PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (234787)

Clipboard (0)
None

Related Articles

1.  Pathogenicity of Fungi to Eggs of Heterodera glycines 
Journal of Nematology  1996;28(2):148-158.
Twenty-one isolates of 18 fungal species were tested on water agar for their pathogenicity to eggs of Heterodera glycines. An egg-parasitic index (EPI) for each of these fungi was recorded on a scale from 0 to 10, and hatch of nematode eggs was determined after exposure to the fungi on water agar for 3 weeks at 24 C. The EPI for Verticillium chlamydosporium was 7.6, and the fungus reduced hatch 74%. Pyrenochaeta terrestris and two sterile fungi also showed a high EPI and reduced hatch 42-73%. Arthrobotrys dactyloides, Fusarium oxysporum, Paecilomyces lilacinus, Stagonospora heteroderae, Neocosmospora vasinfecta, Fusarium solani, and Exophiala pisciphila were moderately pathogenic to eggs (EPI was 2.0-4.5, and hatch was reduced 21-56%). Beauveria bassiana, Hirsutella rhossiliensis, Hirsutella thompsonii, Dictyochaeta heteroderae, Dictyochaeta coffeae, Gliocladium catenulatum, and Cladosporium sp. showed little parasitism of nematode eggs but reduced hatch. A negative correlation was observed between hatch and fungal parasitism of eggs. Fusarium oxysporum, H. rhossiliensis, P. lilacinus, S. heteroderae, V. chlamydosporium, and sterile fungus 1 also were tested in soil in a greenhouse test. After 3 months, the nematode densities were lower in soil treated with H. rhossiliensis and V. chlamydosporium than in untreated soil. The nematode population densities were correlated negatively with the EPI, but not with the percentage of cysts colonized by the fungi. Plant weights and heights generally increased in the soil treated with the fungi.
PMCID: PMC2619691  PMID: 19277130
biological control; cyst; egg parasite; egg-parasitic index; female nematode; fungus; hatch; Heterodera glycines; nematode; parasitism; pathogenicity; soybean cyst nematode
2.  Spatial and Temporal Variation in Fungal Endophyte Communities Isolated from Cultivated Cotton (Gossypium hirsutum) 
PLoS ONE  2013;8(6):e66049.
Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides) and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey provides candidates for further evaluation as potential management tools against a variety of pests and diseases when present as endophytes in cotton and other plants.
doi:10.1371/journal.pone.0066049
PMCID: PMC3679028  PMID: 23776604
3.  Antagonists of Plant-parasitic Nematodes in Florida Citrus 
Journal of Nematology  1990;22(4):567-573.
In a survey of antagonists of nematodes in 27 citrus groves, each with a history of Tylenchulus semipenetrans infestation, and 17 noncitrus habitats in Florida, approximately 24 species of microbial antagonists capable of attacking vermiform stages of Radopholus citrophilus were recovered. Eleven of these microbes and a species of Pasteuria also were observed attacking vermiform stages of T. semipenetrans. Verticillium chlamydosporium, Paecilomyces lilacinus, P. marquandii, Streptomyces sp., Arthrobotrys oligospora, and Dactylella ellipsospora were found infecting T. semipenetrans egg masses. Two species of nematophagous amoebae, five species of predatory nematodes, and 29 species of nematophagous arthropods also were detected. Nematode-trapping fungi and nematophagous arthropods were common inhabitants of citrus groves with a history of citrus nematode infestation; however, obligate parasites of nematodes were rare.
PMCID: PMC2619066  PMID: 19287759
biological control; burrowing nematode; citrus nematode; nematophagous arthropod; nematophagous fungus; Pasteuria; Streptomyces
4.  Suppression of Rotylenchulus reniformis on Cotton by the Nematophagous Fungus ARF 
Journal of Nematology  2004;36(2):186-191.
The reniform nematode, Rotylenchulus reniformis Linford &Oliveira, has become a serious threat to cotton (Gossypium hirsutum L.) production in the United States during the past decade. The objective of this study is to isolate fungi from eggs of R. reniformis and select potential biological control agents for R. reniformis on cotton. Soil samples were collected from cotton fields located in Jefferson County, Arkansas. Eight genera of fungi were included in the 128 fungal isolates obtained, and among them were five strains of the nematophagous fungus ARF. The mtDNA RFLP pattern, colony growth characteristics, and pathogenicity indicate the five ARF isolates represent one described strain and one new strain. Light and electron microscopic observations suggest ARF is an active parasite of R. reniformis, with parasitism ranging from 48% to 79% in in vitro tests. Three greenhouse experiments demonstrated ARF successfully suppressed the number of reniform nematodes during the first and second generation of the nematode. Reductions in numbers of R. reniformis on the roots for the seven application rates of 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% ARF were 87%, 92%, 94%, 96%, 97%, 98%, and and 98%, respectively.
PMCID: PMC2620763  PMID: 19262806
ARF; biological control; cotton; Gossypium hirsutum; reniform nematode; Rotylenchulus reniformis
5.  Efficacy of Paecilomyces lilacinus in Suppressing Rotylenchulus reniformis on Tomato 
Journal of Nematology  1994;26(4S):600-605.
Effects of rice-cultured Paecilomyces lilacinus on Rotylenchulus reniformis were studied in both greenhouse and field microplot tests with 'Rutgers' tomato. Numbers of R. reniformis were reduced (P ≤ 0.05) by P. lilacinus, with suppression in the initial greenhouse test ranging from 46 to 48% for two rice + P. lilacinus treatments; the rice-only treatment caused a nonsignificant reduction of 25%. In the second greenhouse test, total R. reniformis numbers were restricted (P ≤ 0.05) by 41% by the rice + P. lilacinus treatment, whereas the rice-only treatment had a slight negative effect (16% inhibition, NS). Total numbers of R. reniformis were suppressed 59 and 36% at midseason and harvest, respectively, in microplots infested with P. lilacinus. The fungus was recovered from egg masses via isolations in the second greenhouse test. Shoot and fruit growth of Rutgers tomato were restricted by R. reniformis in the initial greenhouse test irrespective of P. lilacinus treatment, but this nematode did not affect fresh shoot weights in the second greenhouse test, The nematode also limited shoot growth of Rutgers tomato in microplots, and P. lilacinus suppressed R. reniformis numbers sufficiently to prevent related impairment of shoot and fruit growth. This study indicated that P. lilacinus has detrimental effects on R. reniformis population development under both greenhouse and field microplot conditions.
PMCID: PMC2619552  PMID: 19279933
biological control; Lycopersicon esculentum; nematode; Paecilomyces lilacinus; reniform nematode; Rotylenchulus reniformis; tomato
6.  Interaction of Rotylenchulus reniformis with Seedling Disease Pathogens of Cotton 
Journal of Nematology  2004;36(2):160-166.
The impact of 10 Fusarium species in concomitant association with Rotylenchulus reniformis on cotton seedling disease was examined under greenhouse conditions. In experiment 1, fungal treatments consisted of Fusarium chlamydosporum, F. equiseti, F. lateritium, F. moniliforme, F. oxysporum, F. oxysporum f.sp. vasinfectum, F. proliferatum, F. semitectum, F. solani, and F. sporotrichioides; Rhizoctonia solani; and Thielaviopsis basicola. The experimental design was a 2 × 14 factorial consisting of the presence or absence of R. reniformis and the 12 fungal treatments plus two controls in autoclaved field soil. In experiment 2, the same fungal and nematode treatments were examined in autoclaved or non-autoclaved soil. This experimental design was a 2 × 2 × 14 factorial consisting of field or autoclaved soil, presence or absence of R. reniformis, and the 12 fungal treatments plus two controls. In both tests, Fusarium oxysporum f. sp. vasinfectum, F. solani, R. solani, and T. basicola consistently displayed extensive root and hypocotyl necrosis that was more severe (P ≤ 0.05) in the presence of R. reniformis. Soil treatment (autoclaved vs. non-autoclaved) influenced the impact of the Fusarium species on cotton seedling disease, with disease being more severe in the autoclaved soil. Rotylenchulus reniformis reproduction on cotton seedlings was greater in field soil compared to autoclaved soil (P ≤ 0.05). This study suggests the importance of Fusarium species and R. reniformis in cotton seedling disease.
PMCID: PMC2620757  PMID: 19262802
cotton seedling disease; Fusarium species; Gossypium hirsutum; Rhizoctonia solani; Rotylenchulus reniformis; Thielaviopsis basicola
7.  Association of Verticillium chlamydosporium and Paecilomyces lilacinus with Root-knot Nematode Infested Soil 
Journal of Nematology  1990;22(2):207-213.
Population densities of Meloidogyne incognita and the nematophagous fungi, Paecilomyces lilacinus and Verticillium chlamydosporium, were determined in 20 northern California tomato fields over two growing seasons. Paecilomyces lilacinus was isolated from three fields, V. chlamydosporium was isolated from one field, and both fungi were isolated from 12 fields. Verticillium chlamydosporium numbers were positively correlated with numbers of M. incognita and P. lilacinus. Paecilomyces lilacinus numbers were positively correlated with V. chlamydosporium numbers, but they did not correlate with M. incognita numbers. The correlation coefficients were low (R < 0.5) but significant (P < 0.05). All P. lilacinus and V. chlamydosporium field isolates parasitized M. incognita eggs in vitro. In a greenhouse study, numbers of V. chlamydosporium and P. lilacinus increased more in soils with M. incognita-infected tomato plants than in soil with uninfected tomato plants. After 10 weeks, the Pf/ Pi of second-stage juveniles in soils infested with P. lilacinus, V. chlamydosporium, and M. incognita was 47.1 to 295.6. The results suggest V. chlamydosporium and P. lilacinus are not effectively suppressing populations of M. incognita in California tomato fields.
PMCID: PMC2619028  PMID: 19287711
biological control; Lycopersicon esculentum; Meloidogyne incognita; Paecilomyces lilacinus; tomato; Verticillium chlamydosporium
8.  In Vitro Fungicidal Activities of Voriconazole, Itraconazole, and Amphotericin B against Opportunistic Moniliaceous and Dematiaceous Fungi 
Journal of Clinical Microbiology  2001;39(3):954-958.
The NCCLS proposed standard M38-P describes standard parameters for testing the fungistatic antifungal activities (MICs) of established agents against filamentous fungi (molds); however, standard conditions are not available for testing their fungicidal activities (minimum fungicidal or lethal concentrations [MFCs]). This study evaluated the in vitro fungistatic and fungicidal activities of voriconazole, itraconazole, and amphotericin B against 260 common and emerging molds (174 Aspergillus sp. isolates [five species], 23 Fusarium sp. isolates [three species], 6 Paecilomyces lilacinus isolates, 6 Rhizopus arrhizus isolates, 23 Scedosporium sp. isolates, 23 dematiaceous fungi, and 5 Trichoderma longibrachiatum isolates). MICs were determined by following the NCCLS M38-P broth microdilution method. MFCs were the lowest drug dilutions that resulted in fewer than three colonies. Voriconazole showed similar or better fungicidal activity (MFC at which 90% of isolates tested are killed [MFC90], 1 to 2 μg/ml) than the reference agents for Aspergillus spp. with the exception of Aspergillus terreus (MFC90 of voriconazole and amphotericin B, >8 μg/ml). The voriconazole geometric mean (G mean) MFC for Scedosporium apiospermum was lower (2.52 μg/ml) than those of the other two agents (5.75 to 7.5 μg/ml). In contrast, amphotericin B and itraconazole G mean MFCs for R. arrhizus were 2.1 to 2.2 μg/ml, but that for voriconazole was >8 μg/ml. Little or no fungicidal activity was shown for Fusarium spp. (2 to >8 μg/ml) and Scedosporium prolificans (>8 μg/ml) by the three agents, but voriconazole had some activity against P. lilacinus and T. longibrachiatum (G mean MFCs, 1.8 and 4 μg/ml, respectively). The fungicidal activity of the three agents was similar (G mean MFC, 1.83 to 2.36 μg/ml) for the dematiaceous fungi with the exception of the azole MFCs (>8 μg/ml) for some Bipolaris spicifera and Dactylaria constricta var. gallopava. These data extend and corroborate the available fungicidal results for the three agents. The role of the MFC as a predictor of clinical outcome needs to be established in clinical trials by following standardized testing conditions for determination of these in vitro values.
doi:10.1128/JCM.39.3.954-958.2001
PMCID: PMC87856  PMID: 11230410
9.  Competition of Meloidogyne incognita and Rotylenchulus reniformis on Cotton Following Separate and Concomitant Inoculations 
Journal of Nematology  2003;35(4):422-429.
It has been hypothesized Rotylenchulus reniformis (Rr) has a competitive advantage over Meloidogyne incognita (Mi) in the southeastern cotton production region of the United States. This study examines the reproduction and development of Meloidogyne incognita (Mi) and Rotylenchulus reniformis (Rr) in separate and concomitant infections on cotton. Under greenhouse conditions, cotton seedlings were inoculated simultaneously with juveniles (J2) of M. incognita and vermiform adults of R. reniformis in the following ratios (Mi:Rr): 0:0, 100:0, 75:25, 50:50, 25:75, and 0:100. Soil populations of M. incognita and R. reniformis were recorded at 3, 6, 9, 14, 19, 25, 35, 45, and 60 days after inoculations. At each date, samples were taken to determine the life stage of development, number of egg masses, eggs per egg mass, galls, and giant cells or syncytia produced by the nematodes. Meloidogyne incognita and R. reniformis were capable of initially inhibiting each other when the inoculum ratio of one species was higher than the other. In concomitant infections, M. incognita was susceptible to the antagonistic effect of R. reniformis. Rotylenchulus reniformis affected hatching of M. incognita eggs, delayed secondary infection of M. incognita J2, reduced the number of egg masses produced by M. incognita, and reduced J2 of M. incognita 60 days after inoculations. In contrast, M. incognita reduced R. reniformis soil populations only when its proportion in the inoculum ratio was higher than that of R. reniformis. Meloidogyne incognita reduced egg masses produced by R. reniformis, but not production of eggs and secondary infection.
PMCID: PMC2620682  PMID: 19262774
antagonism; competition; concomitant infections; cotton; Gossypium hirsutum; Meloidogyne incognita; Reniform nematode; root-knot nematode; Rotylenchulus reniformis; sequential infections
10.  Viability of Heterodera glycines Exposed to Fungal Filtrates 
Journal of Nematology  2000;32(2):190-197.
Filtrates from nematode-parasitic fungi have been reported to be toxic to plant-parasitic nematodes. Our objective was to determine the effects of fungal filtrates on second-stage juveniles and eggs of Heterodera glycines. Eleven fungal species that were isolated from cysts extracted from a soybean field in Florida were tested on J2, and five species were tested on eggs in vitro. Each fungal species was grown in Czapek-Dox broth and malt extract broth. No toxic activity was observed for fungi grown in Czapek-Dox broth. Filtrates from Paecilomyces lilacinus, Stagonospora heteroderae, Neocosmospora vasinfecta, and Fusarium solani grown in malt extract broth were toxic to J2, whereas filtrates from Exophiala pisciphila, Fusarium oxysporum, Gliocladium catenulatum, Pyrenochaeta terrestris, Verticillium chlamydosporium, and sterile fungi 1 and 2 were not toxic to J2. Filtrates of P. lilacinus, S. heteroderae, and N. vasinfecta grown in malt extract broth reduced egg viability, whereas F. oxysporum and P. terrestris filtrates had no effect on egg viability.
PMCID: PMC2620443  PMID: 19270965
biological control; egg; Exophiala pisciphila; fungus; Fusarium oxysporum; Fusarium solani; Gliocladium catenulatum; hatching; Heterodera glycines; juvenile; nematode; Neocosmospora vasinfecta; Paecilomyces lilacinus; Pyrenochaeta terrestris; soybean cyst nematode; Stagonospora heteroderae; toxicity; toxin; Verticillium chlamydosporium; viability
11.  Effects of Nematophagous Fungi on Numbers and Death Rates of Bacterivorous Nematodes in Arable Soil 
Journal of Nematology  1996;28(1):26-35.
In a series of microcosm experiments with an arable, sandy loam soil amended with sugarbeet leaf, the short-term (8 weeks) dynamics of numbers of nematodes were measured in untreated soil and in γ-irradiated soil inoculated with either a field population of soil microorganisms and nematodes or a mixed population of laboratory-propagated bacterivorous nematode species. Sugarbeet leaf stimulated an increase in bacterivorous Rhabditidae, Cephalobidae, and a lab-cultivated Panagrolaimus sp. Differences were observed between the growth rates of the nematode population in untreated and γ-irradiated soils, which were caused by two nematophagous fungi, Arthrobotrys oligospora and Dactylaria sp. These fungi lowered the increase in nematode numbers due to the organic enrichment in the untreated soil. We estimated the annually produced bacterivous nematodes to consume 50 kg carbon and 10 kg nitrogen per ha, per year, in the upper, plowed 25 cm of arable soil.
PMCID: PMC2619678  PMID: 19277342
Acrobeloides; Arthrobotrys; bacterivorous nematode; carbon-nitrogen flow; Dactylaria; nematode; nematophagous fungus; organic amendment; Panagrolaimus; population dynamics; Rhabditis; soil ecology
12.  Induction of Systemic Acquired Resistance by Rotylenchulus reniformis and Meloidogyne incognita in Cotton Following Separate and Concomitant Inoculations 
Journal of Nematology  2011;43(3-4):160-165.
Systemic acquired resistance (SAR) can be elicited by virulent and avirulent pathogenic strains and SAR against plant-parasitic nematodes has been documented. Our objective was to determine whether co-infection of cotton by Meloidogyne incognita and Rotylenchulus reniformis affects the population level of either nematode compared to infection by each species individually. Split-root trials were conducted in which plants were inoculated with i) R. reniformis only, ii) M. incognita only, iii) both R. reniformis and M. incognita, or iv) no nematodes. Half of the root system was inoculated with R. reniformis or M. incognita on day 0 and the other half with M. incognita or R. reniformis on day 0 or day 14 depending on the experiment. Experiments were conducted on cotton cultivar DP 0935 B2RF (susceptible to both nematodes), LONREN-1 (germplasm line resistant to R. reniformis), and M-120 RNR (germplasm line resistant to M. incognita), and tests were terminated 8 wk after the last inoculation. Both soil (vermiform) and roots (egg) extracted from each half of the root system to determine the total nematode population levels, and root galling was rated on a 0 to 10 scale. Mixed models analysis and comparison of least squares means indicated no differences in root galling (except on LONREN-1) or population levels when the two nematode species were introduced on the same day. When M. incognita was introduced 14 d after R. reniformis, reduction in galling (36% on DP 0935 and 33% on LONREN-1) and M. incognita population levels (35% on DP 0935 and 45% on LONREN-1) were significant (P ≤ 0.05). When R. reniformis was inoculated 14 d after M. incognita, reduction in R. reniformis population levels (18% on DP 0935 and 26% on M-120) were significant. This study documents for the first time that infection of cotton by a nematode can elicit SAR to another nematode species.
PMCID: PMC3547346  PMID: 23430318
Cotton; induced resistance; Meloidogyne incognita, reniform nematode; root-knot nematode; Rotylenchulus reniformis; split-root system; systemic acquired resistance
13.  Rhizosphere Colonization and Control of Meloidogyne spp. by Nematode-trapping Fungi 
Journal of Nematology  1999;31(2):164-171.
The ability of nematode-trapping fungi to colonize the rhizosphere of crop plants has been suggested to be an important factor in biological control of root-infecting nematodes. In this study, rhizosphere colonization was evaluated for 38 isolates of nematode-trapping fungi representing 11 species. In an initial screen, Arthrobotrys dactyloides, A. superba, and Monacrosporium ellipsosporum were most frequently detected in the tomato rhizosphere. In subsequent pot experiments these fungi and the non-root colonizing M. geophyropagum were introduced to soil in a sodium alginate matrix, and further tested both for establishment in the tomato rhizosphere and suppression of root-knot nematodes. The knob-forming M. ellipsosporum showed a high capacity to colonize the rhizosphere both in the initial screen and the pot experiments, with more than twice as many fungal propagules in the rhizosphere as in the root-free soil. However, neither this fungus nor the other nematode-trapping fungi tested reduced nematode damage to tomato plants.
PMCID: PMC2620361  PMID: 19270886
Arthrobotrys dactyloides; Arthrobotrys superba; biological control; Meloidogyne incognita; Meloidogyne javanica; Monacrosporium ellipsosporum; Monacrosporium geophyropagum; nematode; nematodetrapping fungi; rhizosphere; root-knot nematodes; tomato
14.  Interspecific and host-related gene expression patterns in nematode-trapping fungi 
BMC Genomics  2014;15(1):968.
Background
Nematode-trapping fungi are soil-living fungi that capture and kill nematodes using special hyphal structures called traps. They display a large diversity of trapping mechanisms and differ in their host preferences. To provide insights into the genetic basis for this variation, we compared the transcriptome expressed by three species of nematode-trapping fungi (Arthrobotrys oligospora, Monacrosporium cionopagum and Arthrobotrys dactyloides, which use adhesive nets, adhesive branches or constricting rings, respectively, to trap nematodes) during infection of two different plant-pathogenic nematode hosts (the root knot nematode Meloidogyne hapla and the sugar beet cyst nematode Heterodera schachtii).
Results
The divergence in gene expression between the fungi was significantly larger than that related to the nematode species being infected. Transcripts predicted to encode secreted proteins and proteins with unknown function (orphans) were overrepresented among the highly expressed transcripts in all fungi. Genes that were highly expressed in all fungi encoded endopeptidases, such as subtilisins and aspartic proteases; cell-surface proteins containing the carbohydrate-binding domain WSC; stress response proteins; membrane transporters; transcription factors; and transcripts containing the Ricin-B lectin domain. Differentially expressed transcripts among the fungal species encoded various lectins, such as the fungal fruit-body lectin and the D-mannose binding lectin; transcription factors; cell-signaling components; proteins containing a WSC domain; and proteins containing a DUF3129 domain. A small set of transcripts were differentially expressed in infections of different host nematodes, including peptidases, WSC domain proteins, tyrosinases, and small secreted proteins with unknown function.
Conclusions
This is the first study on the variation of infection-related gene expression patterns in nematode-trapping fungi infecting different host species. A better understanding of these patterns will facilitate the improvements of these fungi in biological control programs, by providing molecular markers for screening programs and candidates for genetic manipulations of virulence and host preferences.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-968) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-968
PMCID: PMC4237727  PMID: 25384908
Comparative transcriptomics; Heterodera schachtii; Meloidogyne hapla; Nematode-trapping fungi
15.  Production of Mannitol by Fungi from Cotton Dust 
Cotton dust associated with high pulmonary function decrements contains relatively high levels of mannitol. In this study, cotton leaf and bract tissue and dust isolated from cotton leaf tissue were examined by optical microscopy, scanning electron microscopy, and capillary gas chromatography. Alternaria alternata, Cladosporium herbarum, Epicoccum purpurascens, and Fusarium pallidoroseum were isolated from cotton leaf dust. The fungal samples, cotton dust, and cotton leaf contained mannitol. This study demonstrates that fungi from a late-fall harvest of cotton leaf material produce mannitol and are a probable source of the mannitol found in cotton dust.
Images
PMCID: PMC202746  PMID: 16347688
16.  Preliminary crystallographic study of two cuticle-degrading proteases from the nematophagous fungi Lecanicillium psalliotae and Paecilomyces lilacinus  
Two cuticle-degrading proteases Ver112 and PL646 were purified from the nematophagous fungi L. psalliotae and P. lilacinus, respectively. The protease Ver112 and a complex between PL646 and a tetrapeptide inhibitor were crystallized. Diffraction data were collected to 1.65 and 2.2 Å resolution, respectively.
Cuticle-degrading proteases are extracellular subtilisin-like serine proteases that are secreted by entomopathogenic and nematophagous fungi. These proteases can digest the host cuticle during invasion of an insect or nematode and serve as a group of important virulence factors during the infection of nematodes by nematophagous fungi. To elucidate the mechanism of interaction between the proteases and the nematode cuticle, two cuticle-degrading proteases, Ver112 from Lecanicillium psalliotae (syn. Verticillium psalliotae) and PL646 from Paecilomyces lilacinus, were studied. The Ver112 protein and the complex between PL646 and the substrate-like tetrapeptide inhibitor methoxy­succinyl-Ala-Ala-Pro-Val-chloromethyl ketone (MSU-AAPV) were crystallized using the hanging-drop vapour-diffusion method at 289 K. The crystals were analyzed by X-ray diffraction to resolutions of 1.65 and 2.2 Å, respectively. These analyses identified that crystals of Ver112 belonged to space group P212121, with unit-cell parameters a = 43.7, b = 67.8, c = 76.3 Å, α = β = γ = 90°. In contrast, crystals of the PL646–MSU-AAPV complex belonged to space group P21, with unit-cell parameters a = 65.1, b = 62.5, c = 67.6 Å, β = 92.8°.
doi:10.1107/S1744309109003595
PMCID: PMC2650454  PMID: 19255481
cuticle-degrading proteases; Ver112; PL646; Lecanicillium psalliotae; Paecilomyces lilacinus
17.  Survey of Plant-parasitic Nematodes in Missouri Cotton Fields 
Journal of Nematology  1992;24(4S):779-782.
During September 1990, 30 cotton fields in each of three Missouri counties were surveyed for plant-parasitic nematodes. Soil samples for nematode analysis consisted of a composite of 20 cores collected in a zig-zag pattern within a 1-ha block in each field. Cores were taken from within weed-free cotton rows. Nine genera of plant-parasitic nematodes were found (Rotylenchulus, Helicotylenchus, Hoplolaimus, Meloidogyne, Paratylenchus, Pratylenchus, Tylenchorhynchus, Heterodera, and Trichodorus), and five species were identified: Meloidogyne incognita, Rotylenchulus reniformis, Hoplolaimus galeatus, Pratylenchus vulnus, and P. scribneri. This is the first report of R. reniformis, H. galeatus, P. vulnus, and P. scribneri in Missouri cotton fields and the first report of R. reniformis and P. vulnus in Missouri. The known cotton pathogens M. incognita, R. reniformis, and H. galeatus were found in 30%, 3%, and 2% of the fields sampled, respectively. The correlation between sand content of the soil sample and the number of vermiform M. incognita in the sample was not significant, with r² = 0.13. Select fields where H. galeatus and R. reniformis were found in 1990 were sampled more intensely in 1991. The 1-ha block sampled in 1990 was sampled in 1991, along with three other 1-ha blocks uniformly distributed within the field. In addition, a 1-ha block was sampled in each of eight nearby fields, within 2 km of the first field. The nine plant-parasitic nematode genera identified in the 1990 survey were observed again in 1991. Within-field distribution of M. incognita, R. reniformis, and H. galeatus was not uniform. When M. incognita, R. reniformis, or H. galeatus were present in a field, the same species was found in 38%, 25%, or 50% of nearby fields, respectively.
PMCID: PMC2629866  PMID: 19283062
cotton; Gossypium hirsutum; Meloidogyne incognita; Missouri; nematode; Rotylenchulus reniformis; Hoplolaimus galeatus; survey
18.  Infection of Pratylenchus penetrans by Nematode-pathogenic fungi 
Journal of Nematology  1993;25(2):297-302.
Eleven fungal isolates were tested in agar dishes for pathogenicity to Pratylenchus penetrans. Of the fungi that produce adhesive conidia, Hirsutella rhossiliensis was a virulent pathogen; Verticillium balanoides, Drechmeria coniospora, and Nematoctonus sp. were weak or nonpathogens. The trapping fungi, Arthrobotrys dactyloides, A. oligospora, Monacrosporium dlipsosporum, and M. cionopagum, killed most of the P. penetrans adults and juveniles added to the fungus cultures. An isolate of Nematoctonus that forms adhesive knobs trapped only a small proportion of the nematodes. In 17-cm³ vials, soil moisture influenced survival of P. penetrans in the presence of H. rhossiliensis; nematode survival decreased with diminishing soil moisture. Hirsutella rhossiliensis and M. ellipsosporum were equally effective in reducing numbers of P. penetrans by 24-25% after 4 days in sand. After 25 days in soil artificially infested with H. rhossiliensis, numbers of P. penetrans were reduced by 28-53%.
PMCID: PMC2619380  PMID: 19279772
biological control; Hirsutella rhossiliensis; migratory endoparasite; Monacrosporium ellipsosporum; nematode; nematophagous fungi; Pratylenchus penetrans; root lesion nematode
19.  Influence of Infection of Cotton by Rotylenchulus Reniformis and Meloidogyne Incognita on the Production of Enzymes Involved in Systemic Acquired Resistance 
Journal of Nematology  2011;43(3-4):152-159.
Systemic acquired resistance (SAR), which results in enhanced defense mechanisms in plants, can be elicited by virulent and avirulent strains of pathogens including nematodes. Recent studies of nematode reproduction strongly suggest that Meloidogyne incognita and Rotylenchulus reniformis induce SAR in cotton, but biochemical evidence of SAR was lacking. Our objective was to determine whether infection of cotton by M. incognita and R. reniformis increases the levels of P-peroxidase, G-peroxidase, and catalase enzymes which are involved in induced resistance. A series of greenhouse trials was conducted; each trial included six replications of four treatments applied to one of three cotton genotypes in a randomized complete block design. The four treatments were cotton plants inoculated with i) R. reniformis, ii) M. incognita, iii) BTH (Actigard), and iv) a nontreated control. Experiments were conducted on cotton genotypes DP 0935 B2RF (susceptible to both nematodes), LONREN-1 (resistant to R. reniformis), and M-120 RNR (resistant to M. incognita), and the level of P-peroxidase, G-peroxidase, and catalase activity was measured before and 2, 4, 6, 10, and 14 d after treatment application. In all cotton genotypes, activities of all three enzymes were higher (P ≤ 0.05) in leaves of plants infected with M. incognita and R. reniformis than in the leaves of control plants, except that M. incognita did not increase catalase activity on LONREN-1. Increased enzyme activity was usually apparent 6 d after treatment. This study documents that infection of cotton by M. incognita or R. reniformis increases the activity of the enzymes involved in systemic acquired resistance; thereby providing biochemical evidence to substantiate previous reports of nematode-induced SAR in cotton.
PMCID: PMC3547351  PMID: 23431029
BTH; catalase; Meloidogyne incognita, peroxidase; reniform nematode; root-knot nematode; Rotylenchulus reniformis; systemic acquired resistance
20.  Microsatellites reveal genetic diversity in Rotylenchulus reniformis populations 
Journal of Nematology  2009;41(2):146-156.
Rotylenchulus reniformis is the predominant parasitic nematode of cotton in the Mid South area of the United States. Although variable levels of infection and morphological differences have been reported for this nematode, genetic variability has been more elusive. We developed microsatellite-enriched libraries for R. reniformis, produced 1152 clones, assembled 694 contigs, detected 783 simple sequence repeats (SSR) and designed 192 SSR-markers. The markers were tested on six R. reniformis cultures from four states, Texas, Louisiana, Mississippi and Georgia, in the USA. Based on performance we selected 156 SSR markers for R. reniformis from which 88 were polymorphic across the six reniform nematode populations, showing as the most frequent motif the dinucleotide AG. The polymorphic information content of the markers ranged from 0.00 to 0.82, and the percentage of multiallelic loci of the isolates was between 40.9 and 45.1%. An interesting finding in this study was the genetic variability detected among the three Mississippi isolates, for which 22 SSR markers were polymorphic. We also tested the level of infection of these isolates on six cotton genotypes, where significant differences were found between the Texas and Georgia isolates. Coincidentally, 62 polymorphic markers were able to distinguish these two populations. Further studies will be necessary to establish possible connections, if any, between markers and level of pathogenicity of the nematode. The SSR markers developed here will be useful in the assessment of the genetic diversity of this nematode, could assist in management practices for control of reniform nematode, be used in breeding programs for crop resistance, and help in detecting the origin and spread of this nematode in the United States.
PMCID: PMC3365315  PMID: 22661788
DNA fingerprinting; genetics; molecular biology; molecular markers; nematode; simple sequence repeats; SSR; STR; reniform nematode
21.  The Effect of Soil Texture and Irrigation on Rotylenchulus reniformis and Cotton 
Journal of Nematology  2013;45(2):99-105.
The reniform nematode, Rotylenchulus reniformis, is the most damaging nematode pathogen of cotton in Alabama. Soil texture is currently being explored as a basis for the development of economic thresholds and management zones within a field. Trials to determine the reproductive potential of R. reniformis as influenced by soil type were conducted in microplot and greenhouse settings during 2008 to 2010. Population density of R. reniformis was significantly influenced by soil texture and exhibited a general decrease with increasing median soil particle size (MSPS). As the MSPS of a soil increased from 0.04 mm in clay soil to > 0.30 mm in very fine sandy loam and sandy loam soils, R. reniformis numbers decreased. The R. reniformis population densities on all soil types were also greater with irrigation. Early season cotton development was significantly affected by increasing R. reniformis Pi, with plant shoot-weight-to-root-weight ratios increasing at low R. reniformis Pi and declining with increasing R. reniformis Pi. Plant height was increased by irrigation throughout the growing season. The results suggests that R. reniformis will reach higher population densities in soils with smaller MSPS; however, the reduction in yield or plant growth very well may be no greater than in a soil that is less preferential to the nematode.
PMCID: PMC3700743  PMID: 23833324
Gossypium hirsutum; median soil particle size (MSPS); soil moisture; soil texture; site-specific management
22.  Impact of Soil Texture on the Reproductive and Damage Potentials of Rotylenchulus reniformis and Meloidogyne incognita on Cotton 
Journal of Nematology  1996;28(4):527-536.
The effects of soil type and initial inoculum density (Pi) on the reproductive and damage potentials of Meloidogyne incognita and Rotylenchulus reniformis on cotton were evaluated in microplot experiments from 1991 to 1993. The equilibrium nematode population density for R. reniformis on cotton was much greater than that of M. incognita, indicating that cotton is a better host for R. reniformis than M. incognita. Reproduction of M. incognita was greater in coarse-textured soils than in fine-textured soils, whereas R. reniformis reproduction was greatest in a Portsmouth loamy sand with intermediate percentages of clay plus silt. Population densities of M. incognita were inversely related to the percentage of silt and clay, but R. reniformis was favored by moderate levels of clay plus silt (ca. 28%). Both M. incognita races 3 and 4 and R. reniformis effected suppression of seed-cotton yield in all soil types evaluated. Cotton-yield suppression was greatest in response to R. reniformis at high Pi. Cotton maturity, measured as percentage of open bolls at different dates, was affected by the presence of nematodes in all 3 years.
PMCID: PMC2619723  PMID: 19277171
cotton; ecology; edaphic factor; Gossypium hirsutum; Meloidogyne incognita; nematode; plant-disease loss; reniform nematode; root-knot nematode; Rotylenchulus reniformis; soil texture; yield
23.  Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation 
PLoS Pathogens  2011;7(9):e1002179.
Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions.
Author Summary
The fungus Arthrobotrys oligospora has multiple lifestyles. It's not only a nematode pathogen, but also a saprophyte, a pathogen of other fungi, and a colonizer of plant roots. As a nematode pathogen, A. oligospora forms adhesive networks to capture nematodes and is a model organism for understanding the interaction between these fungi and their host nematodes. In this study, the whole genome sequence of A. oligospora was reported. Our analyses of the proteome profiles of intracellular proteins from cells treated with nematode extracts for 10 h and 48 h revealed a key set of genes involved in trap formation. The changes in protein levels for some trap formation related genes were further confirmed by qPCR. The combined genome and proteome analysis identified the major genetic and metabolic pathways involved in trap formation in A. oligospora. Our results provide the first glimpse into the genome and proteome of this fascinating group of carnivorous fungi. The data should serve as a roadmap for further investigations into the interaction between nematode-trapping fungi and their host nematodes, providing broad foundations for research on the biocontrol of pathogenic nematodes.
doi:10.1371/journal.ppat.1002179
PMCID: PMC3164635  PMID: 21909256
24.  Two Simple Methods for the Collection of Individual Life Stages of Reniform Nematode, Rotylenchulus reniformis 
Journal of Nematology  2013;45(2):87-91.
The sedentary semi-endoparasitic nematode Rotylenchulus reniformis, the reniform nematode, is a serious pest of cotton and soybean in the United States. In recent years, interest in the molecular biology of the interaction between R. reniformis and its plant hosts has increased; however, the unusual life cycle of R. reniformis presents a unique set of challenges to researchers who wish to study the developmental expression of a particular nematode gene or evaluate life stage–specific effects of a specific treatment such as RNA-interference or a potential nematicide. In this report, we describe a simple method to collect R. reniformis juvenile and vermiform adult life stages under in vitro conditions and a second method to collect viable parasitic sedentary females from host plant roots. Rotylenchulus reniformis eggs were hatched over a Baermann funnel and the resultant second-stage juveniles incubated in petri plates containing sterile water at 30°C. Nematode development was monitored through the appearance of fourth-stage juveniles and specific time-points at which each developmental stage predominated were determined. Viable parasitic sedentary females were collected from infected roots using a second method that combined blending, sieving, and sucrose flotation. Rotylenchulus reniformis life stages collected with these methods can be used for nucleic acid or protein extraction or other experimental purposes that rely on life stage–specific data.
PMCID: PMC3700741  PMID: 23833322
host-parasitic relationship; life stages; reniform nematode; Rotylenchulus reniformis; technique
25.  Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi 
BMC Genomics  2014;15:114.
Background
Nematode-trapping fungi are a unique group of organisms that can capture nematodes using sophisticated trapping structures. The genome of Drechslerella stenobrocha, a constricting-ring-forming fungus, has been sequenced and reported, and provided new insights into the evolutionary origins of nematode predation in fungi, the trapping mechanisms, and the dual lifestyles of saprophagy and predation.
Results
The genome of the fungus Drechslerella stenobrocha, which mechanically traps nematodes using a constricting ring, was sequenced. The genome was 29.02 Mb in size and was found rare instances of transposons and repeat induced point mutations, than that of Arthrobotrys oligospora. The functional proteins involved in nematode-infection, such as chitinases, subtilisins, and adhesive proteins, underwent a significant expansion in the A. oligospora genome, while there were fewer lectin genes that mediate fungus-nematode recognition in the D. stenobrocha genome. The carbohydrate-degrading enzyme catalogs in both species were similar to those of efficient cellulolytic fungi, suggesting a saprophytic origin of nematode-trapping fungi. In D. stenobrocha, the down-regulation of saprophytic enzyme genes and the up-regulation of infection-related genes during the capture of nematodes indicated a transition between dual life strategies of saprophagy and predation. The transcriptional profiles also indicated that trap formation was related to the protein kinase C (PKC) signal pathway and regulated by Zn(2)–C6 type transcription factors.
Conclusions
The genome of D. stenobrocha provides support for the hypothesis that nematode trapping fungi evolved from saprophytic fungi in a high carbon and low nitrogen environment. It reveals the transition between saprophagy and predation of these fungi and also proves new insights into the mechanisms of mechanical trapping.
doi:10.1186/1471-2164-15-114
PMCID: PMC3924618  PMID: 24507587
Nematode-trapping fungi; Comparative genomic analysis; Origin of nematode predation; Transcriptomes; Trapping mechanism

Results 1-25 (234787)