Search tips
Search criteria

Results 1-25 (1606960)

Clipboard (0)

Related Articles

1.  High quality draft genome sequence of the slightly halophilic bacterium Halomonas zhanjiangensis type strain JSM 078169T (DSM 21076T) from a sea urchin in southern China 
Standards in Genomic Sciences  2014;9(3):1020-1030.
Halomonas zhanjiangensis Chen et al. 2009 is a member of the genus Halomonas, family Halomonadaceae, class Gammaproteobacteria. Representatives of the genus Halomonas are a group of halophilic bacteria often isolated from salty environments. The type strain H. zhanjiangensis JSM 078169T was isolated from a sea urchin (Hemicentrotus pulcherrimus) collected from the South China Sea. The genome of strain JSM 078169T is the fourteenth sequenced genome in the genus Halomonas and the fifteenth in the family Halomonadaceae. The other thirteen genomes from the genus Halomonas are H. halocynthiae, H. venusta, H. alkaliphila, H. lutea, H. anticariensis, H. jeotgali, H. titanicae, H. desiderata, H. smyrnensis, H. salifodinae, H. boliviensis, H. elongata and H stevensii. Here, we describe the features of strain JSM 078169T, together with the complete genome sequence and annotation from a culture of DSM 21076T. The 4,060,520 bp long draft genome consists of 17 scaffolds with the 3,659 protein-coding and 80 RNA genes and is a part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.
PMCID: PMC4148996  PMID: 25197480
strictly aerobic; motile Gram-negative; chemoorganotrophic; slightly halophilic; Halomonadaceae
2.  Fermentative Polyhydroxybutyrate Production from a Novel Feedstock Derived from Bakery Waste 
BioMed Research International  2014;2014:819474.
In this study, Halomonas boliviensis was cultivated on bakery waste hydrolysate and seawater in batch and fed-batch cultures for polyhydroxybutyrate (PHB) production. Results demonstrated that bakery waste hydrolysate and seawater could be efficiently utilized by Halomonas boliviensis while PHB contents between 10 and 30% (w/w) were obtained. Furthermore, three methods for bakery waste hydrolysis were investigated for feedstock preparation. These include: (1) use of crude enzyme extracts from Aspergillus awamori, (2) Aspergillus awamori solid mashes, and (3) commercial glucoamylase. In the first method, the resultant free amino nitrogen (FAN) concentration in hydrolysates was 150 and 250 mg L−1 after 20 hours at enzyme-to-solid ratios of 6.9 and 13.1 U g−1, respectively. In both cases, the final glucose concentration was around 130–150 g L−1. In the second method, the resultant FAN and glucose concentrations were 250 mg L−1 and 150 g L−1, respectively. In the third method, highest glucose and lowest FAN concentrations of 170–200 g L−1 and 100 mg L−1, respectively, were obtained in hydrolysates after only 5 hours. The present work has generated promising information contributing to the sustainable production of bioplastic using bakery waste hydrolysate.
PMCID: PMC4127261  PMID: 25136626
3.  Identification and characterization of two Alcaligenes eutrophus gene loci relevant to the poly(beta-hydroxybutyric acid)-leaky phenotype which exhibit homology to ptsH and ptsI of Escherichia coli. 
Journal of Bacteriology  1991;173(18):5843-5853.
From genomic libraries of Alcaligenes eutrophus H16 in lambda L47 and in pVK100, we cloned DNA fragments which restored the wild-type phenotype to poly(beta-hydroxybutyric acid) (PHB)-leaky mutants derived from strains H16 and JMP222. The nucleotide sequence analysis of a 4.5-kb region of one of these fragments revealed two adjacent open reading frames (ORF) which are relevant for the expression of the PHB-leaky phenotype. The 1,799-bp ORF1 represented a gene which was referred to as phbI. The amino acid sequence of the putative protein I (Mr, 65,167), which was deduced from phbI, exhibited 38.9% identity with the primary structure of enzyme I of the Escherichia coli phosphoenolpyruvate:carbohydrate phosphotransferase system (PEP-PTS). The upstream 579-bp ORF2 was separated by 50 bp from ORF1. It included the 270-bp phbH gene which encoded protein H (Mr, 9,469). This protein exhibited 34.9% identity to the HPr protein of the E. coli PEP-PTS. Insertions of Tn5 in different PHB-leaky mutants were mapped at eight different positions in phbI and at one position in phbH. Mutants defective in phbH or phbI exhibited no pleiotropic effects and were not altered with respect to the utilization of fructose. However, PHB was degraded at a higher rate in the stationary growth phase. The functions of these HPr- and enzyme I-like proteins in the metabolism of PHB are still unknown. Evidence for the involvement of these proteins in regulation of the metabolism of intracellular PHB was obtained, and a hypothetical model is proposed.
PMCID: PMC208318  PMID: 1653223
4.  Effects of Homologous Phosphoenolpyruvate-Carbohydrate Phosphotransferase System Proteins on Carbohydrate Uptake and Poly(3-Hydroxybutyrate) Accumulation in Ralstonia eutropha H16▿† 
Applied and Environmental Microbiology  2011;77(11):3582-3590.
Seven gene loci encoding putative proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS) were identified in the genome of Ralstonia eutropha H16 by in silico analysis. Except the N-acetylglucosamine-specific PEP-PTS, an additional complete PEP-PTS is lacking in strain H16. Based on these findings, we generated single and multiple deletion mutants defective mainly in the PEP-PTS genes to investigate their influence on carbon source utilization, growth behavior, and poly(3-hydroxybutyrate) (PHB) accumulation. As supposed, the H16 ΔfrcACB and H16 ΔnagFEC mutants exhibited no growth when cultivated on fructose and N-acetylglucosamine, respectively. Furthermore, a transposon mutant with a ptsM-ptsH insertion site did not grow on both carbon sources. The observed phenotype was not complemented, suggesting that it results from an interaction of genes or a polar effect caused by the Tn5::mob insertion. ptsM, ptsH, and ptsI single, double, and triple mutants stored much less PHB than the wild type (about 10 to 39% [wt/wt] of cell dry weight) and caused reduced PHB production in mutants lacking the H16_A2203, H16_A0384, frcACB, or nagFEC genes. In contrast, mutant H16 ΔH16_A0384 accumulated 11.5% (wt/wt) more PHB than the wild type when grown on gluconate and suppressed partially the negative effect of the ptsMHI deletion on PHB synthesis. Based on our experimental data, we discussed whether the PEP-PTS homologous proteins in R. eutropha H16 are exclusively involved in the complex sugar transport system or whether they are also involved in cellular regulatory functions of carbon and PHB metabolism.
PMCID: PMC3127587  PMID: 21478317
5.  Niche adaptation by expansion and reprogramming of general transcription factors 
Experimental analysis of TFB family proteins in a halophilic archaeon reveals complex environment-dependent fitness contributions. Gene conversion events among these proteins can generate novel niche adaptation capabilities, a process that may have contributed to archaeal adaptation to extreme environments.
Evolution of archaeal lineages correlate with duplication events in the TFB family.Each TFB is required for adaptation to multiple environments.The relative fitness contributions of TFBs change with environmental context.Changes in the regulation of duplicated TFBs can generate new adaptation capabilities.
The evolutionary success of an organism depends on its ability to continually adapt to changes in the patterns of constant, periodic, and transient challenges within its environment. This process of ‘niche adaptation' requires reprogramming of the organism's environmental response networks by reorganizing interactions among diverse parts including environmental sensors, signal transducers, and transcriptional and post-transcriptional regulators. Gene duplications have been discovered to be one of the principal strategies in this process, especially for reprogramming of gene regulatory networks (GRNs). Whereas eukaryotes require dozens of factors for recruitment of RNA polymerase, archaea require just two general transcription factors (GTFs) that are orthologous to eukaryotic TFIIB (TFB in archaea) and TATA-binding protein (TBP) (Bell et al, 1998). Both of these GTFs have expanded extensively in nearly 50% of all archaea whose genomes have been fully sequenced. The phylogenetic analysis presented in this study reveal lineage-specific expansions of TFBs, suggesting that they might encode functionally specialized gene regulatory programs for the unique environments to which these organisms have adapted. This hypothesis is particularly appealing when we consider that the greatest expansion is observed within the group of halophilic archaea whose habitats are associated with routine and dynamic changes in a number of environmental factors including light, temperature, oxygen, salinity, and ionic composition (Rodriguez-Valera, 1993; Litchfield, 1998).
We have previously demonstrated that variations in the expanded set of TFBs (a through e) in Halobacterium salinarum NRC-1 manifests at the level of physical interactions within and across the two families, their DNA-binding specificity, their differential regulation in varying environments, and, ultimately, on the large-scale segregation of transcription of all genes into overlapping yet distinct sets of functionally related groups (Facciotti et al, 2007). We have extended findings from this earlier study with a systematic survey of the fitness consequences of perturbing the TFB network of H. salinarum NRC-1 across 17 environments. Notably, each TFB conferred fitness in two or more environmental conditions tested, and the relative fitness contributions (see Table I) of the five TFBs varied significantly by environment. From an evolutionary perspective, the relationships among these fitness landscapes reveal that two classes of TFBs (c/g- and f-type) appear to have played an important role in the evolution of halophilic archaea by overseeing regulation of core physiological capabilities in these organisms. TFBs of the other clades (b/d and a/e) seem to have emerged much more recently through gene duplications or horizontal gene transfers (HGTs) and are being utilized for adaptation to specialized environmental conditions.
We also investigated higher-order functional interactions and relationships among the duplicated TFBs by performing competition experiments and by mapping genetic interactions in different environments. This demonstrated that depending on environmental context, the TFBs have strikingly different functional hierarchies and genetic interactions with one another. This is remarkable as it makes each TFB essential albeit at different times in a dynamically changing environment.
In order to understand the process by which such gene family expansions shape architecture and functioning of a GRN, we performed integrated analysis of phylogeny, physical interactions, regulation, and fitness landscapes of the seven TFBs in H. salinarum NRC-1. This revealed that evolution of both their protein-coding sequence and their promoter has been instrumental in the encoding of environment-specific regulatory programs. Importantly, the convergent and divergent evolution of regulation and binding properties of TFBs suggested that, aside from HGT and random mutations, a third plausible (and perhaps most interesting) mechanism for acquiring a novel TFB variant is through gene conversion. To test this hypothesis, we synthesized a novel TFBx by transferring TFBa/e clade-specific residues to a TFBd backbone, transformed this variant under the control of either the TFBd or the TFBe promoter (PtfbD or PtfbE) into three different host genetic backgrounds (Δura3 (parent), ΔtfbD, and ΔtfbE), and analyzed fitness and gene expression patterns during growth at 25 and 37°C. This showed that gene conversion events spanning the coding sequence and the promoter, environmental context, and genetic background of the host are all extremely influential in the functional integration of a TFB into the GRN. Importantly, this analysis suggested that altering the regulation of an existing set of expanded TFBs might be an efficient mechanism to reprogram the GRN to rapidly generate novel niche adaptation capability. We have confirmed this experimentally by increasing fitness merely by moving tfbE to PtfbD control, and by generating a completely novel phenotype (biofilm-like appearance) by overexpression of tfbE.
Altogether this study clearly demonstrates that archaea can rapidly generate novel niche adaptation programs by simply altering regulation of duplicated TFBs. This is significant because expansions in the TFB family is widespread in archaea, a class of organisms that not only represent 20% of biomass on earth but are also known to have colonized some of the most extreme environments (DeLong and Pace, 2001). This strategy for niche adaptation is further expanded through interactions of the multiple TFBs with members of other expanded TF families such as TBPs (Facciotti et al, 2007) and sequence-specific regulators (e.g. Lrp family (Peeters and Charlier, 2010)). This is analogous to combinatorial solutions for other complex biological problems such as recognition of pathogens by Toll-like receptors (Roach et al, 2005), generation of antibody diversity by V(D)J recombination (Early et al, 1980), and recognition and processing of odors (Malnic et al, 1999).
Numerous lineage-specific expansions of the transcription factor B (TFB) family in archaea suggests an important role for expanded TFBs in encoding environment-specific gene regulatory programs. Given the characteristics of hypersaline lakes, the unusually large numbers of TFBs in halophilic archaea further suggests that they might be especially important in rapid adaptation to the challenges of a dynamically changing environment. Motivated by these observations, we have investigated the implications of TFB expansions by correlating sequence variations, regulation, and physical interactions of all seven TFBs in Halobacterium salinarum NRC-1 to their fitness landscapes, functional hierarchies, and genetic interactions across 2488 experiments covering combinatorial variations in salt, pH, temperature, and Cu stress. This systems analysis has revealed an elegant scheme in which completely novel fitness landscapes are generated by gene conversion events that introduce subtle changes to the regulation or physical interactions of duplicated TFBs. Based on these insights, we have introduced a synthetically redesigned TFB and altered the regulation of existing TFBs to illustrate how archaea can rapidly generate novel phenotypes by simply reprogramming their TFB regulatory network.
PMCID: PMC3261711  PMID: 22108796
evolution by gene family expansion; fitness; niche adaptation; reprogramming of gene regulatory network; transcription factor B
6.  Characterization of Spotted Fever Group Rickettsiae in Flea and Tick Specimens from Northern Peru 
Journal of Clinical Microbiology  2004;42(11):4961-4967.
Evidence of spotted fever group (SFG) rickettsiae was obtained from flea pools and individual ticks collected at three sites in northwestern Peru within the focus of an outbreak of febrile disease in humans attributed, in part, to SFG rickettsia infections. Molecular identification of the etiologic agents from these samples was determined after partial sequencing of the 17-kDa common antigen gene (htrA) as well as pairwise nucleotide sequence homology with one or more of the following genes: gltA, ompA, and ompB. Amplification and sequencing of portions of the htrA and ompA genes in pooled samples (2 of 59) taken from fleas identified the pathogen Rickettsia felis. Four tick samples yielded molecular evidence of SFG rickettsiae. Fragments of the ompA (540-bp) and ompB (2,484-bp) genes were amplified from a single Amblyomma maculatum tick (tick 124) and an Ixodes boliviensis tick (tick 163). The phylogenetic relationships between the rickettsiae in these samples and other rickettsiae were determined after comparison of their ompB sequences by the neighbor-joining method. The dendrograms generated showed that the isolates exhibited close homology (97%) to R. aeschlimannii and R. rhipicephali. Significant bootstrap values supported clustering adjacent to this nodule of the SFG rickettsiae. While the agents identified in the flea and tick samples have not been linked to human cases in the area, these results demonstrate for the first time that at least two SFG rickettsia agents were circulating in northern Peru at the time of the outbreak. Furthermore, molecular analysis of sequences derived from the two separate species of hard ticks identified a possibly novel member of the SFG rickettsiae.
PMCID: PMC525230  PMID: 15528680
7.  Multiple Interkingdom Horizontal Gene Transfers in Pyrenophora and Closely Related Species and Their Contributions to Phytopathogenic Lifestyles 
PLoS ONE  2013;8(3):e60029.
Many studies have reported horizontal gene transfer (HGT) events from eukaryotes, especially fungi. However, only a few investigations summarized multiple interkingdom HGTs involving important phytopathogenic species of Pyrenophora and few have investigated the genetic contributions of HGTs to fungi. We investigated HGT events in P. teres and P. tritici-repentis and discovered that both species harbored 14 HGT genes derived from bacteria and plants, including 12 HGT genes that occurred in both species. One gene coding a leucine-rich repeat protein was present in both species of Pyrenophora and it may have been transferred from a host plant. The transfer of genes from a host plant to pathogenic fungi has been reported rarely and we discovered the first evidence for this transfer in phytopathogenic Pyrenophora. Two HGTs in Pyrenophora underwent subsequent duplications. Some HGT genes had homologs in a few other fungi, indicating relatively ancient transfer events. Functional analyses indicated that half of the HGT genes encoded extracellular proteins and these may have facilitated the infection of plants by Pyrenophora via interference with plant defense-response and the degradation of plant cell walls. Some other HGT genes appeared to participate in carbohydrate metabolism. Together, these functions implied that HGTs may have led to highly efficient mechanisms of infection as well as the utilization of host carbohydrates. Evolutionary analyses indicated that HGT genes experienced amelioration, purifying selection, and accelerated evolution. These appeared to constitute adaptations to the background genome of the recipient. The discovery of multiple interkingdom HGTs in Pyrenophora, their significance to infection, and their adaptive evolution, provided valuable insights into the evolutionary significance of interkingdom HGTs from multiple donors.
PMCID: PMC3612039  PMID: 23555871
8.  Chemical characterization of oligosaccharides in the milk of six species of New and Old world monkeys 
Glycoconjugate Journal  2010;27(7-9):703-715.
Human and great ape milks contain a diverse array of milk oligosaccharides, but little is known about the milk oligosaccharides of other primates, and how they differ among taxa. Neutral and acidic oligosaccharides were isolated from the milk of three species of Old World or catarrhine monkeys (Cercopithecidae: rhesus macaque (Macaca mulatta), toque macaque (Macaca sinica) and Hamadryas baboon (Papio hamadryas)) and three of New World or platyrrhine monkeys (Cebidae: tufted capuchin (Cebus apella) and Bolivian squirrel monkey (Saimiri boliviensis); Atelidae: mantled howler (Alouatta palliata)). The milks of these species contained 6–8% total sugar, most of which was lactose: the estimated ratio of oligosaccharides to lactose in Old World monkeys (1:4 to 1:6) was greater than in New World monkeys (1:12 to 1:23). The chemical structures of the oligosaccharides were determined mainly by 1H-NMR spectroscopy. Oligosaccharides containing the type II unit (Gal(β1-4)GlcNAc) were found in the milk of the rhesus macaque, toque macaque, Hamadryas baboon and tufted capuchin, but oligosaccharides containing the type I unit (Gal(β1-3)GlcNAc), which have been found in human and many great ape milks, were absent from the milk of all species studied. Oligosaccharides containing Lewis x (Gal(β1-4)[Fuc(α1-3)]GlcNAc) and 3-fucosyl lactose (3-FL, Gal(β1-4)[Fuc(α1-3)]Glc) were found in the milk of the three cercopithecid monkey species, while 2-fucosyl lactose (5'-FL, Fuc(α1-2)Gal(β1-4)Glc) was absent from all species studied. All of these milks contained acidic oligosaccharides that had N-acetylneuraminic acid as part of their structures, but did not contain oligosaccharides that had N-glycolylneuraminic acid, in contrast to the milk or colostrum of great apes which contain both types of acidic oligosaccharides. Two GalNAc-containing oligosaccharides, lactose 3′-O-sulfate and lacto-N-novopentaose I (Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc) were found only in the milk of rhesus macaque, hamadryas baboon and tufted capuchin, respectively. Further research is needed to determine the extent to which the milk oligosaccharide patterns observed among these taxa represent wider phylogenetic trends among primates and how much variation occurs among individuals or species.
Electronic supplementary material
The online version of this article (doi:10.1007/s10719-010-9315-0) contains supplementary material, which is available to authorized users.
PMCID: PMC3002168  PMID: 21127965
Old world monkey; New world monkey; Milk oligosaccharide; Rhesus macaque; Toque macaque; Baboon; Capuchin; Mantled howler; Squirrel monkey; N-glycolylneuraminic acid
9.  Identification, classification and evolution of Owl Monkeys (Aotus, Illiger 1811) 
Owl monkeys, belonging to the genus Aotus, have been extensively used as animal models in biomedical research but few reports have focused on the taxonomy and phylogeography of this genus. Moreover, the morphological similarity of several Aotus species has led to frequent misidentifications, mainly at the boundaries of their distribution. In this study, sequence data from five mitochondrial regions and the nuclear, Y-linked, SRY gene were used for species identification and phylogenetic reconstructions using well characterized specimens of Aotus nancymaae, A. vociferans, A. lemurinus, A. griseimembra, A. trivirgatus, A. nigriceps, A. azarae boliviensis and A. infulatus.
The complete MT-CO1, MT-TS1, MT-TD, MT-CO2, MT-CYB regions were sequenced in 18 Aotus specimens. ML and Bayesian topologies of concatenated data and separate regions allowed for the proposition of a tentative Aotus phylogeny, indicating that Aotus diverged some 4.62 Million years before present (MYBP). Similar analyses with included GenBank specimens were useful for assessing species identification of deposited data.
Alternative phylogenetic reconstructions, when compared with karyotypic and biogeographic data, led to the proposition of evolutionary scenarios questioning the conventional diversification of this genus in monophyletic groups with grey and red necks. Moreover, genetic distance estimates and haplotypic differences were useful for species validations.
PMCID: PMC2931504  PMID: 20704725
10.  Unraveling the Function of the Rhodospirillum rubrum Activator of Polyhydroxybutyrate (PHB) Degradation: the Activator Is a PHB-Granule-Bound Protein (Phasin) 
Journal of Bacteriology  2004;186(8):2466-2475.
Efficient hydrolysis of native poly(3-hydroxybutyrate) (nPHB) granules in vitro by soluble PHB depolymerase of Rhodospirillum rubrum requires pretreatment of nPHB with an activator compound present in R. rubrum cells (J. M. Merrick and M. Doudoroff, J. Bacteriol. 88:60-71, 1964). Edman sequencing of the purified activator (17.4 kDa; matrix-assisted laser desorption ionization—time of flight mass spectrometry) revealed identity to a hypothetical protein deduced from a partially sequenced R. rubrum genome. The complete activator gene, apdA (activator of polymer degradation), was cloned from genomic DNA, expressed as a six-His-tagged protein in recombinant Escherichia coli (Mr, 18.3 × 103), and purified. The effect of ApdA on PHB metabolism was studied in vitro and in vivo. In vitro, the activity of the activator could be replaced by trypsin, but recombinant ApdA itself had no protease activity. Comparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein patterns of trypsin- and ApdA-treated nPHB granules isolated from different PHB-accumulating bacteria showed that trypsin activated nPHB by removing proteins of the surface layer of nPHB regardless of the origin of nPHB, but ApdA bound to and interacted with the surface layer of nPHB in a nonproteolytic manner, thereby transforming nPHB into an activated form that was accessible to the depolymerase. In vivo, expression of ApdA in E. coli harboring the PHB biosynthetic genes, phaCBA, resulted in significant increases in the number and surface/volume ratio of accumulated PHB granules, which was comparable to the effect of phasin proteins, such as PhaP in Ralstonia eutropha. The amino acid sequence of ApdA was 55% identical to the amino acid sequence of Mms16, a magnetosome-associated protein in magnetotactic Magnetospirillum species. Mms16 was previously reported to be a GTPase with an essential function in magnetosome formation (Y. Okamura, H. Takeyama, and T. Matsunaga, J. Biol. Chem. 276:48183-48188, 2001). However, no GTPase activity of ApdA could be demonstrated. We obtained evidence that Mms16 of Magnetospirillum gryphiswaldense can functionally replace ApdA in R. rubrum. Fusions of apdA and mms16 to gfp or yfp were functionally expressed, and both fusions colocalized with PHB granules after conjugative transfer to R. rubrum. In conclusion, ApdA in vivo is a PHB-bound, phasin-like protein in R. rubrum. The function of Mms16 in magnetotactic bacteria requires further clarification.
PMCID: PMC412128  PMID: 15060050
11.  Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea 
The ISME Journal  2011;5(8):1291-1302.
The extent of horizontal gene transfer (HGT) among marine pelagic prokaryotes and the role that HGT may have played in their adaptation to this particular environment remain open questions. This is partly due to the paucity of cultured species and genomic information for many widespread groups of marine bacteria and archaea. Molecular studies have revealed a large diversity and relative abundance of marine planktonic archaea, in particular of Thaumarchaeota (also known as group I Crenarchaeota) and Euryarchaeota of groups II and III, but only one species (the thaumarchaeote Candidatus Nitrosopumilus maritimus) has been isolated in pure culture so far. Therefore, metagenomics remains the most powerful approach to study these environmental groups. To investigate the impact of HGT in marine archaea, we carried out detailed phylogenetic analyses of all open reading frames of 21 archaeal 16S rRNA gene-containing fosmids and, to extend our analysis to other genomic regions, also of fosmid-end sequences of 12 774 fosmids from three different deep-sea locations (South Atlantic and Adriatic Sea at 1000 m depth, and Ionian Sea at 3000 m depth). We found high HGT rates in both marine planktonic Thaumarchaeota and Euryarchaeota, with remarkable converging values estimated from complete-fosmid and fosmid-end sequence analysis (25 and 21% of the genes, respectively). Most HGTs came from bacterial donors (mainly from Proteobacteria, Firmicutes and Chloroflexi) but also from other archaea and eukaryotes. Phylogenetic analyses showed that in most cases HGTs are shared by several representatives of the studied groups, implying that they are ancient and have been conserved over relatively long evolutionary periods. This, together with the functions carried out by these acquired genes (mostly related to energy metabolism and transport of metabolites across membranes), suggests that HGT has played an important role in the adaptation of these archaea to the cold and nutrient-depleted deep marine environment.
PMCID: PMC3146271  PMID: 21346789
Thaumarchaeota; marine Euryarchaeota; metagenomics; deep ocean; planktonic archaea; horizontal gene transfer
12.  The scale and evolutionary significance of horizontal gene transfer in the choanoflagellate Monosiga brevicollis 
BMC Genomics  2013;14(1):729.
It is generally agreed that horizontal gene transfer (HGT) is common in phagotrophic protists. However, the overall scale of HGT and the cumulative impact of acquired genes on the evolution of these organisms remain largely unknown.
Choanoflagellates are phagotrophs and the closest living relatives of animals. In this study, we performed phylogenomic analyses to investigate the scale of HGT and the evolutionary importance of horizontally acquired genes in the choanoflagellate Monosiga brevicollis. Our analyses identified 405 genes that are likely derived from algae and prokaryotes, accounting for approximately 4.4% of the Monosiga nuclear genome. Many of the horizontally acquired genes identified in Monosiga were probably acquired from food sources, rather than by endosymbiotic gene transfer (EGT) from obsolete endosymbionts or plastids. Of 193 genes identified in our analyses with functional information, 84 (43.5%) are involved in carbohydrate or amino acid metabolism, and 45 (23.3%) are transporters and/or involved in response to oxidative, osmotic, antibiotic, or heavy metal stresses. Some identified genes may also participate in biosynthesis of important metabolites such as vitamins C and K12, porphyrins and phospholipids.
Our results suggest that HGT is frequent in Monosiga brevicollis and might have contributed substantially to its adaptation and evolution. This finding also highlights the importance of HGT in the genome and organismal evolution of phagotrophic eukaryotes.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-14-729) contains supplementary material, which is available to authorized users.
PMCID: PMC4046809  PMID: 24156600
Genome evolution; Choanoflagellates; HGT frequency; Eukaryotic evolution; Adaptation
13.  PhaP phasins play a principal role in poly-β-hydroxybutyrate accumulation in free-living Bradyrhizobium japonicum 
BMC Microbiology  2013;13:290.
Bradyrhizobium japonicum USDA110, a soybean symbiont, is capable of accumulating a large amount of poly-β-hydroxybutyrate (PHB) as an intracellular carbon storage polymer during free-living growth. Within the genome of USDA110, there are a number of genes annotated as paralogs of proteins involved in PHB metabolism, including its biosynthesis, degradation, and stabilization of its granules. They include two phbA paralogs encoding 3-ketoacyl-CoA thiolase, two phbB paralogs encoding acetoacetylCoA reductase, five phbC paralogs encoding PHB synthase, two phaZ paralogs encoding PHB depolymerase, at least four phaP phasin paralogs for stabilization of PHB granules, and one phaR encoding a putative transcriptional repressor to control phaP expression.
Quantitative reverse-transcriptase PCR analyses of RNA samples prepared from cells grown using three different media revealed that PHB accumulation was related neither to redundancy nor expression levels of the phbA, phbB, phbC, and phaZ paralogs for PHB-synthesis and degradation. On the other hand, at least three of the phaP paralogs, involved in the growth and stabilization of PHB granules, were induced under PHB accumulating conditions. Moreover, the most prominently induced phasin exhibited the highest affinity to PHB in vitro; it was able to displace PhaR previously bound to PHB.
These results suggest that PHB accumulation in free-living B. japonicum USDA110 may not be achieved by controlling production and degradation of PHB. In contrast, it is achieved by stabilizing granules autonomously produced in an environment of excess carbon sources together with restricted nitrogen sources.
PMCID: PMC4029623  PMID: 24330393
Bradyrhizobium japonicum; Phasin; PHB
14.  Comparative genomics study of polyhydroxyalkanoates (PHA) and ectoine relevant genes from Halomonas sp. TD01 revealed extensive horizontal gene transfer events and co-evolutionary relationships 
Halophilic bacteria have shown their significance in industrial production of polyhydroxyalkanoates (PHA) and are gaining more attention for genetic engineering modification. Yet, little information on the genomics and PHA related genes from halophilic bacteria have been disclosed so far.
The draft genome of moderately halophilic bacterium, Halomonas sp. TD01, a strain of great potential for industrial production of short-chain-length polyhydroxyalkanoates (PHA), was analyzed through computational methods to reveal the osmoregulation mechanism and the evolutionary relationship of the enzymes relevant to PHA and ectoine syntheses. Genes involved in the metabolism of PHA and osmolytes were annotated and studied in silico. Although PHA synthase, depolymerase, regulator/repressor and phasin were all involved in PHA metabolic pathways, they demonstrated different horizontal gene transfer (HGT) events between the genomes of different strains. In contrast, co-occurrence of ectoine genes in the same genome was more frequently observed, and ectoine genes were more likely under coincidental horizontal gene transfer than PHA related genes. In addition, the adjacent organization of the homologues of PHA synthase phaC1 and PHA granule binding protein phaP was conserved in the strain TD01, which was also observed in some halophiles and non-halophiles exclusively from γ-proteobacteria. In contrast to haloarchaea, the proteome of Halomonas sp. TD01 did not show obvious inclination towards acidity relative to non-halophilic Escherichia coli MG1655, which signified that Halomonas sp. TD01 preferred the accumulation of organic osmolytes to ions in order to balance the intracellular osmotic pressure with the environment.
The accessibility of genome information would facilitate research on the genetic engineering of halophilic bacteria including Halomonas sp. TD01.
PMCID: PMC3227634  PMID: 22040376
Halomonas spp.; PHB; polyhydroxyalkanoates; osmolytes; genome; PhaC
15.  Implications of various phosphoenolpyruvate-carbohydrate phosphotransferase system mutations on glycerol utilization and poly(3-hydroxybutyrate) accumulation in Ralstonia eutropha H16 
AMB Express  2011;1:16.
The enhanced global biodiesel production is also yielding increased quantities of glycerol as main coproduct. An effective application of glycerol, for example, as low-cost substrate for microbial growth in industrial fermentation processes to specific products will reduce the production costs for biodiesel. Our study focuses on the utilization of glycerol as a cheap carbon source during cultivation of the thermoplastic producing bacterium Ralstonia eutropha H16, and on the investigation of carbohydrate transport proteins involved herein. Seven open reading frames were identified in the genome of strain H16 to encode for putative proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS). Although the core components of PEP-PTS, enzyme I (ptsI) and histidine phosphocarrier protein (ptsH), are available in strain H16, a complete PTS-mediated carbohydrate transport is lacking. Growth experiments employing several PEP-PTS mutants indicate that the putative ptsMHI operon, comprising ptsM (a fructose-specific EIIA component of PTS), ptsH, and ptsI, is responsible for limited cell growth and reduced PHB accumulation (53%, w/w, less PHB than the wild type) of this strain in media containing glycerol as a sole carbon source. Otherwise, the deletion of gene H16_A0384 (ptsN, nitrogen regulatory EIIA component of PTS) seemed to largely compensate the effect of the deleted ptsMHI operon (49%, w/w, PHB). The involvement of the PTS homologous proteins on the utilization of the non-PTS sugar alcohol glycerol and its effect on cell growth as well as PHB and carbon metabolism of R. eutropha will be discussed.
PMCID: PMC3222305  PMID: 21906371
Ralstonia eutropha; PHB; carbohydrate phosphotransferase system (PEP-PTS); ABC transporter; glycerol
16.  Pangenome Evidence for Extensive Interdomain Horizontal Transfer Affecting Lineage Core and Shell Genes in Uncultured Planktonic Thaumarchaeota and Euryarchaeota 
Genome Biology and Evolution  2014;6(7):1549-1563.
Horizontal gene transfer (HGT) is an important force in evolution, which may lead, among other things, to the adaptation to new environments by the import of new metabolic functions. Recent studies based on phylogenetic analyses of a few genome fragments containing archaeal 16S rRNA genes and fosmid-end sequences from deep-sea metagenomic libraries have suggested that marine planktonic archaea could be affected by high HGT frequency. Likewise, a composite genome of an uncultured marine euryarchaeote showed high levels of gene sequence similarity to bacterial genes. In this work, we ask whether HGT is frequent and widespread in genomes of these marine archaea, and whether HGT is an ancient and/or recurrent phenomenon. To answer these questions, we sequenced 997 fosmid archaeal clones from metagenomic libraries of deep-Mediterranean waters (1,000 and 3,000 m depth) and built comprehensive pangenomes for planktonic Thaumarchaeota (Group I archaea) and Euryarchaeota belonging to the uncultured Groups II and III Euryarchaeota (GII/III-Euryarchaeota). Comparison with available reference genomes of Thaumarchaeota and a composite marine surface euryarchaeote genome allowed us to define sets of core, lineage-specific core, and shell gene ortholog clusters for the two archaeal lineages. Molecular phylogenetic analyses of all gene clusters showed that 23.9% of marine Thaumarchaeota genes and 29.7% of GII/III-Euryarchaeota genes had been horizontally acquired from bacteria. HGT is not only extensive and directional but also ongoing, with high HGT levels in lineage-specific core (ancient transfers) and shell (recent transfers) genes. Many of the acquired genes are related to metabolism and membrane biogenesis, suggesting an adaptive value for life in cold, oligotrophic oceans. We hypothesize that the acquisition of an important amount of foreign genes by the ancestors of these archaeal groups significantly contributed to their divergence and ecological success.
PMCID: PMC4122925  PMID: 24923324
horizontal gene transfer; Thaumarchaeota; Euryarchaeota; ammonia-oxidizing archaea; uncultured archaea
17.  Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function 
BMC Bioinformatics  2010;11(Suppl 6):S22.
PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms.
The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function.
PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out to dissect the PHB gene function. The conserved gene evolution indicated that the study in the model species can be translated to human and mammalian studies.
PMCID: PMC3026370  PMID: 20946606
18.  A Closer Look on the Polyhydroxybutyrate- (PHB-) Negative Phenotype of Ralstonia eutropha PHB-4 
PLoS ONE  2014;9(5):e95907.
The undefined poly(3-hydroxybutyrate)- (PHB-) negative mutant R. eutropha PHB-4 was generated in 1970 by 1-nitroso-3-nitro-1-methylguanidine (NMG) treatment. Although being scientific relevant, its genotype remained unknown since its isolation except a recent first investigation. In this study, the mutation causing the PHA-negative phenotype of R. eutropha PHB-4 was confirmed independently: sequence analysis of the phaCAB operon identified a G320A mutation in phaC yielding a stop codon, leading to a massively truncated PhaC protein of 106 amino acids (AS) in R. eutropha PHB-4 instead of 589 AS in the wild type. No other mutations were observed within the phaCAB operon. As further mutations probably occurred in the genome of mutant PHB-4 potentially causing secondary effects on the cells' metabolism, the main focus of the study was to perform a 2D PAGE-based proteome analysis in order to identify differences in the proteomes of the wild type and mutant PHB-4. A total of 20 differentially expressed proteins were identified which provide valuable insights in the metabolomic changes of mutant PHB-4. Besides excretion of pyruvate, mutant PHB-4 encounters the accumulation of intermediates such as pyruvate and acetyl-CoA by enhanced expression of the observed protein species: (i) ThiJ supports biosynthesis of cofactor TPP and thereby reinforces the 2-oxoacid dehydrogenase complexes as PDHC, ADHC and OGDHC in order to convert pyruvate at a higher rate and the (ii) 3-isopropylmalate dehydrogenase LeuB3 apparently directs pyruvate to synthesis of several amino acids. Different (iii) acylCoA-transferases enable transfer reactions between organic acid intermediates, and (iv) citrate lyase CitE4 regenerates oxaloacetate from citrate for conversion with acetyl-CoA in the TCC in an anaplerotic reaction. Substantial amounts of reduction equivalents generated in the TCC are countered by (v) synthesis of more ubiquinones due to enhanced synthesis of MenG2 and MenG3, thereby improving the respiratory chain which accepts electrons from NADH and succinate.
PMCID: PMC4008487  PMID: 24787649
19.  Dissecting the mechanisms of squirrel monkey (Saimiri boliviensis) social learning 
PeerJ  2013;1:e13.
Although the social learning abilities of monkeys have been well documented, this research has only focused on a few species. Furthermore, of those that also incorporated dissections of social learning mechanisms, the majority studied either capuchins (Cebus apella) or marmosets (Callithrix jacchus). To gain a broader understanding of how monkeys gain new skills, we tested squirrel monkeys (Saimiri boliviensis) which have never been studied in tests of social learning mechanisms. To determine whether S. boliviensis can socially learn, we ran “open diffusion” tests with monkeys housed in two social groups (N = 23). Over the course of 10 20-min sessions, the monkeys in each group observed a trained group member retrieving a mealworm from a bidirectional task (the “Slide-box”). Two thirds (67%) of these monkeys both learned how to operate the Slide-box and they also moved the door significantly more times in the direction modeled by the trained demonstrator than the alternative direction. To tease apart the underlying social learning mechanisms we ran a series of three control conditions with 35 squirrel monkeys that had no previous experience with the Slide-box. The first replicated the experimental open diffusion sessions but without the inclusion of a trained model, the second was a no-information control with dyads of monkeys, and the third was a ‘ghost’ display shown to individual monkeys. The first two controls tested for the importance of social support (mere presence effect) and the ghost display showed the affordances of the task to the monkeys. The monkeys showed a certain level of success in the group control (54% of subjects solved the task on one or more occasions) and paired controls (28% were successful) but none were successful in the ghost control. We propose that the squirrel monkeys’ learning, observed in the experimental open diffusion tests, can be best described by a combination of social learning mechanisms in concert; in this case, those mechanisms are most likely object movement reenactment and social facilitation. We discuss the interplay of these mechanisms and how they related to learning shown by other primate species.
PMCID: PMC3628937  PMID: 23638347
Squirrel monkey; Saimiri; Emulation; Social facilitation; Social learning; Ghost display
20.  Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment 
BMC Genomics  2006;7:22.
The horizontal transfer of expressed genes from Bacteria into Ciliates which live in close contact with each other in the rumen (the foregut of ruminants) was studied using ciliate Expressed Sequence Tags (ESTs). More than 4000 ESTs were sequenced from representatives of the two major groups of rumen Cilates: the order Entodiniomorphida (Entodinium simplex, Entodinium caudatum, Eudiplodinium maggii, Metadinium medium, Diploplastron affine, Polyplastron multivesiculatum and Epidinium ecaudatum) and the order Vestibuliferida, previously called Holotricha (Isotricha prostoma, Isotricha intestinalis and Dasytricha ruminantium).
A comparison of the sequences with the completely sequenced genomes of Eukaryotes and Prokaryotes, followed by large-scale construction and analysis of phylogenies, identified 148 ciliate genes that specifically cluster with genes from the Bacteria and Archaea. The phylogenetic clustering with bacterial genes, coupled with the absence of close relatives of these genes in the Ciliate Tetrahymena thermophila, indicates that they have been acquired via Horizontal Gene Transfer (HGT) after the colonization of the gut by the rumen Ciliates.
Among the HGT candidates, we found an over-representation (>75%) of genes involved in metabolism, specifically in the catabolism of complex carbohydrates, a rich food source in the rumen. We propose that the acquisition of these genes has greatly facilitated the Ciliates' colonization of the rumen providing evidence for the role of HGT in the adaptation to new niches.
PMCID: PMC1413528  PMID: 16472398
21.  Positive Reinforcement Training in Squirrel Monkeys Using Clicker Training 
American journal of primatology  2012;74(8):712-720.
Nonhuman primates in research environments experience regular stressors that have the potential to alter physiology and brain function, which in turn can confound some types of research studies. Operant conditioning techniques such as positive reinforcement training (PRT), which teaches animals to voluntarily perform desired behaviors, can be applied to improve behavior and reactivity. PRT has been used to train rhesus macaques, marmosets, and several other nonhuman primate species. To our knowledge, the method has yet to be used to train squirrel monkeys to perform complex tasks. Accordingly, we sought to establish whether PRT, utilizing a hand-box clicker (which emits a click sound that acts as the conditioned reinforcer), could be used to train adult male squirrel monkeys (Saimiri boliviensis, N=14). We developed and implemented a training regimen to elicit voluntary participation in routine husbandry, animal transport, and injection procedures. Our secondary goal was to quantify the training time needed to achieve positive results. Squirrel monkeys readily learned the connection between the conditioned reinforcer (the clicker) and the positive reinforcer (food). They rapidly developed proficiency on 4 tasks of increasing difficulty: target touching, hand sitting, restraint training, and injection training. All subjects mastered target touching behavior within 2 weeks. Ten of 14 subjects (71%) mastered all tasks in 59.2±2.6 days (range: 50–70 days). In trained subjects, it now takes about 1.25 minutes per monkey to weigh and administer an intramuscular injection, one-third of the time it took before training. From these data, we conclude that clicker box PRT can be successfully learned by a majority of squirrel monkeys within two months and that trained subjects can be managed more efficiently. These findings warrant future studies to determine whether PRT may be useful for reducing stress-induced experimental confounds in studies involving squirrel monkeys.
PMCID: PMC3412074  PMID: 22553135
Positive Reinforcement Training; Clicker Training; Operant Conditioning; Conditioned Reinforcer; Squirrel Monkey; Saimiri
22.  A new species of Gymnoascus with verruculose ascospores 
IMA Fungus  2013;4(2):177-186.
A new species, Gymnoascus verrucosus sp. nov., isolated from soil from Kalyan railway station, Maharashtra, India, is described and illustrated. The distinctive morphological features of this taxon are its verruculose ascospores (ornamentation visible only under SEM) and its deer antler-shaped short peridial appendages. The small peridial appendages originate from open mesh-like gymnothecial ascomata made up of thick-walled, smooth peridial hyphae. The characteristic morphology of the fungus is not formed in culture where it has very restricted growth and forms arthroconidia. Phylogenetic analysis of different rDNA gene sequences (ITS, LSU, and SSU) demonstrates its placement in Gymnoascaceae and reveal its phylogenetic relatedness to other species of Gymnoascus, especially G. petalosporus and G. boliviensis. The generic concept of Gymnoascus is consequently now broadened to include species with verruculose ascospores. A key to the accepted 19 species is also provided.
PMCID: PMC3905936  PMID: 24563830
28S; 18S; echinulate ascospores; Gymnoascaceae; ITS; Onygenales; phylogeny
23.  Localization of Poly(3-Hydroxybutyrate) (PHB) Granule-Associated Proteins during PHB Granule Formation and Identification of Two New Phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16 
Journal of Bacteriology  2012;194(21):5909-5921.
Poly(3-hydroxybutyrate) (PHB) granules are covered by a surface layer consisting of mainly phasins and other PHB granule-associated proteins (PGAPs). Phasins are small amphiphilic proteins that determine the number and size of accumulated PHB granules. Five phasin proteins (PhaP1 to PhaP5) are known for Ralstonia eutropha. In this study, we identified three additional potential phasin genes (H16_B1988, H16_B2296, and H16_B2326) by inspection of the R. eutropha genome for sequences with “phasin 2 motifs.” To determine whether the corresponding proteins represent true PGAPs, fusions with eYFP (enhanced yellow fluorescent protein) were constructed. Similar fusions of eYFP with PhaP1 to PhaP5 as well as fusions with PHB synthase (PhaC1), an inactive PhaC1 variant (PhaC1-C319A), and PhaC2 were also made. All fusions were investigated in wild-type and PHB-negative backgrounds. Colocalization with PHB granules was found for all PhaC variants and for PhaP1 to PhaP5. Additionally, eYFP fusions with H16_B1988 and H16_B2326 colocalized with PHB. Fusions of H16_B2296 with eYFP, however, did not colocalize with PHB granules but did colocalize with the nucleoid region. Notably, all fusions (except H16_B2296) were soluble in a ΔphaC1 strain. These data confirm that H16_B1988 and H16_B2326 but not H16_B2296 encode true PGAPs, for which we propose the designation PhaP6 (H16_B1988) and PhaP7 (H16_B2326). When localization of phasins was investigated at different stages of PHB accumulation, fusions of PhaP6 and PhaP7 were soluble in the first 3 h under PHB-permissive conditions, although PHB granules appeared after 10 min. At later time points, the fusions colocalized with PHB. Remarkably, PHB granules of strains expressing eYFP fusions with PhaP5, PhaP6, or PhaP7 localized predominantly near the cell poles or in the area of future septum formation. This phenomenon was not observed for the other PGAPs (PhaP1 to PhaP4, PhaC1, PhaC1-C319A, and PhaC2) and indicated that some phasins can have additional functions. A chromosomal deletion of phaP6 or phaP7 had no visible effect on formation of PHB granules.
PMCID: PMC3486113  PMID: 22923598
24.  Being Pathogenic, Plastic, and Sexual while Living with a Nearly Minimal Bacterial Genome 
PLoS Genetics  2007;3(5):e75.
Mycoplasmas are commonly described as the simplest self-replicating organisms, whose evolution was mainly characterized by genome downsizing with a proposed evolutionary scenario similar to that of obligate intracellular bacteria such as insect endosymbionts. Thus far, analysis of mycoplasma genomes indicates a low level of horizontal gene transfer (HGT) implying that DNA acquisition is strongly limited in these minimal bacteria. In this study, the genome of the ruminant pathogen Mycoplasma agalactiae was sequenced. Comparative genomic data and phylogenetic tree reconstruction revealed that ∼18% of its small genome (877,438 bp) has undergone HGT with the phylogenetically distinct mycoides cluster, which is composed of significant ruminant pathogens. HGT involves genes often found as clusters, several of which encode lipoproteins that usually play an important role in mycoplasma–host interaction. A decayed form of a conjugative element also described in a member of the mycoides cluster was found in the M. agalactiae genome, suggesting that HGT may have occurred by mobilizing a related genetic element. The possibility of HGT events among other mycoplasmas was evaluated with the available sequenced genomes. Our data indicate marginal levels of HGT among Mycoplasma species except for those described above and, to a lesser extent, for those observed in between the two bird pathogens, M. gallisepticum and M. synoviae. This first description of large-scale HGT among mycoplasmas sharing the same ecological niche challenges the generally accepted evolutionary scenario in which gene loss is the main driving force of mycoplasma evolution. The latter clearly differs from that of other bacteria with small genomes, particularly obligate intracellular bacteria that are isolated within host cells. Consequently, mycoplasmas are not only able to subvert complex hosts but presumably have retained sexual competence, a trait that may prevent them from genome stasis and contribute to adaptation to new hosts.
Author Summary
Mycoplasmas are cell wall–lacking prokaryotes that evolved from ancestors common to Gram-positive bacteria by way of massive losses of genetic material. With their minimal genome, mycoplasmas are considered to be the simplest free-living organisms, yet several species are successful pathogens of man and animal. In this study, we challenged the commonly accepted view in which mycoplasma evolution is driven only by genome down-sizing. Indeed, we showed that a significant amount of genes underwent horizontal transfer among different mycoplasma species that share the same ruminant hosts. In these species, the occurrence of a genetic element that can promote DNA transfer via cell-to-cell contact suggests that some mycoplasmas may have retained or acquired sexual competence. Transferred genes were found to encode proteins that are likely to be associated with mycoplasma–host interactions. Sharing genetic resources via horizontal gene transfer may provide mycoplasmas with a means for adapting to new niches or to new hosts and for avoiding irreversible genome erosion.
PMCID: PMC1868952  PMID: 17511520
25.  Investigation of tick-borne bacteria (Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Borrelia spp.) in ticks collected from Andean tapirs, cattle and vegetation from a protected area in Ecuador 
Parasites & Vectors  2015;8:46.
Ixodid ticks play an important role in the transmission and ecology of infectious diseases. Information about the circulation of tick-borne bacteria in ticks is lacking in Ecuador. Our aims were to investigate the tick species that parasitize Andean tapirs and cattle, and those present in the vegetation from the buffer zone of the Antisana Ecological Reserve and Cayambe-Coca National Park (Ecuador), and to investigate the presence of tick-borne bacteria.
Tick species were identified based on morphologic and genetic criteria. Detection of tick-borne bacteria belonging to Rickettsia, Anaplasma, Ehrlichia and Borrelia genera was performed by PCRs.
Our ticks included 91 Amblyomma multipunctum, 4 Amblyomma spp., 60 Rhipicephalus microplus, 5 Ixodes spp. and 1 Ixodes boliviensis. A potential Candidatus Rickettsia species closest to Rickettsia monacensis and Rickettsia tamurae (designated Rickettsia sp. 12G1) was detected in 3 R. microplus (3/57, 5.3%). In addition, Anaplasma spp., assigned at least to Anaplasma phagocytophilum (or closely related genotypes) and Anaplasma marginale, were found in 2 A. multipunctum (2/87, 2.3%) and 13 R. microplus (13/57, 22.8%).
This is the first description of Rickettsia sp. in ticks from Ecuador, and the analyses of sequences suggest the presence of a potential novel Rickettsia species. Ecuadorian ticks from Andear tapirs, cattle and vegetation belonging to Amblyomma and Rhipicephalus genera were infected with Anaplasmataceae. Ehrlichia spp. and Borrelia burgdorferi sensu lato were not found in any ticks.
PMCID: PMC4307133  PMID: 25616567
Ticks; Amblyomma multipunctum; Amblyomma scalpturatum; Amblyomma sp.; Rhipicephalus microplus; Ixodes lasallei; Ixodes boliviensis; Ixodes sp.; Rickettsia; Anaplasma; Ehrlichia; Borrelia; Ecuador

Results 1-25 (1606960)