PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1026277)

Clipboard (0)
None

Related Articles

1.  Ranibizumab efficiently blocks migration but not proliferation induced by growth factor combinations including VEGF in retinal endothelial cells 
Background
Proliferation and migration of retinal endothelial cells (REC) are associated with the development of proliferative diabetic retinopathy. REC proliferation is stimulated by isoforms of vascular endothelial growth factor-A (i.e., VEGF121 and VEGF165), basic fibroblast growth factor (bFGF), and insulin-like growth factor (IGF-1) of which VEGF165 also enhances migration of REC. Effects induced by VEGF-A can be blocked with ranibizumab, a VEGF-binding Fab fragment used in therapy of diabetic macular edema. In this study, we investigated potential angiogenic effects of placental growth factors (PlGF-1, PlGF-2) as other members of the VEGF family and whether the primary action of VEGF165 is modulated in the presence of bFGF, IGF-1 and PlGF-1/-2. We also studied how effects of growth factor combinations can be attenuated with ranibizumab.
Methods
Effects of single growth factors or their combinations on proliferation and migration of immortalized bovine retinal endothelial cells (iBREC) were studied with or without ranibizumab or the inhibitor of VEGF receptors KRN951.
Results
Proliferation of iBREC was significantly stimulated by 1–100 ng/ml PlGF-1 or PlGF-2, but additive effects were not observed with various combinations of the tested growth factors. Ranibizumab neutralized VEGF’s effect on proliferation but was not effective when the other growth factors were used in combination with VEGF. bFGF and IGF-1 but not PlGF-1 or PlGF-2 stimulated iBREC migration as single agents, and they further enhanced VEGF-induced migration. The effects of such growth factor combinations including VEGF on migration were efficiently blocked by targeting only VEGF with ranibizumab. Migration induced by VEGF plus bFGF and IGF-1 was also almost completely inhibited by KRN951 interfering with VEGF receptor signalling.
Conclusions
Migration but not proliferation of iBREC induced by combinations of bFGF, IGF-1, PlGF-1 or PlGF-2 together with VEGF is efficiently suppressed by ranibizumab. VEGF-mediated signalling through VEGFR2 seems to control REC migration dominantly in the presence of other growth factors.
doi:10.1007/s00417-013-2393-5
PMCID: PMC3777160  PMID: 23760670
Retinal endothelial cells; Growth factors; Ranibizumab; Migration; Proliferation; Proliferative diabetic retinopathy
2.  Protective Effect of Perindopril on Diabetic Retinopathy Is Associated With Decreased Vascular Endothelial Growth Factor–to–Pigment Epithelium–Derived Factor Ratio 
Diabetes  2009;58(4):954-964.
OBJECTIVE
This study aimed to verify whether the decreased vascular endothelial growth factor (VEGF)–to–pigment epithelium–derived factor (PEDF) ratio can serve as an indicator for the protective effect of angiotensin-converting enzyme inhibitors (ACEIs) on diabetic retinopathy (DR) and to investigate the role of mitochondrial reactive oxygen species (ROS) in the downregulated VEGF-to-PEDF ratio.
RESEARCH DESIGN AND METHODS
Diabetic rats and control animals were randomly assigned to receive perindopril or vehicle for 24 weeks, and bovine retinal capillary endothelial cells (BRECs) were incubated with normal or high glucose with or without perindopril. VEGF, PEDF, PPARγ, and uncoupling protein-2 (UCP-2) in the rat retinas or BREC extracts were examined by Western blotting and real-time RT-PCR. The levels of VEGF and PEDF in cell culture media were examined by ELISA. Mitochondrial membrane potential (Δψm) and ROS production were assayed using JC-1 or CM-H2DCFDA.
RESULTS
The VEGF-to-PEDF ratio was increased in the retina of diabetic rats; perindopril lowered the increased VEGF-to-PEDF ratio in diabetic rats and ameliorated the retinal damage. In BRECs, perindopril lowered the hyperglycemia-induced elevation of VEGF-to-PEDF ratio by reducing mitochondrial ROS. We found the decreased ROS production was a result of perindopril-induced upregulation of PPARγ and UCP-2 expression and the subsequent decrease of Δψm.
CONCLUSIONS
It is concluded that the protective effect of ACEI on DR is associated with a decreased VEGF-to-PEDF ratio, which involves the mitochondria-ROS pathway through PPARγ-mediated changes of UCP-2. This study paves a way for future application of ACEI in treatment of DR.
doi:10.2337/db07-1524
PMCID: PMC2661575  PMID: 19188429
3.  Gene profiling of human VEGF signaling pathways in human endothelial and retinal pigment epithelial cells after anti VEGF treatment 
BMC Research Notes  2014;7(1):617.
Background
Ranibizumab (Lucentis®) is a Fab-antibody fragment developed from Bevacizumab, a full-length anti-VEGF antibody. Both compounds are used for treating age-related macular degeneration (AMD). The influence of bevacizumab and ranibizumab on genes involved in signal transduction and cell signaling downstream of VEGF were compared in order to detect possible differences in their mode of action, which are not related to their Fab-antibody fragments.
Methods
Human umbilical vein cell lines (EA.hy926) and retinal pigment epithelial cells (ARP-19) were exposed to oxidative stress. The cells were treated with therapeutic concentrations of bevacizumab (0.25 mg/mL) and ranibizumab (125 mg/mL) for 24 hours prior to all experiments, and their effects on gene expressions were determined by RT- PCR.
Results
After exposure to bevacizumab, more genes in the endothelial cells were up-regulated (KDR, NFATc2) and down-regulated (Pla2g12a, Rac2, HgdC, PRKCG) compared to non-treated controls. After exposure to ranibizumab, fewer genes were up-regulated (PTGS2) and down-regulated (NOS3) compared to controls. In comparison between drugs, more genes were up-regulated (NFATc2 and KDR) and more were down-regulated (Pla2g12a, Pla2g1b, Ppp3r2, Rac2) by bevacizumab than by ranibizumab. In RPE cells, NOS3 and PGF were up-regulated and Pla2g12b was down-regulated after exposure to ranibizumab, while PIK3CG was up-regulated and FIGF was down-regulated after exposure to bevacizumab, but the differences in gene expression were minor between drugs (PIK3CGand PGF were down-regulated more by ranibizumab than by bevacizumab).
Conclusions
The different gene expressions after exposure to ranibizumab and bevacizumab in endothelial and RPE cells may indicate a somewhat different biological activity of the two compounds.
doi:10.1186/1756-0500-7-617
PMCID: PMC4167513  PMID: 25201034
Bevacizumab; Ranibizumab; Gene expressions; VEGF; PCR
4.  Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab 
Angiogenesis  2012;15(2):171-185.
Pharmacological inhibition of VEGF-A has proven to be effective in inhibiting angiogenesis and vascular leak associated with cancers and various eye diseases. However, little information is currently available on the binding kinetics and relative biological activity of various VEGF inhibitors. Therefore, we have evaluated the binding kinetics of two anti-VEGF antibodies, ranibizumab and bevacizumab, and VEGF Trap (also known as aflibercept), a novel type of soluble decoy receptor, with substantially higher affinity than conventional soluble VEGF receptors. VEGF Trap bound to all isoforms of human VEGF-A tested with subpicomolar affinity. Ranibizumab and bevacizumab also bound human VEGF-A, but with markedly lower affinity. The association rate for VEGF Trap binding to VEGF-A was orders of magnitude faster than that measured for bevacizumab and ranibizumab. Similarly, in cell-based bioassays, VEGF Trap inhibited the activation of VEGFR1 and VEGFR2, as well as VEGF-A induced calcium mobilization and migration in human endothelial cells more potently than ranibizumab or bevacizumab. Only VEGF Trap bound human PlGF and VEGF-B, and inhibited VEGFR1 activation and HUVEC migration induced by PlGF. These data differentiate VEGF Trap from ranibizumab and bevacizumab in terms of its markedly higher affinity for VEGF-A, as well as its ability to bind VEGF-B and PlGF.
Electronic supplementary material
The online version of this article (doi:10.1007/s10456-011-9249-6) contains supplementary material, which is available to authorized users.
doi:10.1007/s10456-011-9249-6
PMCID: PMC3338918  PMID: 22302382
VEGF receptor; Aflibercept; Affinity; Age-related macular degeneration; Placental growth factor; Biomedicine; Cardiology; Biomedicine general; Ophthalmology; Cancer Research; Cell Biology; Oncology
5.  VEGF-A165b Is Cytoprotective and Antiangiogenic in the Retina 
The alternative splice variant of VEGF, VEGF165b, is cytoprotective for endothelial and epithelial cells and is antiangiogenic, making it a new candidate for the treatment of ischemic retinopathies.
Purpose.
A number of key ocular diseases, including diabetic retinopathy and age-related macular degeneration, are characterized by localized areas of epithelial or endothelial damage, which can ultimately result in the growth of fragile new blood vessels, vitreous hemorrhage, and retinal detachment. VEGF-A165, the principal neovascular agent in ocular angiogenic conditions, is formed by proximal splice site selection in its terminal exon 8. Alternative splicing of this exon results in an antiangiogenic isoform, VEGF-A165b, which is downregulated in diabetic retinopathy. Here the authors investigate the antiangiogenic activity of VEGF165b and its effect on retinal epithelial and endothelial cell survival.
Methods.
VEGF-A165b was injected intraocularly in a mouse model of retinal neovascularization (oxygen-induced retinopathy [OIR]). Cytotoxicity and cell migration assays were used to determine the effect of VEGF-A165b.
Results.
VEGF-A165b dose dependently inhibited angiogenesis (IC50, 12.6 pg/eye) and retinal endothelial migration induced by 1 nM VEGF-A165 across monolayers in culture (IC50, 1 nM). However, it also acts as a survival factor for endothelial cells and retinal epithelial cells through VEGFR2 and can stimulate downstream signaling. Furthermore, VEGF-A165b injection, while inhibiting neovascular proliferation in the eye, reduced the ischemic insult in OIR (IC50, 2.6 pg/eye). Unlike bevacizumab, pegaptanib did not interact directly with VEGF-A165b.
Conclusions.
The survival effects of VEGF-A165b signaling can protect the retina from ischemic damage. These results suggest that VEGF-A165b may be a useful therapeutic agent in ischemia-induced angiogenesis and a cytoprotective agent for retinal pigment epithelial cells.
doi:10.1167/iovs.09-4296
PMCID: PMC2910648  PMID: 20237249
6.  Minimal Effects of VEGF and Anti-VEGF Drugs on the Permeability or Selectivity of RPE Tight Junctions 
To date, this study is the most complete characterization of the composition, selectivity, and permeability of human RPE tight junctions and how they may be affected by VEGF and drugs commonly used to treat age-related macular degeneration.
Purpose.
Bevacizumab and ranibizumab are currently used to treat age-related macular degeneration by neutralizing vascular endothelial growth factor (VEGF). In this study, the potential side effects on the outer blood–retinal barrier were examined.
Methods.
Human fetal RPE (hfRPE) cells were used because they are highly differentiated in culture. The claudin composition of RPE tight junctions was determined by RT-PCR, immunoblot analysis, and immunofluorescence. ELISA assays monitored the secretion and trafficking of VEGF and a fluid-phase marker, methylpolyethylene glycol (mPEG). Tight junction functions were assessed by the conductance of K+ and Na+ (derived from the transepithelial electrical resistance, TER) and the flux of NaCl and mPEG.
Results.
Claudin-3, claudin-10, and claudin-19 were detected in RPE tight junctions. VEGF was secreted in equal amounts across the apical and basolateral membranes, but the apical membrane was more active in endocytosing and degrading VEGF. Exogenous VEGF and mPEG crossed the RPE monolayer by transcytosis, predominantly in the apical-to-basal direction. RPE tight junctions were selective for K+, but did not discriminate between Na+ and Cl−. VEGF, bevacizumab, and ranibizumab had minimal effects on TER, permeation of mPEG, and selectivity for K+, Na+, and Cl−. They had minimal effects on the expression and distribution of the claudins.
Conclusions.
RPE has mechanisms for maintaining low concentrations of VEGF in the subretinal space that include endocytosis and degradation and fluid-phase transcytosis in the apical-to-basal direction. RPE tight junctions are selective for K+ over Na+ and Cl−. Permeability and selectivity of the junctions are not affected by VEGF, bevacizumab, or ranibizumab.
doi:10.1167/iovs.09-4162
PMCID: PMC2891474  PMID: 20042644
7.  Anti-vascular endothelial growth factor for neovascular age-related macular degeneration 
Background
Age-related macular degeneration (AMD) is the most common cause of uncorrectable severe vision loss in people aged 55 years and older in the developed world. Choroidal neovascularization (CNV) secondary to neovascular AMD accounts for most AMD-related severe vision loss. Anti-vascular endothelial growth factor (anti-VEGF) agents, injected intravitreally, aim to block the growth of abnormal blood vessels in the eye to prevent vision loss and, in some instances, improve vision.
Objectives
To investigate: (1) the ocular and systemic effects of, and quality of life associated with, intravitreally injected anti-VEGF agents (pegaptanib, ranibizumab, and bevacizumab) for the treatment of neovascular AMD compared with no anti-VEGF treatment; and (2) the relative effects of one anti-VEGF agent compared with another when administered in comparable dosages and regimens.
Search methods
We searched Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 3), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to March 2014), EMBASE (January 1980 to March 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to March 2014), the metaRegister of Controlled Trials (mRCT) (www.controlledtrials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We used no date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 27 March 2014.
Selection criteria
We included randomized controlled trials (RCTs) that evaluated pegaptanib, ranibizumab, or bevacizumab versus each other or a control treatment (e.g., sham treatment or photodynamic therapy). All trials followed participants for at least one year.
Data collection and analysis
Two review authors independently screened records, extracted data, and assessed risks of bias. We contacted trial authors for additional data. We analyzed outcomes as risk ratios (RRs) or mean differences (MDs). We used the standard methodological procedures expected by The Cochrane Collaboration.
Main results
We included 12 RCTs including a total of 5496 participants with neovascular AMD (the number of participants per trial ranged from 28 to 1208). One trial compared pegaptanib, three trials ranibizumab, and two trials bevacizumab versus controls; six trials compared bevacizumab with ranibizumab. Four trials were conducted by pharmaceutical companies; none of the eight studies which evaluated bevacizumab were funded by pharmaceutical companies. The trials were conducted at various centers across five continents (North and South America, Europe, Asia and Australia). The overall quality of the evidence was very good, with most trials having an overall low risk of bias.
When compared with control treatments, participants who received any of the three anti-VEGF agents were more likely to have gained 15 letters or more of visual acuity, lost fewer than 15 letters of visual acuity, and had vision 20/200 or better after one year of follow up. Visual acuity outcomes after bevacizumab and ranibizumab were similar when the same regimens were compared in the same RCTs, despite the substantially lower cost for bevacizumab compared with ranibizumab. No trial directly compared pegaptanib with other anti-VEGF agents; however, when compared with controls, ranibizumab or bevacizumab yielded larger improvements in visual acuity outcomes than pegaptanib.
Participants treated with anti-VEGFs showed improvements in morphologic outcomes (e.g., size of CNV or central retinal thickness) compared with participants not treated with anti-VEGF agents. There was less reduction in central retinal thickness among bevacizumab-treated participants than among ranibizumab-treated participants after one year (MD −13.97 μm; 95% confidence interval (CI) −26.52 to −1.41); however, this difference is within the range of measurement error and we did not interpret it as being clinically meaningful.
Ocular inflammation and increased intraocular pressure after intravitreal injection were the most frequently reported serious ocular adverse events. Endophthalmitis was reported in fewer than 1% of anti-VEGF treated participants; no cases were reported in control groups. The occurrence of serious systemic adverse events was comparable across anti-VEGF-treated groups and control groups; however, the numbers of events and trial participants may have been insufficient to detect a meaningful difference between groups. Data for visual function, quality of life, and economic outcomes were sparsely measured and reported.
Authors’ conclusions
The results of this review indicate the effectiveness of anti-VEGF agents (pegaptanib, ranibizumab, and bevacizumab) in terms of maintaining visual acuity; ranibizumab and bevacizumab were also shown to improve visual acuity. The information available on the adverse effects of each medication do not suggest a higher incidence of potentially vision-threatening complications with intravitreal injection compared with control interventions; however, clinical trial sample sizes may not have been sufficient to detect rare safety outcomes. Research evaluating variable dosing regimens with anti-VEGF agents, effects of long-term use, combination therapies (e.g., anti-VEGF treatment plus photodynamic therapy), and other methods of delivering the agents should be incorporated into future Cochrane reviews.
doi:10.1002/14651858.CD005139.pub3
PMCID: PMC4270425  PMID: 25170575
Angiogenesis Inhibitors [*therapeutic use]; Antibodies, Monoclonal [therapeutic use]; Antibodies, Monoclonal, Humanized, Aptamers, Nucleotide [therapeutic use]; Choroidal Neovascularization; Macular Degeneration [*drug therapy]; Porphyrins [therapeutic use]; Randomized Controlled Trials as Topic; Vascular Endothelial Growth Factor A [*antagonists & inhibitors]; Aged; Humans; Middle Aged
8.  Recombinant Human VEGF165b Inhibits Experimental Choroidal Neovascularization 
The alternative splice form of VEGF, VEGF-A165b, inhibits choroidal neovascularization at very low doses in mice, indicating that it may be an effective therapy for age-related macular degeneration, comparable with or better than existing anti-VEGF therapy.
Purpose.
Vascular endothelial growth factor (VEGF-A) is the principal stimulator of angiogenesis in wet age-related macular degeneration (AMD). However, VEGF-A is generated by alternate splicing into two families, the proangiogenic VEGF-Axxx family and the antiangiogenic VEGF-Axxxb family. It is the proangiogenic family that is responsible for the blood vessel growth seen in AMD.
Methods.
To determine the role of antiangiogenic isoforms of VEGF-A as inhibitors of choroidal neovascularization, the authors used a model of laser-induced choroidal neovascularization in the mouse eye and investigated VEGF-A165b effects on endothelial cells and VEGFRs in vitro.
Results.
VEGF-A165b inhibited VEGF-A165–mediated endothelial cell migration with a dose effect similar to that of ranibizumab and bevacizumab and 200-fold more potent than that of pegaptanib. VEGF-A165b bound both VEGFR1 and VEGFR2 with affinity similar to that of VEGF-A165. After laser injury, mice were injected either intraocularly or subcutaneously with recombinant human VEGF-A165b. Intraocular injection of rhVEGF-A165b gave a pronounced dose-dependent inhibition of fluorescein leakage, with an IC50 of 16 pg/eye, neovascularization (IC50, 0.8 pg/eye), and lesion as assessed by histologic staining (IC50, 8 pg/eye). Subcutaneous administration of 100 μg twice a week also inhibited fluorescein leakage and neovascularization and reduced lesion size.
Conclusions.
These results show that VEGF-A165b is a potent antiangiogenic agent in a mouse model of age-related macular degeneration and suggest that increasing the ratio of antiangiogenic-to-proangiogenic isoforms may be therapeutically effective in this condition.
doi:10.1167/iovs.09-4360
PMCID: PMC2910649  PMID: 20237252
9.  Preclinical aspects of anti-VEGF agents for the treatment of wet AMD: ranibizumab and bevacizumab 
Eye  2011;25(6):661-672.
Three anti-vascular endothelial growth factor (VEGF) therapies are currently used for the treatment of patients with wet age-related macular degeneration (AMD): pegaptanib, ranibizumab, and bevacizumab. Ranibizumab is an antibody fragment approved for the treatment of wet AMD. Bevacizumab is a full-length antibody registered for use in oncology but unlicensed for wet AMD. However, it is used off-label worldwide not only for wet AMD but also for various other ocular diseases associated with macular edema and abnormal vessel growth. We consider aspects of ranibizumab and bevacizumab in relation to their molecular characteristics, in vitro and in vivo properties, and preclinical safety data. Before 2009, most studies described the short-term toxicity of bevacizumab in multiple cell types of the eye. Since 2009, an increasing number of studies have compared the properties of ranibizumab and bevacizumab and investigated their impact on retinal cell functioning. Compared with bevacizumab, ranibizumab neutralizes VEGF better at low concentrations, maintains efficacy for longer, and has a higher retinal penetration and potency. Studies in animals demonstrate ranibizumab to be better localized to the injected eye, whereas bevacizumab appears to have a greater effect in the fellow eye. In humans, a localized and systemic effect has been reported for both molecules. In conclusion, overlapping yet distinct pharmacological properties of ranibizumab and bevacizumab indicate that safety or efficacy data from one cannot be extrapolated to the other.
doi:10.1038/eye.2011.66
PMCID: PMC3178135  PMID: 21455242
age-related macular degeneration; ranibizumab; bevacizumab; Lucentis; Avastin; VEGF
10.  VEGF165b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy 
British Journal of Cancer  2008;98(8):1366-1379.
Bevacizumab, an anti-vascular endothelial growth factor (VEGF-A) antibody, is used in metastatic colorectal carcinoma (CRC) treatment, but responses are unpredictable. Vascular endothelial growth factor is alternatively spliced to form proangiogenic VEGF165 and antiangiogenic VEGF165b. Using isoform-specific enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, we found that over 90% of the VEGF in normal colonic tissue was VEGFxxxb, but there was a variable upregulation of VEGFxxx and downregulation of VEGFxxxb in paired human CRC samples. Furthermore, cultured colonic adenoma cells expressed predominantly VEGFxxxb, whereas colonic carcinoma cells expressed predominantly VEGFxxx. However, adenoma cells exposed to hypoxia switched their expression from predominantly VEGFxxxb to predominantly VEGFxxx. VEGF165b overexpression in LS174t colon cancer cells inhibited colon carcinoma growth in mouse xenograft models. Western blotting and surface plasmon resonance showed that VEGF165b bound to bevacizumab with similar affinity as VEGF165. However, although bevacizumab effectively inhibited the rapid growth of colon carcinomas expressing VEGF165, it did not affect the slower growth of tumours from colonic carcinoma cells expressing VEGF165b. Both bevacizumab and anti-VEGF165b-specific antibodies were cytotoxic to colonic epithelial cells, but less so to colonic carcinoma cells. These results show that the balance of antiangiogenic to proangiogenic isoforms switches to a variable extent in CRC, regulates tumour growth rates and affects the sensitivity of tumours to bevacizumab by competitive binding. Together with the identification of an autocrine cytoprotective role for VEGF165b in colonic epithelial cells, these results indicate that bevacizumab treatment of human CRC may depend upon this balance of VEGF isoforms.
doi:10.1038/sj.bjc.6604308
PMCID: PMC2361696  PMID: 18349829
bevacizumab; VEGF; VEGF165b; biomarker; angiogenesis; colon carcinoma
11.  VEGF165b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma 
British journal of cancer  2008;98(8):1366-1379.
Bevacizumab, an anti-vascular endothelial growth factor (VEGF-A) antibody, is used in metastatic colorectal carcinoma (CRC) treatment, but responses are unpredictable. Vascular endothelial growth factor is alternatively spliced to form proangiogenic VEGF165 and antiangiogenic VEGF165b. Using isoform-specific enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, we found that over 90% of the VEGF in normal colonic tissue was VEGFxxxb, but there was a variable upregulation of VEGFxxx and downregulation of VEGFxxxb in paired human CRC samples. Furthermore, cultured colonic adenoma cells expressed predominantly VEGFxxxb, whereas colonic carcinoma cells expressed predominantly VEGFxxx. However, adenoma cells exposed to hypoxia switched their expression from predominantly VEGFxxxb to predominantly VEGFxxx. VEGF165b overexpression in LS174t colon cancer cells inhibited colon carcinoma growth in mouse xenograft models. Western blotting and surface plasmon resonance showed that VEGF165b bound to bevacizumab with similar affinity as VEGF165. However, although bevacizumab effectively inhibited the rapid growth of colon carcinomas expressing VEGF165, it did not affect the slower growth of tumours from colonic carcinoma cells expressing VEGF165b. Both bevacizumab and anti-VEGF165b-specific antibodies were cytotoxic to colonic epithelial cells, but less so to colonic carcinoma cells. These results show that the balance of antiangiogenic to proangiogenic isoforms switches to a variable extent in CRC, regulates tumour growth rates and affects the sensitivity of tumours to bevacizumab by competitive binding. Together with the identification of an autocrine cytoprotective role for VEGF165b in colonic epithelial cells, these results indicate that bevacizumab treatment of human CRC may depend upon this balance of VEGF isoforms.
doi:10.1038/sj.bjc.6604308
PMCID: PMC2361696  PMID: 18349829
bevacizumab; VEGF; VEGF165b; biomarker; angiogenesis; colon carcinoma
12.  Effects of the vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor SU5416 on in vitro cultures of Plasmodium falciparum 
Malaria Journal  2014;13:201.
Background
Vascular endothelial growth factor (VEGF) is taken up by parasitized red blood cells during malaria and stimulates intra-erythrocytic growth of Plasmodium falciparum in vitro. The cause and consequence of this uptake is not understood.
Methods
Plasmodium falciparum was cultured in vitro. Parasite growth and intracellular VEGF levels were assessed using flow cytometry. Intracellular VEGF was visualized by fluorescence immunocytochemistry. Phosphorylated tyrosine was measured by western blotting. In vivo assessment of intra-erythrocytic VEGF was performed in Plasmodium berghei ANKA-infected C57BL/6 mice.
Results
VEGF accumulated intracellularly in infected red blood cells, particularly in schizonts. In vitro growth of P. falciparum was unchanged when co-cultured with the anti-VEGF antibody bevacizumab or with an anti-VEGF receptor-1 peptide. In contrast, the VEGF receptor-2 inhibitor, SU5416, dose-dependently inhibited growth. None of the treatments reduced intracellular VEGF levels. Thus, the anti-parasitic effect of SU5416 seemed independent of VEGF uptake. SU5416 reduced phosphorylated tyrosine in parasitized red blood cells. Similarly, the broad-spectrum tyrosine kinase inhibitor genistein dose-dependently inhibited P. falciparum growth and reduced tyrosine phosphorylation. Neither bevacizumab nor anti-VEGF receptor-1 peptide affected tyrosine kinase activity. Finally, in vivo uptake of VEGF in P. berghei ANKA was demonstrated, analogous to the in vitro uptake in P. falciparum, making it a possible model for the effects of VEGF signalling in vivo during malaria.
Conclusions
Inhibition of VEGFR-2 signalling reduces intra-erythrocytic growth of P. falciparum, likely due to tyrosine kinase inhibition. Internalisation of VEGF in P. falciparum-infected red blood cells does not rely on VEGF receptors. The function of in vivo uptake of VEGF can be studied in rodent malaria models.
doi:10.1186/1475-2875-13-201
PMCID: PMC4046387  PMID: 24885283
Plasmodium falciparum; Vascular endothelial growth factor; VEGF; Vascular endothelial growth factor receptor; Tyrosine kinase inhibitor; Plasmodium berghei ANKA
13.  Vascular endothelial growth factor expression and inhibition in uveal melanoma cell lines 
ecancermedicalscience  2013;7:336.
Background:
Uveal melanoma (UM) is a disease that affects approximately five people per million in the United States. This disease metastasises predominantly to the liver, and treatment options following the clinical detection of these sequelae are limited. Vascular endothelial growth factor-A (VEGF-A) is the primary activator of tumour angiogenesis and functions by binding to VEGF-Receptor 2 (VEGF-R2) and is often required for tumour growth beyond 2–3 mm. The purpose of this study was to investigate the expression of VEGF-A and the primary VEGF-R2 in three UM cell lines. Furthermore, we investigated the effects of VEGF-A inhibition on receptor activation and production of other cytokines. Finally, the effects of VEGF-A inhibition on the proliferation, migration, and invasion in the cell lines were ascertained.
Materials:
Three UM cell lines (92.1, OCM-1, and UW-1) were incubated with and without the addition of 100 μg/mL of bevacizumab. VEGF-A expression under both conditions was determined by sandwich enzyme-linked immunosorbent assay (ELISA), and phosphorylated VEGF-R2 expression was determined using western blot. The effects of VEGF-A inhibition on 20 cytokines (IL-1a, IL-2, IL-5, IL-8, IL-12p70, GM-CSF, IFNy, CCL3, MMP-9, TNF-a, IL-1b, IL-4, IL-6, IL-10, IL-13, GRO, MCP-1, MIP-1b, and RANTES) were determined using a multiplex sandwich ELISA. Proliferation rates before and after treatment were evaluated via sulforhodamine B assay, and migration and invasion assays implementing the Boyden chamber technique, the latter with artificial extracellular matrix, were used to assess their respective abilities. The Student’s t-test was used to compare changes in cytokine expression following VEGF-A inhibition. Analysis of variance was used to compare changes in the functional abilities of three uveal melanoma cell lines following VEGF-A inhibition. A P-value < 0.05 was considered statistically significant.
Results:
All three cell lines produced copious amounts of VEGF-A in culture (92.1, 11785.5 ± 231.8 pg/μL; OCM-1, 4608.0 ± 324.0 pg/μL; UW-1, 8309.3 ± 634.5 pg/μL), which was reduced to undetectable levels following the administration of bevacizumab (P< 0.05). Similarly, detectable phosphorylated VEGF-R2 was present in all cells, which was reduced significantly in all cell lines following bevacizumab treatment (107525.2 ± 8602.0 versus 1024.5 ± 98.2, 46587.3 ± 4192.9 versus 12821.1 ± 1666.7, and 60394.3 ± 4026.4 versus 6908.2 ± 607.2; 92.1, OCM-1, and UW-1, respectively; P< 0.05). Of the cytokines investigated, only MMP-9 and CCL3 were ubiquitously altered across all three cell lines following bevacizumab treatment; they were upregulated (CCL3: 1072.50 ± 18.77 pg/mL versus 1281.00 ± 72.34 pg/mL; 22.5 ± 7.85 pg/mL versus 62.00 ± 9.16 pg/mL; 20.33 ± 6.35 pg/mL versus 35.00 ± 6.22 pg/mL; control versus bevacizumab; MMP-9: 25.50 ± 5.47 pg/mL versus 88.25 ± 13.38 pg/mL; 19.75 ± 4.14 pg/mL versus 45.25 ± 8.36 pg/mL; 3.25 ± 1.09 pg/mL versus 19.25 ± 3.77 pg/mL; control versus bevacizumab; 92.1, OCM-1, and UW-1, respectively; P< 0.05). Bevacizumab significantly reduced the proliferation of one cell line (92.1: 0.405 ± 0.012 versus 0.509 ± 0.033; bevacizumab versus control; values OD; P< 0.05), the migration of two cell lines (92.1: 0.071 ± 0.003 versus 0.115 ± 0.003; OCM-1: 0.049 ± 0.005 versus 0.117 ± 0.014; bevacizumab versus control; values OD; P< 0.05), and did not significantly affect invasion.
Conclusion:
Despite the significant reduction in phosphorylated VEGF-R2 levels, bevacizumab did not have a dramatic impact on the functional abilities of the three UM cell lines studied. Our results indicate that compensatory mechanisms, such as the upregulation of MMP-9 and CCL-3, following bevacizumab administration may mitigate its effects on these abilities.
doi:10.3332/ecancer.2013.336
PMCID: PMC3729237  PMID: 23914254
uveal melanoma; VEGF-A; invasion; migration; proliferation; bevacizumab
14.  A Novel Tumor-Promoting Function Residing in the 5′ Non-coding Region of vascular endothelial growth factor mRNA 
PLoS Medicine  2008;5(5):e94.
Background
Vascular endothelial growth factor-A (VEGF) is one of the key regulators of tumor development, hence it is considered to be an important therapeutic target for cancer treatment. However, clinical trials have suggested that anti-VEGF monotherapy was less effective than standard chemotherapy. On the basis of the evidence, we hypothesized that vegf mRNA may have unrecognized function(s) in cancer cells.
Methods and Findings
Knockdown of VEGF with vegf-targeting small-interfering (si) RNAs increased susceptibility of human colon cancer cell line (HCT116) to apoptosis caused with 5-fluorouracil, etoposide, or doxorubicin. Recombinant human VEGF165 did not completely inhibit this apoptosis. Conversely, overexpression of VEGF165 increased resistance to anti-cancer drug-induced apoptosis, while an anti-VEGF165-neutralizing antibody did not completely block the resistance. We prepared plasmids encoding full-length vegf mRNA with mutation of signal sequence, vegf mRNAs lacking untranslated regions (UTRs), or mutated 5′UTRs. Using these plasmids, we revealed that the 5′UTR of vegf mRNA possessed anti-apoptotic activity. The 5′UTR-mediated activity was not affected by a protein synthesis inhibitor, cycloheximide. We established HCT116 clones stably expressing either the vegf 5′UTR or the mutated 5′UTR. The clones expressing the 5′UTR, but not the mutated one, showed increased anchorage-independent growth in vitro and formed progressive tumors when implanted in athymic nude mice. Microarray and quantitative real-time PCR analyses indicated that the vegf 5′UTR-expressing tumors had up-regulated anti-apoptotic genes, multidrug-resistant genes, and growth-promoting genes, while pro-apoptotic genes were down-regulated. Notably, expression of signal transducers and activators of transcription 1 (STAT1) was markedly repressed in the 5′UTR-expressing tumors, resulting in down-regulation of a STAT1-responsive cluster of genes (43 genes). As a result, the tumors did not respond to interferon (IFN)α therapy at all. We showed that stable silencing of endogenous vegf mRNA in HCT116 cells enhanced both STAT1 expression and IFNα responses.
Conclusions
These findings suggest that cancer cells have a survival system that is regulated by vegf mRNA and imply that both vegf mRNA and its protein may synergistically promote the malignancy of tumor cells. Therefore, combination of anti-vegf transcript strategies, such as siRNA-based gene silencing, with anti-VEGF antibody treatment may improve anti-cancer therapies that target VEGF.
Shigetada Teshima-Kondo and colleagues find that cancer cells have a survival system that is regulated by vegf mRNA and that vegf mRNA and its protein may synergistically promote the malignancy of tumor cells.
Editors' Summary
Background
Normally, throughout life, cell division (which produces new cells) and cell death are carefully balanced to keep the body in good working order. But sometimes cells acquire changes (mutations) in their genetic material that allow them to divide uncontrollably to form cancers—disorganized masses of cells. When a cancer is small, it uses the body's existing blood supply to get the oxygen and nutrients it needs for its growth and survival. But, when it gets bigger, it has to develop its own blood supply. This process is called angiogenesis. It involves the release by the cancer cells of proteins called growth factors that bind to other proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels). The receptors then send signals into the endothelial cells that tell them to make new blood vessels. One important angiogenic growth factor is “vascular endothelial growth factor” (VEGF). Tumors that make large amounts of VEGF tend to be more abnormal and more aggressive than those that make less VEGF. In addition, high levels of VEGF in the blood are often associated with poor responses to chemotherapy, drug regimens designed to kill cancer cells.
Why Was This Study Done?
Because VEGF is a key regulator of tumor development, several anti-VEGF therapies—drugs that target VEGF and its receptors—have been developed. These therapies strongly suppress the growth of tumor cells in the laboratory and in animals but, when used alone, are no better at increasing the survival times of patients with cancer than standard chemotherapy. Scientists are now looking for an explanation for this disappointing result. Like all proteins, cells make VEGF by “transcribing” its DNA blueprint into an mRNA copy (vegf mRNA), the coding region of which is “translated” into the VEGF protein. Other, “noncoding” regions of vegf mRNA control when and where VEGF is made. Scientists have recently discovered that the noncoding regions of some mRNAs suppress tumor development. In this study, therefore, the researchers investigate whether vegf mRNA has an unrecognized function in tumor cells that could explain the disappointing clinical results of anti-VEGF therapeutics.
What Did the Researchers Do and Find?
The researchers first used a technique called small interfering (si) RNA knockdown to stop VEGF expression in human colon cancer cells growing in dishes. siRNAs are short RNAs that bind to and destroy specific mRNAs in cells, thereby preventing the translation of those mRNAs into proteins. The treatment of human colon cancer cells with vegf-targeting siRNAs made the cells more sensitive to chemotherapy-induced apoptosis (a type of cell death). This sensitivity was only partly reversed by adding VEGF to the cells. By contrast, cancer cells engineered to make more vegf mRNA had increased resistance to chemotherapy-induced apoptosis. Treatment of these cells with an antibody that inhibited VEGF function did not completely block this resistance. Together, these results suggest that both vegf mRNA and VEGF protein have anti-apoptotic effects. The researchers show that the anti-apoptotic activity of vegf mRNA requires a noncoding part of the mRNA called the 5′ UTR, and that whereas human colon cancer cells expressing this 5′ UTR form tumors in mice, cells expressing a mutated 5′ UTR do not. Finally, they report that the expression of several pro-apoptotic genes and of an anti-tumor pathway known as the interferon/STAT1 tumor suppression pathway is down-regulated in tumors that express the vegf 5′ UTR.
What Do These Findings Mean?
These findings suggest that some cancer cells have a survival system that is regulated by vegf mRNA and are the first to show that a 5′UTR of mRNA can promote tumor growth. They indicate that VEGF and its mRNA work together to promote their development and to increase their resistance to chemotherapy drugs. They suggest that combining therapies that prevent the production of vegf mRNA (for example, siRNA-based gene silencing) with therapies that block the function of VEGF might improve survival times for patients whose tumors overexpress VEGF.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050094.
This study is discussed further in a PLoS Medicine Perspective by Hughes and Jones
The US National Cancer Institute provides information about all aspects of cancer, including information on angiogenesis, and on bevacizumab, an anti-VEGF therapeutic (in English and Spanish)
CancerQuest, from Emory University, provides information on all aspects of cancer, including angiogenesis (in several languages)
Cancer Research UK also provides basic information about what causes cancers and how they develop, grow, and spread, including information about angiogenesis
Wikipedia has pages on VEGF and on siRNA (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.0050094
PMCID: PMC2386836  PMID: 18494554
15.  Free Insulin-like Growth Factor Binding Protein-3 (IGFBP-3) Reduces Retinal Vascular Permeability in Association with a Reduction of Acid Sphingomyelinase (ASMase) 
Intravitreal administration of IGFBP-3NB preserves junctional integrity in the presence of VEGF or laser injury by reducing BRB permeability in part by modulating sphingomyelinase levels.
Purpose.
To examine the effect of free insulin-like growth factor (IGF) binding protein-3 (IGFBP-3), independent of the effect of insulin-like growth factors, in modulating retinal vascular permeability.
Methods.
We assessed the ability of a form of IGFBP-3 that does not bind IGF-1 (IGFBP-3NB), to regulate the blood retinal barrier (BRB) using two distinct experimental mouse models, laser-induced retinal vessel injury and vascular endothelial growth factor (VEGF)-induced retinal vascular permeability. Additionally, in vitro studies were conducted. In the animal models, BRB permeability was quantified by intravenous injection of fluorescein labeled serum albumin followed by digital confocal image analysis of retinal flat-mounts. Claudin-5 and vascular endothelial-cadherin (VE-cadherin) localization at interendothelial junctions was studied by immunofluorescence. In vitro changes in transendothelial electrical resistance (TEER) and flux of fluorescent dextran in bovine retinal endothelial monolayers (BREC) were measured after IGFBP-3NB treatment. Acid (ASMase) and neutral (NSMase) sphingomyelinase mRNA levels and activity were measured in mouse retinas.
Results.
Four days postinjury, laser-injured mouse retinas injected with IGFBP-3NB plasmid demonstrated reduced vascular permeability compared with retinas of laser-injured mouse retinas injected with control plasmid. IGFBP-3NB administration resulted in a significant decrease in laser injury-associated increases in ASMase and NSMase mRNA and activity when compared with laser alone treated mice. In vivo, intravitreal injection of IGFBP-3NB reduced vascular leakage associated with intravitreal VEGF injection. IGFBP-3NB partially restored VEGF-induced in vivo permeability and dissociation of claudin-5 and VE-cadherin at junctional complexes. When IGFBP-3NB was applied basally to bovine retinal endothelial cells (BREC) in vitro, TEER increased and macromolecular flux decreased.
Conclusions.
Intravitreal administration of IGFBP-3NB preserves junctional integrity in the presence of VEGF or laser injury by reducing BRB permeability in part by modulating sphingomyelinase levels.
doi:10.1167/iovs.11-8167
PMCID: PMC3208060  PMID: 21931131
16.  A Three-Pore Model Describes Transport Properties of Bovine Retinal Endothelial Cells in Normal and Elevated Glucose 
A three-pore model was developed that describes for the first time, the fractional transport of water and molecular tracers across the retinal endothelial barrier. Experimental results showed that there was no change in permeability or hydraulic conductivity in bovine retinal endothelial cell (BREC) monolayers after exposure to high glucose, whereas VEGF increased permeability under both normal and high-glucose environments. The transport results are consistent with ZO-1 and VE-cadherin immunocytochemistry and the expression of claudin-5, which are all unaltered by high glucose.
Purpose.
Changes in blood vessel barrier properties contribute to retinal edema in diabetic retinopathy (DR). However, limited data are available to describe the routes of transport for fluids and solutes across the inner blood–retinal barrier (iBRB). In this study, a three-pore model was developed to characterize such routes in normal and elevated glucose levels.
Methods.
Diffusive and apparent permeabilities to TAMRA (467 Da), dextran (70 kDa), and LDL (2000 kDa), as well as hydraulic conductivity, were measured across bovine retinal endothelial cell (BREC) monolayers after exposure to normal- and high-glucose media for 6 days. The data were used to develop a model of transport dynamics. Claudin 5 and eNOS Western blot analysis were used to measure changes in expression and phosphorylation. Immunolocalization of ZO-1 and VE-cadherin demonstrated organization of the junctional complex. Apoptosis was measured by TUNEL assay.
Results.
A three-pore model describes the fractional transport of water and molecular tracers across the retinal endothelial barrier. No change in permeability or hydraulic conductivity was observed after exposure to high glucose, whereas VEGF increased permeability in both normal- and high-glucose environments. The transport results were consistent with ZO-1 and VE-cadherin immunocytochemistry and expression of claudin-5, which were all unaltered by high glucose.
Conclusions.
The data describe, for the first time, a model for transport of various size solutes and fluids across endothelial cells of the iBRB. Further, the results support the existence of an indirect pathway by which iBRB permeability is increased through the upregulation of retinal VEGF in response to hyperglycemia.
doi:10.1167/iovs.10-5971
PMCID: PMC3053101  PMID: 21357410
17.  Lasting Controversy on Ranibizumab and Bevacizumab 
Theranostics  2011;1:395-402.
Vascular endothelial growth factor (VEGF), an important angiogenic factor that is able to stimulate the proliferation and migration of endothelial cells, is the best-studied hallmark of angiogenesis. Neovascularization is a major cause of age-related macular degeneration (AMD) which is a leading cause of blindness in the elderly population. Specific molecular inhibitors of VEGF have been proved to be useful in the treatment of AMD. Ranibizumab and Bevacizumab are structurally similar to anti-VEGF drugs in the treatment of AMD. Many studies have indicated that Ranibizumab and Bevacizumab are of roughly equal short-term efficacy and safety, Bevacizumab is an attractive alternative to Ranibizumab due to its lower cost. However, only Ranibizumab has received Food and Drug Administration (FDA) approval for the treatment of macular degeneration. More multicenter clinical trials are required to compare the relative efficacy and safety of these two drugs and some progress has been achieved. This review discusses the clinical effectiveness, safety, cost and other practical implications of Ranibizumab and Bevacizumab.
PMCID: PMC3248643  PMID: 22211145
Ranibizumab; Bevacizumab; vascular endothelial growth factor (VEGF); age-related macular degeneration; angiogenesis.
18.  Induction of proline-rich tyrosine kinase 2 activation-mediated C6 glioma cell invasion after anti-vascular endothelial growth factor therapy 
Background
Anti-angiogenic therapy inhibits tumor growth and is considered as a potential clinical therapy for malignant glioma. However, inevitable recurrences and unexpected tumor resistance, particularly increased invasion ability of glioma cell, were observed after anti-angiogenic treatment. The underlying mechanism remains undetermined. Focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) are closely associated with cell migration; therefore, we investigated the possible role of these kinases in rat C6 glioma cell invasion induced by bevacizumab, a recombinant monoclonal antibody against vascular endothelial growth factor (VEGF).
Methods
The effects of bevacizumab on migration and invasion of C6 glioma cells were investigated in vitro and in vivo. The cells proliferation, migration, and invasion were determined by MTT assay, wound healing, and transwell assay, respectively. Invasive potential of glioma cells in vivo was assessed by counting vimentin-positive cells crossing the solid tumor rim by immunohistochemical staining. The total and phosphorylated protein levels of FAK and Pyk2 were detected by Western blotting.
Results
Bevacizumab exposure increased migration and invasion of cultured C6 cells in a concentration-dependent manner. In addition, the continuous bevacizumab treatment also promoted tumor invasion in rat C6 intracranial glioma models. Bevacizumab treatment enhanced Pyk2 phosphorylation at Tyr402, but no effect on FAK phosphorylation at Tyr397 both in vitro and in vivo. Knockdown of Pyk2 by siRNA or inhibition of Pyk2 phosphorylation by Src kinase specific inhibitor PP1 partially inhibited bevacizumab-induced cell invasion in cultured C6 glioma cells. Furthermore, the combined administration of bevacizumab and PP1 significantly suppressed glioma cell invasion into surrounding brain tissues compared to bevacizumab treatment alone in experimental rats.
Conclusions
These results suggest that anti-VEGF treatment promotes glioma cell invasion via activation of Pyk2. Inhibition of Pyk2 phosphorylation might be a potential target to ameliorate the therapeutic efficiency of anti-VEGF treatment.
doi:10.1186/1479-5876-12-148
PMCID: PMC4049398  PMID: 24884636
Glioma; Anti-VEGF; Invasion; Proline-rich tyrosine kinase; Focal adhesion kinase
19.  TNF-α Signals Through PKCζ/NF-κB to Alter the Tight Junction Complex and Increase Retinal Endothelial Cell Permeability 
Diabetes  2010;59(11):2872-2882.
OBJECTIVE
Tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) are elevated in the vitreous of diabetic patients and in retinas of diabetic rats associated with increased retinal vascular permeability. However, the molecular mechanisms underlying retinal vascular permeability induced by these cytokines are poorly understood. In this study, the effects of IL-1β and TNF-α on retinal endothelial cell permeability were compared and the molecular mechanisms by which TNF-α increases cell permeability were elucidated.
RESEARCH DESIGN AND METHODS
Cytokine-induced retinal vascular permeability was measured in bovine retinal endothelial cells (BRECs) and rat retinas. Western blotting, quantitative real-time PCR, and immunocytochemistry were performed to determine tight junction protein expression and localization.
RESULTS
IL-1β and TNF-α increased BREC permeability, and TNF-α was more potent. TNF-α decreased the protein and mRNA content of the tight junction proteins ZO-1 and claudin-5 and altered the cellular localization of these tight junction proteins. Dexamethasone prevented TNF-α–induced cell permeability through glucocorticoid receptor transactivation and nuclear factor-kappaB (NF-κB) transrepression. Preventing NF-κB activation with an inhibitor κB kinase (IKK) chemical inhibitor or adenoviral overexpression of inhibitor κB alpha (IκBα) reduced TNF-α–stimulated permeability. Finally, inhibiting protein kinase C zeta (PKCζ) using both a peptide and a novel chemical inhibitor reduced NF-κB activation and completely prevented the alterations in the tight junction complex and cell permeability induced by TNF-α in cell culture and rat retinas.
CONCLUSIONS
These results suggest that PKCζ may provide a specific therapeutic target for the prevention of vascular permeability in retinal diseases characterized by elevated TNF-α, including diabetic retinopathy.
doi:10.2337/db09-1606
PMCID: PMC2963546  PMID: 20693346
20.  Improvement of Retinal Vascular Injury in Diabetic Rats by Statins Is Associated With the Inhibition of Mitochondrial Reactive Oxygen Species Pathway Mediated by Peroxisome Proliferator–Activated Receptor γ Coactivator 1α 
Diabetes  2010;59(9):2315-2325.
OBJECTIVE
Mitochondrial reactive oxygen species (ROS) plays a key role in diabetic retinopathy (DR) pathogenesis. However, whether simvastatin decreases diabetes-induced mitochondrial ROS production remains uncertain. The aim of this study was to clarify the beneficial effects and mechanism of action of simvastatin against diabetes-induced retinal vascular damage.
RESEARCH DESIGN AND METHODS
Diabetic rats and control animals were randomly assigned to receive simvastatin or vehicle for 24 weeks, and bovine retinal capillary endothelial cells (BRECs) were incubated with normal or high glucose with or without simvastatin. Vascular endothelial growth factor (VEGF) and peroxisome proliferator–activated receptor γ coactivator 1α (PGC-1α) in the rat retinas or BRECs were examined by Western blotting and real-time RT-PCR, and poly (ADP-ribose) polymerase (PARP), and p38 MAPK were examined by Western blotting. Mitochondrial membrane potential (Δψm) and ROS production were assayed using the potentiometric dye 5,5′,6,6′- Tetrachloro1,1′,3,3′-tetraethyl-benzimidazolylcarbocyanine iodide (JC-1) or CM-H2DCFDA fluorescent probes.
RESULTS
Simvastatin significantly upregulated PGC-1α (P < 0.01), subsequently decreased Δψm (P < 0.05) and ROS generation (P < 0.01), inhibited PARP activation (P < 0.01), and further reduced VEGF expression (P < 0.01) and p38 MAPK activity (P < 0.01). Those changes were associated with the decrease of retinal vascular permeability, retinal capillary cells apoptosis, and formation of acellular capillaries.
CONCLUSIONS
Simvastatin decreases diabetes-induced mitochondrial ROS production and exerts protective effects against early retinal vascular damage in diabetic rats in association with the inhibition of mitochondrial ROS/PARP pathway mediated by PGC-1α. The understanding of the mechanisms of action of statins has important implications in the prevention and treatment of mitochondrial oxidative stress-related illness such as DR.
doi:10.2337/db10-0638
PMCID: PMC2927955  PMID: 20566666
21.  Quantifying the increasing use of anti-vascular endothelial growth factor therapy in ophthalmology 
Introduction: Bevacizumab (Avastin; Genetech Inc., South San Francisco, CA) and ranibizumab (Lucentis, Genetech Inc.) are two anti-Vascular Endothelial Growth Factor (VEGF) agents used in increasing amounts off-label to treat ocular conditions. To date, no study has quantified how far reaching these therapies have been in treating eye disease and compared their off-label use to the number of clinical trials performed. Method: A systematic search of Ovid MEDLINE using the keywords bevacizumab and ranibizumab limited to “Case Reports” was used as an index of the number of diseases treated. Each keyword was also limited to “Clinical Trials, All” and “Phase III Clinical Trials” to discern the quality of evidence for these uses. Results: Bevacizumab has been utilized for the treatment of 58 different ocular conditions, but only 14 conditions were studied in a trial, and none were part of a phase III clinical trial. Ranibizumab has been used for 17 different eye conditions, with only 6 studied in a trial and only 1 disease, “wet” age-related macular degeneration reported in 4 phase III trials. In the case reports, there were 21 different adverse events ascribed to bevacizumab and 2 to ranibizumab with retinal pigment epithelial tears being the most common. Conclusion: Bevacizumab is one of the most far reaching drugs in ophthalmology and even medicine, but it is not yet supported by high quality evidence. The much higher cost of ranibizumab may be responsible for bevacizumab's popularity among eye specialists. Patients should be fully informed about the off-label use of bevacizumab and the associated risks with its use.
PMCID: PMC3399721  PMID: 22815647
anti-angiogenic therapy; bevacizumab; ranibizumab; ophthalmology
22.  Diabetic retinopathy (treatment) 
Clinical Evidence  2011;2011:0702.
Introduction
Diabetic retinopathy is the most common cause of blindness in the UK, with older people and those with worse diabetes control, hypertension, and hyperlipidaemia being most at risk. Diabetic retinopathy can cause microaneurysms, haemorrhages, exudates, changes to blood vessels, and retinal thickening.
Methods and outcomes
We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of treatments in people with diabetic retinopathy? What are the effects of treatments for vitreous haemorrhage? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2010 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA).
Results
We found 58 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions.
Conclusions
In this systematic review we present information relating to the effectiveness and safety of the following interventions: peripheral retinal laser photocoagulation, focal and grid laser photocoagulation for maculopathy, corticosteroids for macular oedema, vascular endothelial growth factor inhibitors, and vitrectomy for vitreous haemorrhage.
Key Points
Diabetic retinopathy is the most common cause of blindness in the UK, with older people and those with worse diabetes control, hypertension, and hyperlipidaemia most at risk. Diabetic retinopathy can cause microaneurysms, haemorrhages, exudates, changes to blood vessels, and retinal thickening.
Peripheral retinal laser photocoagulation reduces the risk of severe visual loss compared with no treatment in people with preproliferative (moderate/severe non-proliferative) retinopathy and maculopathy. We don't know if any one type of laser treatment is superior to another.We don't know whether peripheral laser photocoagulation is effective in people with background or preproliferative (non-proliferative) retinopathy without maculopathy because we found no RCTs assessing it in this population.
The benefits of laser photocoagulation are more notable in people with proliferative retinopathy than in those with maculopathy. Focal macular laser photocoagulation reduces the risk of moderate visual loss in eyes with clinically significant macular oedema plus mild to moderate preproliferative (moderate/severe non-proliferative) diabetic retinopathy, compared with no treatment. Grid photocoagulation to zones of retinal thickening may improve visual acuity in eyes with diffuse maculopathy. Photocoagulation is unlikely to be beneficial in eyes with maculopathy but without clinically significant macular oedema.
Intravitreal triamcinolone acetonide improves visual acuity and reduces macular thickness in eyes with macular oedema refractory to previous macular laser photocoagulation, but repeated injections are needed to maintain benefit. Secondary ocular hypertension and progression of cataract are common complications with intravitreal triamcinolone; infectious endophthalmitis is rare.
Intravitreal vascular endothelial growth factor (VEGF) inhibitors pegaptanib and bevacizumab improve visual acuity and reduce macular thickness in eyes with centre-involving diabetic macular oedema and vision loss, but repeat intravitreal injections are needed to maintain benefit. Bevacizumab is not licensed for intraocular use.We don't know the long-term ocular and systemic safety of bevacizumab.We don't know if any one intravitreal VEGF inhibitor or treatment regimen is superior to another.We don't know whether combination treatment with VEGF inhibitor injection plus macular laser photocoagulation is effective as we found only one trial assessing ranibizumab as part of combined treatment.
Vitrectomy can reduce visual loss if performed early in people with vitreous haemorrhage, especially if they have severe proliferative retinopathy. We don't know whether vitrectomy is effective in people with vitreous haemorrhage plus maculopathy as we found no RCTs assessing it.
PMCID: PMC3217806  PMID: 21609511
23.  Bevacizumab treatment reduces retinal neovascularization in a mouse model of retinopathy of prematurity 
AIM
To evaluate the effect of different bevacizumab concentrations on retinal neovascularization in a retinopathy of prematurity (ROP) mouse model.
METHODS
A total of 60 of C57BL/6 J mice were exposed to 75%±2% oxygen from postnatal d7 to postnatal d12. Fifteen nonexposed mice served as negative controls (group A). On d12, 30 mice (group C) were injected with 2.5 µg intravitreal bevacizumab (IVB), 30 mice (group D) were injected with 1.25 µg IVB in one eye. The contralateral eyes were injected with balanced salt solution (BSS) (control group=group B). The adenosine diphosphatase (ADPase) histochemical technique was used for retinal flat mount to assess the oxygen-induced changes of retinal vessels. Neovascularization was quantified by counting the endothelial cell proliferation on the vitreal side of the inner limiting membrane of the retina. Histological changes were examined by light microscopy. The mRNA levels of vascular endothelial growth factor (VEGF) were quantified by Real-time PCR. Western-blotting analysis was performed to examine the expression of P-VEGFR.
RESULTS
Comparing with the control group B, regular distributions and reduced tortuosity of vessels were observed in our retinal flat mounts in groups C and D. The endothelial cell count per histological section was lower in groups C (P<0.0001) and D (P<0.0001) compared with the control group B. Histological evaluation showed no retinal toxicity in any group. In all oxygen treated groups VEGF mRNA expression was significantly increased as compared to age-matched controls. No significant change in VEGF mRNA expression could be achieved in either of the treatments or the oxygen controls. The results of the Western blot were consistent with that of the Real-time PCR analysis.
CONCLUSION
An intravitreal injection of Bevacizumab is able to reduce angioproliferative retinopathy in a mouse model for oxygen-induced retinopathy.
doi:10.3980/J.ISSN.2222-3959.2014.04.04
PMCID: PMC4137193  PMID: 25161929
mouse; retinopathy of prematurity; retinal neovascularization; bevacizumab (Avastin); intravitreal injection
24.  Klebsiella pneumoniae Induces an Inflammatory Response in an In Vitro Model of Blood-Retinal Barrier 
Infection and Immunity  2014;82(2):851-863.
Klebsiella pneumoniae has become an important pathogen in recent years. Although most cases of K. pneumoniae endogenous endophthalmitis occur via hematogenous spread, it is not yet clear which microbial and host factors are responsible for the ability of K. pneumoniae to cross the blood-retinal barrier (BRB). In the present study, we show that in an in vitro model of BRB based on coculturing primary bovine retinal endothelial cells (BREC) and primary bovine retinal pericytes (BRPC), K. pneumoniae infection determines changes of transendothelial electrical resistance (TEER) and permeability to sodium fluorescein. In the coculture model, bacteria are able to stimulate the enzyme activities of endothelial cytosolic and Ca2+-independent phospholipase A2s (cPLA2 and iPLA2). These results were confirmed by the incremental expression of cPLA2, iPLA2, cyclo-oxygenase-1 (COX1), and COX2 in BREC, as well as by cPLA2 phosphorylation. In supernatants of K. pneumoniae-stimulated cocultures, increases in prostaglandin E2 (PGE2), interleukin-6 (IL-6), IL-8, and vascular endothelial growth factor (VEGF) production were found. Incubation with K. pneumoniae in the presence of arachidonoyl trifluoromethyl ketone (AACOCF3) or bromoenol lactone (BEL) caused decreased PGE2 and VEGF release. Scanning electron microscopy and transmission electron microscopy images of BREC and BRPC showed adhesion of K. pneumoniae to the cells, but no invasion occurred. K. pneumoniae infection also produced reductions in pericyte numbers; transfection of BREC cocultured with BRPC and of human retinal endothelial cells (HREC) cocultured with human retinal pericytes (HRPC) with small interfering RNAs (siRNAs) targeted to cPLA2 and iPLA2 restored the pericyte numbers and the TEER and permeability values. Our results show the proinflammatory effect of K. pneumoniae on BREC, suggest a possible mechanism by which BREC and BRPC react to the K. pneumoniae infection, and may provide physicians and patients with new ways of fighting blinding diseases.
doi:10.1128/IAI.00843-13
PMCID: PMC3911371  PMID: 24478098
25.  Increased Expression and Activity of 12-Lipoxygenase in Oxygen-Induced Ischemic Retinopathy and Proliferative Diabetic Retinopathy 
Diabetes  2011;60(2):614-624.
OBJECTIVE
Arachidonic acid is metabolized by 12-lipoxygenase (12-LOX) to 12-hydroxyeicosatetraenoic acid (12-HETE) and has an important role in the regulation of angiogenesis and endothelial cell proliferation and migration. The goal of this study was to investigate whether 12-LOX plays a role in retinal neovascularization (NV).
RESEARCH DESIGN AND METHODS
Experiments were performed using retinas from a murine model of oxygen-induced ischemic retinopathy (OIR) that was treated with and without the LOX pathway inhibitor, baicalein, or lacking 12-LOX. We also analyzed vitreous samples from patients with and without proliferative diabetic retinopathy (PDR). Western blotting and RT-PCR were used to assess the expression of 12-LOX, vascular endothelial growth factor (VEGF), and pigment epithelium–derived factor (PEDF). Liquid chromatography–mass spectrometry was used to assess the amounts of HETEs in the murine retina and human vitreous samples. The effects of 12-HETE on VEGF and PEDF expression were evaluated in Müller cells (rMCs), primary mouse retinal pigment epithelial cells, and astrocytes.
RESULTS
Retinal NV during OIR was associated with increased 12-LOX expression and 12-, 15-, and 5-HETE production. The amounts of HETEs also were significantly higher in the vitreous of diabetic patients with PDR. Retinal NV was markedly abrogated in mice treated with baicalein or mice lacking 12-LOX. This was associated with decreased VEGF expression and restoration of PEDF levels. PEDF expression was reduced in 12-HETE–treated rMCs, astrocytes, and the retinal pigment epithelium. Only rMCs and astrocytes showed increased VEGF expression by 12-HETE.
CONCLUSIONS
12-LOX and its product HETE are important regulators of retinal NV through modulation of VEGF and PEDF expression and could provide a new therapeutic target to prevent and treat ischemic retinopathy.
doi:10.2337/db10-0008
PMCID: PMC3028363  PMID: 21228311

Results 1-25 (1026277)