacteria and archaea with an “adaptive immune system.” This adaptive immunity provides a highly evolvable sequence-specific small RNA–based memory of past invasions by viruses and foreign genetic elements. There are many cases where these systems appear to target regions within the bacterial host's own genome (a possible autoimmunity), but the evolutionary rationale for this is unclear. Here, we demonstrate that CRISPR/Cas targeting of the host chromosome is highly toxic but that cells survive through mutations that alleviate the immune mechanism. We have used this phenotype to gain insight into how these systems function and show that large changes in the bacterial genome can occur. For example, targeting of a chromosomal pathogenicity island, important for virulence of the potato pathogen Pectobacterium atrosepticum, resulted in deletion of the island, which constituted ∼2% of the bacterial genome. These results have broad significance for the role of CRISPR/Cas systems and their impact on the evolution of bacterial genomes and virulence. In addition, this study demonstrates their potential as a tool for the targeted deletion of specific regions of bacterial chromosomes.
doi:10.1371/journal.pgen.1003454
PMCID: PMC3630108  PMID: 23637624
4.  CRISPR loci reveal networks of gene exchange in archaea 
Biology Direct  2011;6:65.
Background
CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats) loci provide prokaryotes with an adaptive immunity against viruses and other mobile genetic elements. CRISPR arrays can be transcribed and processed into small crRNA molecules, which are then used by the cell to target the foreign nucleic acid. Since spacers are accumulated by active CRISPR/Cas systems, the sequences of these spacers provide a record of the past "infection history" of the organism.
Results
Here we analyzed all currently known spacers present in archaeal genomes and identified their source by DNA similarity. While nearly 50% of archaeal spacers matched mobile genetic elements, such as plasmids or viruses, several others matched chromosomal genes of other organisms, primarily other archaea. Thus, networks of gene exchange between archaeal species were revealed by the spacer analysis, including many cases of inter-genus and inter-species gene transfer events. Spacers that recognize viral sequences tend to be located further away from the leader sequence, implying that there exists a selective pressure for their retention.
Conclusions
CRISPR spacers provide direct evidence for extensive gene exchange in archaea, especially within genera, and support the current dogma where the primary role of the CRISPR/Cas system is anti-viral and anti-plasmid defense.
Open peer review
This article was reviewed by: Profs. W. Ford Doolittle, John van der Oost, Christa Schleper (nominated by board member Prof. J Peter Gogarten)
doi:10.1186/1745-6150-6-65
PMCID: PMC3285040  PMID: 22188759
CRISPR; Lateral Gene transfer; Horizontal gene transfer; viruses; archaea; competence
5.  Multidrug-Resistant Enterococci Lack CRISPR-cas 
mBio  2010;1(4):e00227-10.
Clustered, regularly interspaced short palindromic repeats (CRISPR) provide bacteria and archaea with sequence-specific, acquired defense against plasmids and phage. Because mobile elements constitute up to 25% of the genome of multidrug-resistant (MDR) enterococci, it was of interest to examine the codistribution of CRISPR and acquired antibiotic resistance in enterococcal lineages. A database was built from 16 Enterococcus faecalis draft genome sequences to identify commonalities and polymorphisms in the location and content of CRISPR loci. With this data set, we were able to detect identities between CRISPR spacers and sequences from mobile elements, including pheromone-responsive plasmids and phage, suggesting that CRISPR regulates the flux of these elements through the E. faecalis species. Based on conserved locations of CRISPR and CRISPR-cas loci and the discovery of a new CRISPR locus with associated functional genes, CRISPR3-cas, we screened additional E. faecalis strains for CRISPR content, including isolates predating the use of antibiotics. We found a highly significant inverse correlation between the presence of a CRISPR-cas locus and acquired antibiotic resistance in E. faecalis, and examination of an additional eight E. faecium genomes yielded similar results for that species. A mechanism for CRISPR-cas loss in E. faecalis was identified. The inverse relationship between CRISPR-cas and antibiotic resistance suggests that antibiotic use inadvertently selects for enterococcal strains with compromised genome defense.
IMPORTANCE
For many bacteria, including the opportunistically pathogenic enterococci, antibiotic resistance is mediated by acquisition of new DNA and is frequently encoded on mobile DNA elements such as plasmids and transposons. Certain enterococcal lineages have recently emerged that are characterized by abundant mobile DNA, including numerous viruses (phage), and plasmids and transposons encoding multiple antibiotic resistances. These lineages cause hospital infection outbreaks around the world. The striking influx of mobile DNA into these lineages is in contrast to what would be expected if a self (genome)-defense system was present. Clustered, regularly interspaced short palindromic repeat (CRISPR) defense is a recently discovered mechanism of prokaryotic self-defense that provides a type of acquired immunity. Here, we find that antibiotic resistance and possession of complete CRISPR loci are inversely related and that members of recently emerged high-risk enterococcal lineages lack complete CRISPR loci. Our results suggest that antibiotic therapy inadvertently selects for enterococci with compromised genome defense.
doi:10.1128/mBio.00227-10
PMCID: PMC2975353  PMID: 21060735
6.  Persisting Viral Sequences Shape Microbial CRISPR-based Immunity 
PLoS Computational Biology  2012;8(4):e1002475.
Well-studied innate immune systems exist throughout bacteria and archaea, but a more recently discovered genomic locus may offer prokaryotes surprising immunological adaptability. Mediated by a cassette-like genomic locus termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), the microbial adaptive immune system differs from its eukaryotic immune analogues by incorporating new immunities unidirectionally. CRISPR thus stores genomically recoverable timelines of virus-host coevolution in natural organisms refractory to laboratory cultivation. Here we combined a population genetic mathematical model of CRISPR-virus coevolution with six years of metagenomic sequencing to link the recoverable genomic dynamics of CRISPR loci to the unknown population dynamics of virus and host in natural communities. Metagenomic reconstructions in an acid-mine drainage system document CRISPR loci conserving ancestral immune elements to the base-pair across thousands of microbial generations. This ‘trailer-end conservation’ occurs despite rapid viral mutation and despite rapid prokaryotic genomic deletion. The trailer-ends of many reconstructed CRISPR loci are also largely identical across a population. ‘Trailer-end clonality’ occurs despite predictions of host immunological diversity due to negative frequency dependent selection (kill the winner dynamics). Statistical clustering and model simulations explain this lack of diversity by capturing rapid selective sweeps by highly immune CRISPR lineages. Potentially explaining ‘trailer-end conservation,’ we record the first example of a viral bloom overwhelming a CRISPR system. The polyclonal viruses bloom even though they share sequences previously targeted by host CRISPR loci. Simulations show how increasing random genomic deletions in CRISPR loci purges immunological controls on long-lived viral sequences, allowing polyclonal viruses to bloom and depressing host fitness. Our results thus link documented patterns of genomic conservation in CRISPR loci to an evolutionary advantage against persistent viruses. By maintaining old immunities, selection may be tuning CRISPR-mediated immunity against viruses reemerging from lysogeny or migration.
Author Summary
Most microbes appear unculturable in the laboratory, limiting our knowledge of how virus and prokaryotic host evolve in natural systems. However, a genomic locus found in many prokaryotes, CRISPR, may offer cultivation-independent probes of virus-microbe coevolution. Utilizing nearby genes, CRISPR can serially incorporate short viral and plasmid sequences. These sequences bind and cleave cognate regions in subsequent viral and plasmid insertions, conferring adaptive anti-viral and anti-plasmid immunity. By incorporating sequences undirectionally, CRISPR also provides timelines of virus-prokaryote coevolution. Yet, CRISPR only incorporates 30–80 base-pair viral sequences, leaving incomplete coevolutionary recordings. To reconstruct the missing coevolutionary dynamics shaping natural CRISPRs, we combined metagenomic reconstructions with population-scale mathematical modeling. Capturing rare and rapid sweeps of CRISPR diversity by highly immune lines, mathematical modeling explains why naturally reconstructed CRISPR loci are often largely identical across a population. Both model and experiment further document surprising proliferations of old viral sequences against which hosts had preexisting CRISPR immunity. Due to these deadly blooms of ancestral viral elements, CRISPR's conservation of old immune sequences appears to confer a selective advantage. This may explain the striking immunological memory documented in CRISPR loci, which occurs despite rapid viral mutation and despite rapid deletions in prokaryotic genomes.
doi:10.1371/journal.pcbi.1002475
PMCID: PMC3330103  PMID: 22532794
7.  Self vs. non-self discrimination during CRISPR RNA-directed immunity 
Nature  2010;463(7280):568-571.
All immune systems must distinguish self from non-self to repel invaders without inducing autoimmunity. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci protect bacteria and archaea from invasion by phage and plasmid DNA through a genetic interference pathway1–9. CRISPR loci are present in ~ 40% and ~90% of sequenced bacterial and archaeal genomes respectively10 and evolve rapidly, acquiring new spacer sequences to adapt to highly dynamic viral populations1, 11–13. Immunity requires a sequence match between the invasive DNA and the spacers that lie between CRISPR repeats1–9. Each cluster is genetically linked to a subset of the cas (CRISPR-associated) genes14–16 that collectively encode >40 families of proteins involved in adaptation and interference. CRISPR loci encode small CRISPR RNAs (crRNAs) that contain a full spacer flanked by partial repeat sequences2, 17–19. CrRNA spacers are thought to identify targets by direct Watson-Crick pairing with invasive “protospacer” DNA2, 3, but how they avoid targeting the spacer DNA within the encoding CRISPR locus itself is unknown. Here we have defined the mechanism of CRISPR self/non-self discrimination. In Staphylococcus epidermidis, target/crRNA mismatches at specific positions outside of the spacer sequence license foreign DNA for interference, whereas extended pairing between crRNA and CRISPR DNA repeats prevents autoimmunity. Hence, this CRISPR system uses the base-pairing potential of crRNAs not only to specify a target but also to spare the bacterial chromosome from interference. Differential complementarity outside of the spacer sequence is a built-in feature of all CRISPR systems, suggesting that this mechanism is a broadly applicable solution to the self/non-self dilemma that confronts all immune pathways.
doi:10.1038/nature08703
PMCID: PMC2813891  PMID: 20072129
8.  A PNPase Dependent CRISPR System in Listeria 
PLoS Genetics  2014;10(1):e1004065.
The human bacterial pathogen Listeria monocytogenes is emerging as a model organism to study RNA-mediated regulation in pathogenic bacteria. A class of non-coding RNAs called CRISPRs (clustered regularly interspaced short palindromic repeats) has been described to confer bacterial resistance against invading bacteriophages and conjugative plasmids. CRISPR function relies on the activity of CRISPR associated (cas) genes that encode a large family of proteins with nuclease or helicase activities and DNA and RNA binding domains. Here, we characterized a CRISPR element (RliB) that is expressed and processed in the L. monocytogenes strain EGD-e, which is completely devoid of cas genes. Structural probing revealed that RliB has an unexpected secondary structure comprising basepair interactions between the repeats and the adjacent spacers in place of canonical hairpins formed by the palindromic repeats. Moreover, in contrast to other CRISPR-Cas systems identified in Listeria, RliB-CRISPR is ubiquitously present among Listeria genomes at the same genomic locus and is never associated with the cas genes. We showed that RliB-CRISPR is a substrate for the endogenously encoded polynucleotide phosphorylase (PNPase) enzyme. The spacers of the different Listeria RliB-CRISPRs share many sequences with temperate and virulent phages. Furthermore, we show that a cas-less RliB-CRISPR lowers the acquisition frequency of a plasmid carrying the matching protospacer, provided that trans encoded cas genes of a second CRISPR-Cas system are present in the genome. Importantly, we show that PNPase is required for RliB-CRISPR mediated DNA interference. Altogether, our data reveal a yet undescribed CRISPR system whose both processing and activity depend on PNPase, highlighting a new and unexpected function for PNPase in “CRISPRology”.
Author Summary
CRISPR-Cas systems confer to bacteria and archaea an adaptive immunity that protects them against invading bacteriophages and plasmids. In this study, we characterize a CRISPR (RliB-CRISPR) that is present in all L. monocytogenes strains at the same genomic locus but is never associated with a cas operon. It is an unusual CRISPR that, as we demonstrate, has a secondary structure consisting of basepair interactions between the repeat sequence and the adjacent spacer. We show that the RliB-CRISPR is processed by the endogenously encoded polynucleotide phosphorylase enzyme (PNPase). In addition, we show that the RliB-CRISPR system requires PNPase and presence of trans encoded cas genes of a second CRISPR-Cas system, to mediate DNA interference directed against a plasmid carrying a matching protospacer. Altogether, our data reveal a novel type of CRISPR system in bacteria that requires endogenously encoded PNPase enzyme for its processing and interference activity.
doi:10.1371/journal.pgen.1004065
PMCID: PMC3886909  PMID: 24415952
9.  CRISPR-Cas Systems in the Cyanobacterium Synechocystis sp. PCC6803 Exhibit Distinct Processing Pathways Involving at Least Two Cas6 and a Cmr2 Protein 
PLoS ONE  2013;8(2):e56470.
The CRISPR-Cas (Clustered Regularly Interspaced Short Palindrome Repeats – CRISPR associated proteins) system provides adaptive immunity in archaea and bacteria. A hallmark of CRISPR-Cas is the involvement of short crRNAs that guide associated proteins in the destruction of invading DNA or RNA. We present three fundamentally distinct processing pathways in the cyanobacterium Synechocystis sp. PCC6803 for a subtype I-D (CRISPR1), and two type III systems (CRISPR2 and CRISPR3), which are located together on the plasmid pSYSA. Using high-throughput transcriptome analyses and assays of transcript accumulation we found all CRISPR loci to be highly expressed, but the individual crRNAs had profoundly varying abundances despite single transcription start sites for each array. In a computational analysis, CRISPR3 spacers with stable secondary structures displayed a greater ratio of degradation products. These structures might interfere with the loading of the crRNAs into RNP complexes, explaining the varying abundancies. The maturation of CRISPR1 and CRISPR2 transcripts depends on at least two different Cas6 proteins. Mutation of gene sll7090, encoding a Cmr2 protein led to the disappearance of all CRISPR3-derived crRNAs, providing in vivo evidence for a function of Cmr2 in the maturation, regulation of expression, Cmr complex formation or stabilization of CRISPR3 transcripts. Finally, we optimized CRISPR repeat structure prediction and the results indicate that the spacer context can influence individual repeat structures.
doi:10.1371/journal.pone.0056470
PMCID: PMC3575380  PMID: 23441196
10.  Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus▿ † 
Journal of Bacteriology  2007;190(4):1401-1412.
Clustered regularly interspaced short palindromic repeats (CRISPR) are hypervariable loci widely distributed in prokaryotes that provide acquired immunity against foreign genetic elements. Here, we characterize a novel Streptococcus thermophilus locus, CRISPR3, and experimentally demonstrate its ability to integrate novel spacers in response to bacteriophage. Also, we analyze CRISPR diversity and activity across three distinct CRISPR loci in several S. thermophilus strains. We show that both CRISPR repeats and cas genes are locus specific and functionally coupled. A total of 124 strains were studied, and 109 unique spacer arrangements were observed across the three CRISPR loci. Overall, 3,626 spacers were analyzed, including 2,829 for CRISPR1 (782 unique), 173 for CRISPR2 (16 unique), and 624 for CRISPR3 (154 unique). Sequence analysis of the spacers revealed homology and identity to phage sequences (77%), plasmid sequences (16%), and S. thermophilus chromosomal sequences (7%). Polymorphisms were observed for the CRISPR repeats, CRISPR spacers, cas genes, CRISPR motif, locus architecture, and specific sequence content. Interestingly, CRISPR loci evolved both via polarized addition of novel spacers after exposure to foreign genetic elements and via internal deletion of spacers. We hypothesize that the level of diversity is correlated with relative CRISPR activity and propose that the activity is highest for CRISPR1, followed by CRISPR3, while CRISPR2 may be degenerate. Globally, the dynamic nature of CRISPR loci might prove valuable for typing and comparative analyses of strains and microbial populations. Also, CRISPRs provide critical insights into the relationships between prokaryotes and their environments, notably the coevolution of host and viral genomes.
doi:10.1128/JB.01415-07
PMCID: PMC2238196  PMID: 18065539
11.  The Small, Slow and Specialized CRISPR and Anti-CRISPR of Escherichia and Salmonella 
PLoS ONE  2010;5(6):e11126.
Prokaryotes thrive in spite of the vast number and diversity of their viruses. This partly results from the evolution of mechanisms to inactivate or silence the action of exogenous DNA. Among these, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are unique in providing adaptive immunity against elements with high local resemblance to genomes of previously infecting agents. Here, we analyze the CRISPR loci of 51 complete genomes of Escherichia and Salmonella. CRISPR are in two pairs of loci in Escherichia, one single pair in Salmonella, each pair showing a similar turnover rate, repeat sequence and putative linkage to a common set of cas genes. Yet, phylogeny shows that CRISPR and associated cas genes have different evolutionary histories, the latter being frequently exchanged or lost. In our set, one CRISPR pair seems specialized in plasmids often matching genes coding for the replication, conjugation and antirestriction machinery. Strikingly, this pair also matches the cognate cas genes in which case these genes are absent. The unexpectedly high conservation of this anti-CRISPR suggests selection to counteract the invasion of mobile elements containing functional CRISPR/cas systems. There are few spacers in most CRISPR, which rarely match genomes of known phages. Furthermore, we found that strains divergent less than 250 thousand years ago show virtually identical CRISPR. The lack of congruence between cas, CRISPR and the species phylogeny and the slow pace of CRISPR change make CRISPR poor epidemiological markers in enterobacteria. All these observations are at odds with the expectedly abundant and dynamic repertoire of spacers in an immune system aiming at protecting bacteria from phages. Since we observe purifying selection for the maintenance of CRISPR these results suggest that alternative evolutionary roles for CRISPR remain to be uncovered.
doi:10.1371/journal.pone.0011126
PMCID: PMC2886076  PMID: 20559554
12.  Substrate Generation for Endonucleases of CRISPR/Cas Systems 
The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1)1-3. Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems 4. The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster 5. The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs 6-8. These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence 9. A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity10. Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA 11,12 .
These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases 4.
Here, we present methods to generate crRNAs and precursor-cRNAs for the study of Cas endoribonucleases. Different endonuclease assays require either short repeat sequences that can directly be synthesized as RNA oligonucleotides or longer crRNA and pre-crRNA sequences that are generated via in vitro T7 RNA polymerase run-off transcription. This methodology allows the incorporation of radioactive nucleotides for the generation of internally labeled endonuclease substrates and the creation of synthetic or mutant crRNAs. Cas6 endonuclease activity is utilized to mature pre-crRNAs into crRNAs with 5'-hydroxyl and a 2',3'-cyclic phosphate termini.
doi:10.3791/4277
PMCID: PMC3490271  PMID: 22986408
Molecular biology; Issue 67; CRISPR/Cas; endonuclease;  in vitro transcription; crRNA; Cas6
13.  The Population and Evolutionary Dynamics of Phage and Bacteria with CRISPR–Mediated Immunity 
PLoS Genetics  2013;9(3):e1003312.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with associated genes (cas), form the CRISPR–cas adaptive immune system, which can provide resistance to viruses and plasmids in bacteria and archaea. Here, we use mathematical models, population dynamic experiments, and DNA sequence analyses to investigate the host–phage interactions in a model CRISPR–cas system, Streptococcus thermophilus DGCC7710 and its virulent phage 2972. At the molecular level, the bacteriophage-immune mutant bacteria (BIMs) and CRISPR–escape mutant phage (CEMs) obtained in this study are consistent with those anticipated from an iterative model of this adaptive immune system: resistance by the addition of novel spacers and phage evasion of resistance by mutation in matching sequences or flanking motifs. While CRISPR BIMs were readily isolated and CEMs generated at high rates (frequencies in excess of 10−6), our population studies indicate that there is more to the dynamics of phage–host interactions and the establishment of a BIM–CEM arms race than predicted from existing assumptions about phage infection and CRISPR–cas immunity. Among the unanticipated observations are: (i) the invasion of phage into populations of BIMs resistant by the acquisition of one (but not two) spacers, (ii) the survival of sensitive bacteria despite the presence of high densities of phage, and (iii) the maintenance of phage-limited communities due to the failure of even two-spacer BIMs to become established in populations with wild-type bacteria and phage. We attribute (i) to incomplete resistance of single-spacer BIMs. Based on the results of additional modeling and experiments, we postulate that (ii) and (iii) can be attributed to the phage infection-associated production of enzymes or other compounds that induce phenotypic phage resistance in sensitive bacteria and kill resistant BIMs. We present evidence in support of these hypotheses and discuss the implications of these results for the ecology and (co)evolution of bacteria and phage.
Author Summary
The evidence that the CRISPR regions of the genomes of archaea and bacteria play a role in the ecology and (co)evolution of these microbes and their viruses is overwhelming: (i) the spacers (variable sequences of 26–72 bp of DNA between the repeats of this region) of these prokaryotes are homologous to the DNA of viruses in their communities; (ii) experimentally, the acquisition and incorporation of spacers of viral DNA can protect these organisms from subsequent infection by these viruses; (iii) experimentally, viruses evade this immunity by mutation in homologous protospacers or protospacer-adjacent motifs (PAMs). Not so clear are the nature and magnitude of the role CRISPR plays in this ecology and evolution. Here, we use mathematical models, experiments with Streptococcus thermophilus and the phage 2972, and DNA sequence analyses to explore the contribution of CRISPR–cas immunity to the ecology and (co)evolution of bacteria and their viruses. The results of this study suggest that the contribution of CRISPR to the ecology of bacteria and phage is more modest and limited, and the conditions for a CRISPR–mediated coevolutionary arms race between these organisms more restrictive, than anticipated from models based on the canonical view of phage infection and CRISPR–cas immunity.
doi:10.1371/journal.pgen.1003312
PMCID: PMC3597502  PMID: 23516369
14.  CRISPR Interference Directs Strand Specific Spacer Acquisition 
PLoS ONE  2012;7(4):e35888.
Background
CRISPR/Cas is a widespread adaptive immune system in prokaryotes. This system integrates short stretches of DNA derived from invading nucleic acids into genomic CRISPR loci, which function as memory of previously encountered invaders. In Escherichia coli, transcripts of these loci are cleaved into small RNAs and utilized by the Cascade complex to bind invader DNA, which is then likely degraded by Cas3 during CRISPR interference.
Results
We describe how a CRISPR-activated E. coli K12 is cured from a high copy number plasmid under non-selective conditions in a CRISPR-mediated way. Cured clones integrated at least one up to five anti-plasmid spacers in genomic CRISPR loci. New spacers are integrated directly downstream of the leader sequence. The spacers are non-randomly selected to target protospacers with an AAG protospacer adjacent motif, which is located directly upstream of the protospacer. A co-occurrence of PAM deviations and CRISPR repeat mutations was observed, indicating that one nucleotide from the PAM is incorporated as the last nucleotide of the repeat during integration of a new spacer. When multiple spacers were integrated in a single clone, all spacer targeted the same strand of the plasmid, implying that CRISPR interference caused by the first integrated spacer directs subsequent spacer acquisition events in a strand specific manner.
Conclusions
The E. coli Type I-E CRISPR/Cas system provides resistance against bacteriophage infection, but also enables removal of residing plasmids. We established that there is a positive feedback loop between active spacers in a cluster – in our case the first acquired spacer - and spacers acquired thereafter, possibly through the use of specific DNA degradation products of the CRISPR interference machinery by the CRISPR adaptation machinery. This loop enables a rapid expansion of the spacer repertoire against an actively present DNA element that is already targeted, amplifying the CRISPR interference effect.
doi:10.1371/journal.pone.0035888
PMCID: PMC3338789  PMID: 22558257
15.  CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli 
RNA Biology  2013;10(5):792-802.
Prokaryotes immunize themselves against transmissible genetic elements by the integration (acquisition) in clustered regularly interspaced short palindromic repeats (CRISPR) loci of spacers homologous to invader nucleic acids, defined as protospacers. Following acquisition, mono-spacer CRISPR RNAs (termed crRNAs) guide CRISPR-associated (Cas) proteins to degrade (interference) protospacers flanked by an adjacent motif in extrachomosomal DNA. During acquisition, selection of spacer-precursors adjoining the protospacer motif and proper orientation of the integrated fragment with respect to the leader (sequence leading transcription of the flanking CRISPR array) grant efficient interference by at least some CRISPR-Cas systems. This adaptive stage of the CRISPR action is poorly characterized, mainly due to the lack of appropriate genetic strategies to address its study and, at least in Escherichia coli, the need of Cas overproduction for insertion detection. In this work, we describe the development and application in Escherichia coli strains of an interference-independent assay based on engineered selectable CRISPR-spacer integration reporter plasmids. By using this tool without the constraint of interference or cas overexpression, we confirmed fundamental aspects of this process such as the critical requirement of Cas1 and Cas2 and the identity of the CTT protospacer motif for the E. coli K12 system. In addition, we defined the CWT motif for a non-K12 CRISPR-Cas variant, and obtained data supporting the implication of the leader in spacer orientation, the preferred acquisition from plasmids harboring cas genes and the occurrence of a sequential cleavage at the insertion site by a ruler mechanism.
doi:10.4161/rna.24023
PMCID: PMC3737337  PMID: 23445770
CRISPR-spacer acquisition; Cascade; Escherichia coli K12; O157:H7; RNA-guided immunity; cas genes; protospacer adjacent motif; reporter plasmids; ruler mechanism; spacer orientation
16.  An Archaeal Immune System Can Detect Multiple Protospacer Adjacent Motifs (PAMs) to Target Invader DNA* 
The Journal of Biological Chemistry  2012;287(40):33351-33363.
Background: CRISPR/Cas systems allow archaea and bacteria to resist invasion by foreign nucleic acids.
Results: The CRISPR/Cas system in Haloferax recognized six different PAM sequences that could trigger a defense response.
Conclusion: The PAM sequence specificity of the defense response in type I CRISPR systems is more relaxed than previously thought.
Significance: The PAM sequence requirements for interference and adaptation appear to differ markedly.
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system provides adaptive and heritable immunity against foreign genetic elements in most archaea and many bacteria. Although this system is widespread and diverse with many subtypes, only a few species have been investigated to elucidate the precise mechanisms for the defense of viruses or plasmids. Approximately 90% of all sequenced archaea encode CRISPR/Cas systems, but their molecular details have so far only been examined in three archaeal species: Sulfolobus solfataricus, Sulfolobus islandicus, and Pyrococcus furiosus. Here, we analyzed the CRISPR/Cas system of Haloferax volcanii using a plasmid-based invader assay. Haloferax encodes a type I-B CRISPR/Cas system with eight Cas proteins and three CRISPR loci for which the identity of protospacer adjacent motifs (PAMs) was unknown until now. We identified six different PAM sequences that are required upstream of the protospacer to permit target DNA recognition. This is only the second archaeon for which PAM sequences have been determined, and the first CRISPR group with such a high number of PAM sequences. Cells could survive the plasmid challenge if their CRISPR/Cas system was altered or defective, e.g. by deletion of the cas gene cassette. Experimental PAM data were supplemented with bioinformatics data on Haloferax and Haloquadratum.
doi:10.1074/jbc.M112.377002
PMCID: PMC3460438  PMID: 22767603
Archaea; Microbiology; RNA; RNA Metabolism; RNA Processing; CRISPR/Cas; Haloferax volcanii; PAM
17.  A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes 
PLoS Computational Biology  2005;1(6):e60.
Clustered regularly interspaced short palindromic repeats (CRISPRs) are a family of DNA direct repeats found in many prokaryotic genomes. Repeats of 21–37 bp typically show weak dyad symmetry and are separated by regularly sized, nonrepetitive spacer sequences. Four CRISPR-associated (Cas) protein families, designated Cas1 to Cas4, are strictly associated with CRISPR elements and always occur near a repeat cluster. Some spacers originate from mobile genetic elements and are thought to confer “immunity” against the elements that harbor these sequences. In the present study, we have systematically investigated uncharacterized proteins encoded in the vicinity of these CRISPRs and found many additional protein families that are strictly associated with CRISPR loci across multiple prokaryotic species. Multiple sequence alignments and hidden Markov models have been built for 45 Cas protein families. These models identify family members with high sensitivity and selectivity and classify key regulators of development, DevR and DevS, in Myxococcus xanthus as Cas proteins. These identifications show that CRISPR/cas gene regions can be quite large, with up to 20 different, tandem-arranged cas genes next to a repeat cluster or filling the region between two repeat clusters. Distinctive subsets of the collection of Cas proteins recur in phylogenetically distant species and correlate with characteristic repeat periodicity. The analyses presented here support initial proposals of mobility of these units, along with the likelihood that loci of different subtypes interact with one another as well as with host cell defensive, replicative, and regulatory systems. It is evident from this analysis that CRISPR/cas loci are larger, more complex, and more heterogeneous than previously appreciated.
Synopsis
The family of clustered regularly interspaced short palindromic repeats (CRISPRs) describes a class of DNA repeats found in nearly half of all bacterial and archaeal genomes. These DNA repeat regions have a remarkably regular structure: unique sequences of constant size, called spacers, sit between each pair of repeats. The DNA repeats do not encode proteins, but appear to be transcribed and processed into small RNAs that may have any number of functions, including resistance to any phage (i.e., virus of bacteria) whose sequence matches a spacer; spacers change rapidly as microbial strains evolve. This work describes 41 new CRISPR-associated (cas) gene families, which are always found near these repeats, in addition to the four previously known. It shows that CRISPR systems belong to different classes, with different repeat patterns, sets of genes, and species ranges. Most of these seem to come and go rather rapidly from their host genomes. These possibly beneficial mobile genetic elements may play an important role in driving prokaryotic evolution.
doi:10.1371/journal.pcbi.0010060
PMCID: PMC1282333  PMID: 16292354
18.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action 
Biology Direct  2006;1:7.
Background
All archaeal and many bacterial genomes contain Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR) and variable arrays of the CRISPR-associated (cas) genes that have been previously implicated in a novel form of DNA repair on the basis of comparative analysis of their protein product sequences. However, the proximity of CRISPR and cas genes strongly suggests that they have related functions which is hard to reconcile with the repair hypothesis.
Results
The protein sequences of the numerous cas gene products were classified into ~25 distinct protein families; several new functional and structural predictions are described. Comparative-genomic analysis of CRISPR and cas genes leads to the hypothesis that the CRISPR-Cas system (CASS) is a mechanism of defense against invading phages and plasmids that functions analogously to the eukaryotic RNA interference (RNAi) systems. Specific functional analogies are drawn between several components of CASS and proteins involved in eukaryotic RNAi, including the double-stranded RNA-specific helicase-nuclease (dicer), the endonuclease cleaving target mRNAs (slicer), and the RNA-dependent RNA polymerase. However, none of the CASS components is orthologous to its apparent eukaryotic functional counterpart. It is proposed that unique inserts of CRISPR, some of which are homologous to fragments of bacteriophage and plasmid genes, function as prokaryotic siRNAs (psiRNA), by base-pairing with the target mRNAs and promoting their degradation or translation shutdown. Specific hypothetical schemes are developed for the functioning of the predicted prokaryotic siRNA system and for the formation of new CRISPR units with unique inserts encoding psiRNA conferring immunity to the respective newly encountered phages or plasmids. The unique inserts in CRISPR show virtually no similarity even between closely related bacterial strains which suggests their rapid turnover, on evolutionary scale. Corollaries of this finding are that, even among closely related prokaryotes, the most commonly encountered phages and plasmids are different and/or that the dominant phages and plasmids turn over rapidly.
Conclusion
We proposed previously that Cas proteins comprise a novel DNA repair system. The association of the cas genes with CRISPR and, especially, the presence, in CRISPR units, of unique inserts homologous to phage and plasmid genes make us abandon this hypothesis. It appears most likely that CASS is a prokaryotic system of defense against phages and plasmids that functions via the RNAi mechanism. The functioning of this system seems to involve integration of fragments of foreign genes into archaeal and bacterial chromosomes yielding heritable immunity to the respective agents. However, it appears that this inheritance is extremely unstable on the evolutionary scale such that the repertoires of unique psiRNAs are completely replaced even in closely related prokaryotes, presumably, in response to rapidly changing repertoires of dominant phages and plasmids.
This article was reviewed by: Eric Bapteste, Patrick Forterre, and Martijn Huynen.
Open peer review
Reviewed by Eric Bapteste, Patrick Forterre, and Martijn Huynen.
For the full reviews, please go to the Reviewers' comments section.
doi:10.1186/1745-6150-1-7
PMCID: PMC1462988  PMID: 16545108
19.  CRISPR-mediated defense mechanisms in the hyperthermophilic archaeal genus Sulfolobus 
RNA Biology  2013;10(5):671-678.
CRISPR (clustered regularly interspaced short palindromic repeats)-mediated virus defense based on small RNAs is a hallmark of archaea and also found in many bacteria. Archaeal genomes and, in particular, organisms of the extremely thermoacidophilic genus Sulfolobus, carry extensive CRISPR loci each with dozens of sequence signatures (spacers) able to mediate targeting and degradation of complementary invading nucleic acids. The diversity of CRISPR systems and their associated protein complexes indicates an extensive functional breadth and versatility of this adaptive immune system. Sulfolobus solfataricus and S. islandicus represent two of the best characterized genetic model organisms in the archaea not only with respect to the CRISPR system. Here we address and discuss in a broader context particularly recent progress made in understanding spacer recruitment from foreign DNA, production of small RNAs, in vitro activity of CRISPR-associated protein complexes and attack of viruses and plasmids in in vivo test systems.
doi:10.4161/rna.24154
PMCID: PMC3737324  PMID: 23535277
Sulfolobales; archaea; virus defense; CRISPR-Cas system; small RNAs
20.  Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis  
Nucleic Acids Research  2012;40(19):9887-9896.
The CRISPR arrays found in many bacteria and most archaea are transcribed into a long precursor RNA that is processed into small clustered regularly interspaced short palindromic repeats (CRISPR) RNAs (crRNAs). These RNA molecules can contain fragments of viral genomes and mediate, together with a set of CRISPR-associated (Cas) proteins, the prokaryotic immunity against viral attacks. CRISPR/Cas systems are diverse and the Cas6 enzymes that process crRNAs vary between different subtypes. We analysed CRISPR/Cas subtype I-B and present the identification of novel Cas6 enzymes from the bacterial and archaeal model organisms Clostridium thermocellum and Methanococcus maripaludis C5. Methanococcus maripaludis Cas6b in vitro activity and specificity was determined. Two complementary catalytic histidine residues were identified. RNA-Seq analyses revealed in vivo crRNA processing sites, crRNA abundance and orientation of CRISPR transcription within these two organisms. Individual spacer sequences were identified with strong effects on transcription and processing patterns of a CRISPR cluster. These effects will need to be considered for the application of CRISPR clusters that are designed to produce synthetic crRNAs.
doi:10.1093/nar/gks737
PMCID: PMC3479195  PMID: 22879377
21.  Transcription, Processing, and Function of CRISPR Cassettes in Escherichia coli 
Molecular microbiology  2010;77(6):1367-1379.
CRISPR/Cas, bacterial and archaeal systems of interference with foreign genetic elements such as viruses or plasmids, consist of DNA loci called CRISPR cassettes (a set of variable spacers regularly separated by palindromic repeats) and associated cas genes. When a CRISPR spacer sequence exactly matches a sequence in a viral genome, the cell can become resistant to the virus. The CRISPR/Cas systems function through small RNAs originating from longer CRISPR cassette transcripts. While laboratory strains of Escherichia coli contain a functional CRISPR/Cas system (as judged by appearance of phage resistance at conditions of artificial co-overexpression of Cas genes and a CRISPR cassette engineered to target a λ phage), no natural phage resistance due to CRISPR system function was observed in this best-studied organism and no E. coli CRISPR spacer matches sequences of well-studied E. coli phages. To better understand the apparently “silent” E. coli CRISPR/Cas system, we systematically characterized processed transcripts from CRISPR cassettes. Using an engineered strain with genomically located spacer matching phage λ we show that endogenous levels of CRISPR cassette and cas genes expression allow only weak protection against infection with the phage. However, derepression of the CRISPR/Cas system by disruption of the hns gene leads to high level of protection.
doi:10.1111/j.1365-2958.2010.07265.x
PMCID: PMC2939963  PMID: 20624226
22.  Cleavage of Phage DNA by the Streptococcus thermophilus CRISPR3-Cas System 
PLoS ONE  2012;7(7):e40913.
Streptococcus thermophilus, similar to other Bacteria and Archaea, has developed defense mechanisms to protect cells against invasion by foreign nucleic acids, such as virus infections and plasmid transformations. One defense system recently described in these organisms is the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats loci coupled to CRISPR-associated genes). Two S. thermophilus CRISPR-Cas systems, CRISPR1-Cas and CRISPR3-Cas, have been shown to actively block phage infection. The CRISPR1-Cas system interferes by cleaving foreign dsDNA entering the cell in a length-specific and orientation-dependant manner. Here, we show that the S. thermophilus CRISPR3-Cas system acts by cleaving phage dsDNA genomes at the same specific position inside the targeted protospacer as observed with the CRISPR1-Cas system. Only one cleavage site was observed in all tested strains. Moreover, we observed that the CRISPR1-Cas and CRISPR3-Cas systems are compatible and, when both systems are present within the same cell, provide increased resistance against phage infection by both cleaving the invading dsDNA. We also determined that overall phage resistance efficiency is correlated to the total number of newly acquired spacers in both CRISPR loci.
doi:10.1371/journal.pone.0040913
PMCID: PMC3401199  PMID: 22911717
23.  Type I-E CRISPR-Cas Systems Discriminate Target from Non-Target DNA through Base Pairing-Independent PAM Recognition 
PLoS Genetics  2013;9(9):e1003742.
Discriminating self and non-self is a universal requirement of immune systems. Adaptive immune systems in prokaryotes are centered around repetitive loci called CRISPRs (clustered regularly interspaced short palindromic repeat), into which invader DNA fragments are incorporated. CRISPR transcripts are processed into small RNAs that guide CRISPR-associated (Cas) proteins to invading nucleic acids by complementary base pairing. However, to avoid autoimmunity it is essential that these RNA-guides exclusively target invading DNA and not complementary DNA sequences (i.e., self-sequences) located in the host's own CRISPR locus. Previous work on the Type III-A CRISPR system from Staphylococcus epidermidis has demonstrated that a portion of the CRISPR RNA-guide sequence is involved in self versus non-self discrimination. This self-avoidance mechanism relies on sensing base pairing between the RNA-guide and sequences flanking the target DNA. To determine if the RNA-guide participates in self versus non-self discrimination in the Type I-E system from Escherichia coli we altered base pairing potential between the RNA-guide and the flanks of DNA targets. Here we demonstrate that Type I-E systems discriminate self from non-self through a base pairing-independent mechanism that strictly relies on the recognition of four unchangeable PAM sequences. In addition, this work reveals that the first base pair between the guide RNA and the PAM nucleotide immediately flanking the target sequence can be disrupted without affecting the interference phenotype. Remarkably, this indicates that base pairing at this position is not involved in foreign DNA recognition. Results in this paper reveal that the Type I-E mechanism of avoiding self sequences and preventing autoimmunity is fundamentally different from that employed by Type III-A systems. We propose the exclusive targeting of PAM-flanked sequences to be termed a target versus non-target discrimination mechanism.
Author Summary
CRISPR loci and their associated genes form a diverse set of adaptive immune systems that are widespread among prokaryotes. In these systems, the CRISPR-associated genes (cas) encode for proteins that capture fragments of invading DNA and integrate these sequences between repeat sequences of the host's CRISPR locus. This information is used upon re-infection to degrade invader genomes. Storing invader sequences in host genomes necessitates a mechanism to differentiate between invader sequences on invader genomes and invader sequences on the host genome. CRISPR-Cas of Staphylococcus epidermidis (Type III-A system) is inhibited when invader sequences are flanked by repeat sequences, and this prevents targeting of the CRISPR locus on the host genome. Here we demonstrate that Escherichia coli CRISPR-Cas (Type I-E system) is not inhibited by repeat sequences. Instead, this system is specifically activated by the presence of bona fide Protospacer Adjacent Motifs (PAMs) in the target. PAMs are conserved sequences adjoining invader sequences on the invader genome, and these sequences are never adjacent to invader sequences within host CRISPR loci. PAM recognition is not affected by base pairing potential of the target with the crRNA. As such, the Type I-E system lacks the ability to specifically recognize self DNA.
doi:10.1371/journal.pgen.1003742
PMCID: PMC3764190  PMID: 24039596
24.  CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes 
Genome Biology  2013;14(4):R40.
Background
Bacteria and archaea develop immunity against invading genomes by incorporating pieces of the invaders' sequences, called spacers, into a clustered regularly interspaced short palindromic repeats (CRISPR) locus between repeats, forming arrays of repeat-spacer units. When spacers are expressed, they direct CRISPR-associated (Cas) proteins to silence complementary invading DNA. In order to characterize the invaders of human microbiomes, we use spacers from CRISPR arrays that we had previously assembled from shotgun metagenomic datasets, and identify contigs that contain these spacers' targets.
Results
We discover 95,000 contigs that are putative invasive mobile genetic elements, some targeted by hundreds of CRISPR spacers. We find that oral sites in healthy human populations have a much greater variety of mobile genetic elements than stool samples. Mobile genetic elements carry genes encoding diverse functions: only 7% of the mobile genetic elements are similar to known phages or plasmids, although a much greater proportion contain phage- or plasmid-related genes. A small number of contigs share similarity with known integrative and conjugative elements, providing the first examples of CRISPR defenses against this class of element. We provide detailed analyses of a few large mobile genetic elements of various types, and a relative abundance analysis of mobile genetic elements and putative hosts, exploring the dynamic activities of mobile genetic elements in human microbiomes. A joint analysis of mobile genetic elements and CRISPRs shows that protospacer-adjacent motifs drive their interaction network; however, some CRISPR-Cas systems target mobile genetic elements lacking motifs.
Conclusions
We identify a large collection of invasive mobile genetic elements in human microbiomes, an important resource for further study of the interaction between the CRISPR-Cas immune system and invaders.
doi:10.1186/gb-2013-14-4-r40
PMCID: PMC4053933  PMID: 23628424
CRISPR-Cas system; human microbiome; mobile genetic element (MGE)
25.  Characterization of the CRISPR/Cas Subtype I-A System of the Hyperthermophilic Crenarchaeon Thermoproteus tenax 
Journal of Bacteriology  2012;194(10):2491-2500.
CRISPR (clustered regularly interspaced short palindromic repeats) elements and cas (CRISPR-associated) genes are widespread in Bacteria and Archaea. The CRISPR/Cas system operates as a defense mechanism against mobile genetic elements (i.e., viruses or plasmids). Here, we investigate seven CRISPR loci in the genome of the crenarchaeon Thermoproteus tenax that include spacers with significant similarity not only to archaeal viruses but also to T. tenax genes. The analysis of CRISPR RNA (crRNA) transcription reveals transcripts of a length between 50 and 130 nucleotides, demonstrating the processing of larger crRNA precursors. The organization of identified cas genes resembles CRISPR/Cas subtype I-A, and the core cas genes are shown to be arranged on two polycistronic transcripts: cascis (cas4, cas1/2, and csa1) and cascade (csa5, cas7, cas5a, cas3, cas3′, and cas8a2). Changes in the environmental parameters such as UV-light exposure or high ionic strength modulate cas gene transcription. Two reconstitution protocols were established for the production of two discrete multipartite Cas protein complexes that correspond to their operonic gene arrangement. These data provide insights into the specialized mechanisms of an archaeal CRISPR/Cas system and allow selective functional analyses of Cas protein complexes in the future.
doi:10.1128/JB.00206-12
PMCID: PMC3347209  PMID: 22408157

Results 1-25 (846017)