PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (697547)

Clipboard (0)
None

Related Articles

1.  Infection Behavior and Overwintering Survival of Foliar Nematodes, Aphelenchoides fragariae, on Hosta 
Journal of nematology  2006;38(1):130-136.
We studied the pathogenicity and overwintering survival of the foliar nematode, Aphelenchoides fragariae, infecting Hosta spp. Nematodes applied to either lower or upper sides of noninjured and injured hosta leaves were able to infect and produce typical symptoms on nine cultivars. Leaves of only four cultivars (Borschi, Fragrant Blue, Patomic Pride, and Olive Bailey Langdon) showed no symptoms of nematode infection. The nematodes overwintered as juveniles and adults in soil, dry leaves, and dormant buds, but not in roots. Nematode winter survival was higher in dormant buds and soil from the polyhouse than in an open home garden. Of the nematodes found in the dormant buds, 35% to 79% were located between the first two outside layers of the buds. The nematodes tolerated 8 hr exposure to 40°C and −80°C in leaf tissues. Relative humidity influenced nematode migration from soil to leaves. The presence of nematodes only on the outer surface of foliage (leaves and petioles) confirmed the migration of A. fragariae on the surface of the plants. Of the total number of nematodes found on the foliage, 25% to 46% and 66% to 77% were alive at 90% and 100% relative humidity, respectively, suggesting that high moisture is required for the survival and upward movement of nematodes. We conclude that A. fragariae can overwinter in soil, infected dry leaves, and dormant buds and migrate in films of water on the outer surface of the plant during spring to leaves to initiate infection.
PMCID: PMC2586432  PMID: 19259438
Aphelenchoides fragariae; dormant buds; foliar nematode; Hosta spp.; overwintering; pathogenicity; temperature tolerance
2.  Effectiveness of a Hot Water Drench for the Control of Foliar Nematodes Aphelenchoides fragariae in Floriculture 
Journal of Nematology  2004;36(1):49-53.
Effectiveness of a hot water drench for the control of Aphelenchoides fragariae infesting hosta (Hosta sp.) and ferns (Matteuccia pensylvanica) was studied. Drenching with hot water at 70 °C and 90 °C in October reduced (P < 0.05) A. fragariae in the soil but not in the leaves relative to the control (25 °C) 300 days after treatment (DAT). Plants drenched with 90 °C water had lower numbers of nematode-infected leaves per plant than those treated with 25 °C and 70 °C water (P < 0.05). Hot water treatments had no adverse effect on the growth parameters of hosta. Boiling water (100 °C) applied once a month for 3 consecutive months (April, May, June) consistently reduced the number of infected leaves and the severity of infection relative to the control 150 DAT in hosta but not in ferns (P < 0.05). Boiling water (100 °C) caused a 67% reduction in A. fragariae population in hosta leaves, 50% in fern fronds, and 61% to 98% in the soil over the control 150 DAT. A boiling water drench had no effect on the fern growth but caused 49% and 22% reduction in the number and size of hosta leaves, respectively, over the control in 2002. We conclude that 90 °C water soil drench in the autumn or early spring could prove effective in managing foliar nematodes on hosta in nurseries and landscapes.
PMCID: PMC2620739  PMID: 19262787
Aphelenchoides fragariae; fern; foliar nematode; Hosta spp; hot water; Matteuccia pensylvanica
3.  Conventional and PCR Detection of Aphelenchoides fragariae in Diverse Ornamental Host Plant Species 
Journal of Nematology  2007;39(4):343-355.
A PCR-based diagnostic assay was developed for early detection and identification of Aphelenchoides fragariae directly in host plant tissues using the species-specific primers AFragFl and AFragRl that amplify a 169-bp fragment in the internal transcribed spacer (ITS1) region of ribosomal DNA. These species-specific primers did not amplify DNA from Aphelenchoides besseyi or Aphelenchoides ritzemabosi. The PCR assay was sensitive, detecting a single nematode in a background of plant tissue extract. The assay accurately detected A. fragariae in more than 100 naturally infected, ornamental plant samples collected in North Carolina nurseries, garden centers and landscapes, including 50 plant species not previously reported as hosts of Aphelenchoides spp. The detection sensitivity of the PCR-based assay was higher for infected yet asymptomatic plants when compared to the traditional, water extraction method for Aphelenchoides spp. detection. The utility of using NaOH extraction for rapid preparation of total DNA from plant samples infected with A. fragariae was demonstrated.
PMCID: PMC2586516  PMID: 19259510
Aphelenchoides fragariae; detection; diagnosis; foliar nematode; ITS1; method; NaOH; ornamental host; PCR; rDNA
4.  Refinement of Hot Water Treatment for Management of Aphelenchoides fragariae in Strawberry 
Journal of Nematology  1993;25(4S):795-799.
The effects of hot water treatments on a California population of the foliar nematode, Aphelenchoides fragariae, and on five strawberry cuttivars ('Chandler', 'Douglas', 'Fern', 'Pajaro', and 'Selva') were assessed in laboratory and greenhouse tests. Nematodes extracted from fern leaves were placed in water maintained at 44.4, 46.1,47.7, or 49.4 C for different time periods. Exposure periods of 15, 5, 4, and 2 minutes were required to produce 100% mortality at 44.4, 46.1, 47.7, and 49.4 C, respectively. In a water bath, 4 minutes were required for strawberry crowns initially at 25 C to equilibrate with temperatures ranging from 44.4-54.4 C. The maximum exposure periods that did not significantly reduce subsequent plant growth and flowering were 30, 15, and 10 minutes, at 44.4, 46.1, and 47.7 C, respectively. Survival of Selva was lower (P = 0.05) than for the other cultivars. Treatment at 49.4 C for 5 minutes significantly reduced plant growth and flowering of all cultivars. The minimum-maximum exposure periods that killed A. fragariae without damaging the cultivars tested were 20-30 minutes at 44.4 C, 10-15 at 46.1 C, or 8-10 at 47.7 C.
PMCID: PMC2619442  PMID: 19279842
Aphelenchoides fragariae; foliar nematode; Fragaria chiloensis; hot water treatment; nematode; strawberry
5.  Induction of Glutaredoxin Expression in Response to Desiccation Stress in the Foliar Nematode Aphelenchoides fragariae 
Journal of Nematology  2012;44(4):370-376.
Desiccation tolerance plays an important role in the overwinter survival of the foliar nematode Aphelenchoides fragariae. Survival rates of A. fragariae were compared with those of the anhydrobiotic soil-dwelling nematode Aphelenchus avenae after desiccation (90% RH), cold (4°C) and osmotic (500 mM sucrose) stress treatments. A. fragariae formed aggregates during desiccation and showed higher survival rates than A. avenae under desiccation and osmotic stress. Analysis of transcripts with Illumina RNA-seq indicated that glutaredoxin and other antioxidant-related genes were up-regulated under desiccation stress. Quantitative RT-PCR demonstrated 2.8 fold and 1.3 fold up-regulation of a glutaredoxin gene under desiccated and osmotic stress, respectively, suggesting the participation of antioxidant mechanisms in desiccation tolerance of A. fragariae.
PMCID: PMC3592362  PMID: 23483835
Aphelenchoides fragariae; desiccation; cold stress; osmotic stress; glutaredoxin; survival rate
6.  Efficacy of Insecticides for Control of Aphelenchoides fragariae and Ditylenchus dipsaci in Flowering Perennial Ornamentals 
Journal of Nematology  1999;31(4S):644-649.
The effects of abamectin B1, diazinon, and methiocarb insecticides on Aphelenchoides fragariae and Ditylenchus dipsaci in Lamium maculatum, Phlox subulata, Rhododendron indicum, and Begonia × tuberhybrida were determined in a series of greenhouse experiments. Abamectin at 0.005 or 0.011 g a.i./liter (0.3 or 0.6 ml/liter Avid 0.15 EC), diazinon at 0.62 or 1.87 g a.i./liter (2.6 or 7.8 ml/liter KnoxOut GH), or methiocarb at 3.5 g a.i./liter (4.7 g/liter Mesurol) were applied in two to six weekly or biweekly applications to foliage until runoff. Diazinon and abamectin reduced both A. fragariae and D. dipsaci populations in Lamium and Phlox, especially after repeated applications. Diazinon was generally more effective than abamectin. While methiocarb reduced A. fragariae densities in Lamium, it was not as efficacious as diazinon or abamectin. Nematode populations varied widely between host plant species and over time. Management of high nematode populations was difficult, and none of the materials tested was effective against A. fragariae in azalea or begonia. Both abamectin and diazinon are currently registered for insect control in ornamentals and may be combined with cultural control tactics to manage foliar nematodes.
PMCID: PMC2620411  PMID: 19270930
abamectin; Aphelenchoides fragariae; avid; azalea; begonia; diazinon; Ditylenchus dipsaci; KnoxOut; Lamium maculatum; Mesurol; methiocarb; nematicide; nematode; Phlox subulata; stem and bulb nematode
7.  Long-Term Environmental Correlates of Invasion by Lantana camara (Verbenaceae) in a Seasonally Dry Tropical Forest 
PLoS ONE  2013;8(10):e76995.
Invasive species, local plant communities and invaded ecosystems change over space and time. Quantifying this change may lead to a better understanding of the ecology and the effective management of invasive species. We used data on density of the highly invasive shrub Lantana camara (lantana) for the period 1990–2008 from a 50 ha permanent plot in a seasonally dry tropical forest of Mudumalai in southern India. We used a cumulative link mixed-effects regression approach to model the transition of lantana from one qualitative density state to another as a function of biotic factors such as indicators of competition from local species (lantana itself, perennial grasses, invasive Chromolaena odorata, the native shrub Helicteres isora and basal area of native trees) and abiotic factors such as fire frequency, inter-annual variability of rainfall and relative soil moisture. The density of lantana increased substantially during the study period. Lantana density was negatively associated with the density of H. isora, positively associated with basal area of native trees, but not affected by the presence of grasses or other invasive species. In the absence of fire, lantana density increased with increasing rainfall. When fires occurred, transitions to higher densities occurred at low rainfall values. In drier regions, lantana changed from low to high density as rainfall increased while in wetter regions of the plot, lantana persisted in the dense category irrespective of rainfall. Lantana seems to effectively utilize resources distributed in space and time to its advantage, thus outcompeting local species and maintaining a population that is not yet self-limiting. High-risk areas and years could potentially be identified based on inferences from this study for facilitating management of lantana in tropical dry forests.
doi:10.1371/journal.pone.0076995
PMCID: PMC3805544  PMID: 24167555
8.  Effect of Agricultural Management on Nematode Communities in a Mediterranean Agroecosystem 
Journal of Nematology  2001;33(4):208-213.
The effects of agricultural management on the soil nematode community were investigated in a field study at depths of 0 to 10 cm and 10 to 20 cm during a peanut (Arachis hypogaea) growing season in Israel. Nineteen nematode families and 23 genera were observed. Rhabditidae, Cephalobus, Eucephalobus, Aphelenchus, Aphelenchoides, Tetylenchus, Tylenchus, Dorylaimus, and Discolaimus were the dominant family and genera. Ecological measures of soil nematode community structure, diversity, and maturity indices were assessed and compared between the managed (by fertilization, irrigation, and pesticide application) and unmanaged fields. The total number of nematodes at a 10-cm depth during peanut-sowing, mid-season, and harvest periods was higher in the treated (managed) plot than in the control (unmanaged) plot. Bacterivores and fungivores were the most abundant trophic groups in both plots and both depths. The relative abundance of each group averaged 60.8 to 67.3% and 11.5 to 19.6% of the nematode community, respectively. Plant parasites and omnivores-predators at the 0 to 10-cm depth were much less abundant than any other two groups in our experimental plots. During the growing season, except the harvest period, populations of plant parasites and omnivores-predators at the 10 to 20-cm depth were lower in the treated plot than in the control plot. Maturity index (MI), plant-parasite index (PPI), and ratio of fungivores and bacterivores to plant parasites (WI) were found to be more sensitive indicators than other ecological indices for assessing the response of nematode communities to agricultural management in an Israeli agroecosystem.
PMCID: PMC2620504  PMID: 19265883
agricultural management; agroecosystem; diversity; maturity index; nematode communities; peanut
9.  The effects of Brassica green manures on plant parasitic and free living nematodes used in combination with reduced rates of synthetic nematicides 
Journal of Nematology  2011;43(2):119-121.
Brassica plants once incorporated into soil as green manures have recently been shown to have biofumigant properties and have the potential of controlling plant-parasitic nematodes. In Washington State, plant-parasitic nematodes are successfully managed with synthetic nematicides. However, some of the synthetic nematicides became unavailable recently or their supply is limited leaving growers with few choices to control plant-parasitic nematodes. The objective of this project was to evaluate the effects of Brassica green manures on their own and in combination with reduced rates of synthetic nematicides on plant-parasitic nematodes and free living nematodes. In a greenhouse experiment and field trials in three seasons, Brassica green manures in combination with half the recommended rate of 1,3-dichloropropene (1,3-D, Telone) reduced root knot nematode, Meloidogyne chitwoodi to below detection levels, and reduced lesion nematodes, Pratylenchus penetrans and stubby root nematodes, Paratrichodorus allius, to below economic thresholds. The combination treatments did not affect the beneficial free-living nematode populations and the non-pathogenic Pseudomonas. The total cost of growing and soil-incorporating Brassica crops as green manures in combination with reduced rates of 1,3-D was approximately 35% lower than the present commercial costs for application for the full rate of this fumigant. Integrating conventional management practices with novel techniques fosters sustainability of production systems and can increase economic benefit to producers while reducing chemical input.
PMCID: PMC3380464  PMID: 22791922
Plant parasitic nematodes; free living nematodes; Brassicaceae green manures; Telone
10.  Foliar Sprays with Steinernema carpocapsae against Early-season Apple Pests 
Journal of Nematology  1998;30(4S):599-606.
Persistence and field efficacy of the entomopathogenic nematode Steinernema carpocapsae A11 strain applied by foliar sprays were evaluated against the apple sawfly Hoplocampa testudinea and the plum curculio Conotrachelus nenuphar, two early-season pests in Quebec apple orchards. From 1992 to 1995, bioassays with Galleria mellonella larvae were conducted to assess the persistence of S. carpocapsae on leaves, flower clusters, and twigs up to 4 days after evening application. S. carpocapsae juveniles remained infective on apple leaves 24, 42, 98, and 24 hours after application in 1992, 1993, 1994, and 1995, respectively. In bioassays, the percentage of G. mellonella mortality was consistently higher on leaves (average = 84%), intermediate on flower clusters (73%), and lower on twigs (43%) for all application dates. In 1992 and 1993, single nematode sprays applied every 2 to 3 days from early May to mid-June on apple tree limbs reduced primary damage caused by H. testudinea by 98% and 100%, respectively, but none of the treatments was effective in 1994. In 1993 and 1994, multiple border-row sprays were applied against C. nenuphar adults with a commercial hand-gun applicator in an insecticide-free orchard. At harvest, plum curculio damage in the nematode-treated orchard reached 5% and 55% in 1993 and 1994, respectively, as compared to 80% and 85% in an adjacent insecticide-free orchard. In a second experiment performed in 1994, multiple broadcast sprays with a commercial orchard sprayer caused no significant effect on plum curculio damage (nematode = 28%; control = 31%). Although some efficacy of canopy sprays of nematodes was detected against early-season apple pests, the inconsistent results and high application costs preclude their use as a sole control tactic against these pests in commercial apple orchards.
PMCID: PMC2620325  PMID: 19274253
apple; biological control; Coleoptera; Conotrachelus nenuphar; Curculionidae; European apple sawfly; field persistence; foliar application; Hoplocampa testudinea; Hymenoptera; nematode; plum curculio; Steinernema carpocapsae; Tenthredinidae
11.  Effects of Pratylenchus penetrans and Rhizoctonia fragariae on Vigor and Yield of Strawberry 
Journal of Nematology  1999;31(4):418-423.
Microplot and small field-plot experiments were conducted to determine the effects of Pratylenchus penetrans on strawberry yield over several seasons and to evaluate the effects of nematode control on strawberry vigor and yield. Pratylenchus penetrans alone or in combination with the black root rot pathogen, Rhizoctonia fragariae, reduced strawberry yield in microplots over time. There were no differences in effects on yield among R. fragariae anastomosis groups A, G, or I. The interaction of the two pathogens appeared to be additive rather than synergistic. In field plots infested with P. penetrans alone, plant vigor and yield were increased by the application of carbofuran and fenamiphos nematicides. Nematode control was transitory, as P. penetrans populations were initially suppressed but were not different in samples taken 10 months after treatment. These data highlight the error in associating causality between plant damage and nematode populations based on a correlation of root disease with nematode diagnostic assays from severely diseased plants. These findings may help to explain how nematode numbers can sometimes be higher in healthy plants than in severely diseased plants that lack sufficient roots to maintain nematode populations. Because nematode populations from up to a year before harvest are better correlated with berry yield, preplant nematode diagnostic assays taken a year in advance of harvest may be superior in predicting damage to perennial strawberry yield.
PMCID: PMC2620392  PMID: 19270914
black root rot; disease complex; Fragaria × ananassa; lesion nematode; nematode; Pratylenchus penetrans; Rhizoctonia fragariae
12.  Strawberry Cultivars Vary in their Resistance to Northern Lesion Nematode 
Journal of Nematology  1998;30(4S):577-580.
The genetic diversity of commercial cultivars of strawberry Fragaria x ananassa from various parentages, as expressed by their resistance to the northem lesion nematode Pratylenchus penetrans, was evaluated in nematode-infested field plots for two growing seasons. Data taken for each plant in each season included soil nematode Pi and Pf, end-of-season nematode numbers in each entire root system, and end-of-season fresh and dry top weight and whole root system weight. Resistance was estimated using an index of the nematode load on the plant: Nematode load = {n(root) + (200 × n[soil])}/{root dry weight} where n (root) = number of nematodes in the root, n [soil] = number of nematodes in 50 g of nonfumigated soil, and 200 is a multiplier to convert the soil nematode count to a 10-kg basis. Nineteen strawberry cultivars varied in their resistance to the northern lesion nematode, from a mean load of 382 nematodes/plant for Pajaro to 1,818 nematodes/plant for Veestar. This variability could be related to the original family groupings, with the most resistant cultivars related to Lassen and the least resistant to Sparkle x Valentine.
PMCID: PMC2620340  PMID: 19274249
Fragaria x ananassa; nematode; nematode load; northern lesion nematode; Pratylenchus penetrans; resistance; strawberry; tolerance
13.  Foliar water uptake: a common water acquisition strategy for plants of the redwood forest 
Oecologia  2009;161(3):449-459.
Evaluations of plant water use in ecosystems around the world reveal a shared capacity by many different species to absorb rain, dew, or fog water directly into their leaves or plant crowns. This mode of water uptake provides an important water subsidy that relieves foliar water stress. Our study provides the first comparative evaluation of foliar uptake capacity among the dominant plant taxa from the coast redwood ecosystem of California where crown-wetting events by summertime fog frequently occur during an otherwise drought-prone season. Previous research demonstrated that the dominant overstory tree species, Sequoia sempervirens, takes up fog water by both its roots (via drip from the crown to the soil) and directly through its leaf surfaces. The present study adds to these early findings and shows that 80% of the dominant species from the redwood forest exhibit this foliar uptake water acquisition strategy. The plants studied include canopy trees, understory ferns, and shrubs. Our results also show that foliar uptake provides direct hydration to leaves, increasing leaf water content by 2–11%. In addition, 60% of redwood forest species investigated demonstrate nocturnal stomatal conductance to water vapor. Such findings indicate that even species unable to absorb water directly into their foliage may still receive indirect benefits from nocturnal leaf wetting through suppressed transpiration. For these species, leaf-wetting events enhance the efficacy of nighttime re-equilibration with available soil water and therefore also increase pre-dawn leaf water potentials.
doi:10.1007/s00442-009-1400-3
PMCID: PMC2727584  PMID: 19585154
Leaf wetness; Water absorption; Nocturnal conductance; Stable isotopes; Deuterium
14.  Interaction of Pratylenchus penetrans and Rhizoctonia fragariae in Strawberry Black Root Rot 
Journal of Nematology  2003;35(1):17-22.
A split-root technique was used to examine the interaction between Pratylenchus penetrans and the cortical root-rotting pathogen Rhizoctonia fragariae in strawberry black root rot. Plants inoculated with both pathogens on the same half of a split-root crown had greater levels of root rot than plants inoculated separately or with either pathogen alone. Isolation of R. fragariae from field-grown roots differed with root type and time of sampling. Fungal infection of structural roots was low until fruiting, whereas perennial root colonization was high. Isolation of R. fragariae from feeder roots was variable, but was greater from feeder roots on perennial than from structural roots. Isolation of the fungus was greater from structural roots with nematode lesions than from non-symptomatic roots. Rhizoctonia fragariae was a common resident on the sloughed cortex of healthy perennial roots. From this source, the fungus may infect additional roots. The direct effects of lesion nematode feeding and movement are cortical cell damage and death. Indirect effects include discoloration of the endodermis and early polyderm formation. Perhaps weakened or dying cells caused directly or indirectly by P. penetrans are more susceptible to R. fragariae, leading to increased disease.
PMCID: PMC2620604  PMID: 19265969
black root rot; Fragaria × ananassa; interaction; lesion nematode; Pratylenchus penetrans; Rhizoctonia fragariae; strawberry
15.  Comparison of Pratylenchus penetrans Infection and Maladera castanea Feeding on Strawberry Root Rot 
Journal of Nematology  2005;37(2):131-135.
The interaction of lesion nematodes, black root rot disease caused by Rhizoctonia fragariae, and root damage caused by feeding of the scarab larva, Maladera castanea, was determined in greenhouse studies. Averaged over all experiments after 12 weeks, root weight was reduced 13% by R. fragariae and 20% by M. castanea. The percentage of the root system affected by root rot was increased by inoculation with either R. fragariae (35% more disease) or P. penetrans (50% more disease) but was unaffected by M. castanea. Rhizoctonia fragariae was isolated from 9.2% of the root segments from plants not inoculated with R. fragariae. The percentage of R. fragariae-infected root segments was increased 3.6-fold by inoculation with R. fragariae on rye seeds. The presence of P. penetrans also increased R. fragariae root infection. The type of injury to root systems was important in determining whether roots were invaded by R. fragariae and increased the severity of black root rot. Pratylenchus penetrans increased R. fragariae infection and the severity of black root rot. Traumatic cutting action by Asiatic garden beetle did not increase root infection or root disease by R. fragariae. Both insects and diseases need to be managed to extend the productive life of perennial strawberry plantings.
PMCID: PMC2620957  PMID: 19262852
asiatic garden beetle; black root rot; Fragaria × ananassa; interaction; lesion nematode; Maladera castanea; Pratylenchus penetrans; Rhizoctonia fragariae; scarab; strawberry
16.  Abundance and Vertical Distribution of Longidorus breviannulatus Associated with Corn and Potato 
Journal of Nematology  1989;21(3):404-408.
Longidorus breviannulatus was detected in a field planted to corn after 13 years of potato. Nematode populations were maintained in this field in adjacent corn and potato plots for 2 years but did not increase significantly on either crop. Population levels increased until approximately 60 days after planting and then declined until the end of the growing season. Overwinter mortality was negligible. The vertical distribution of the nematode population changed during the course of the season. More nematodes were recovered from depths of 0-15 cm in early season samples and from depths of 15-30 cm in late season samples. Data indicated that this redistribution was due to nematode migration.
PMCID: PMC2618940  PMID: 19287627
corn; corn needle nematode; Longidorus breviannulatus; migration; potato; Solanum tuberosum; vertical distribution; Zea mays
17.  The Influence of Pratylenchus penetrans on the Incidence and Severity of Verticillium Wilt of Potato 
Journal of Nematology  1978;10(1):95-99.
The influence of Pratylenchus penetrans on the incidence and severity of Verticillium wilt was examined in the potato cultivars 'Kennebec', 'Katahdin', and 'Abnaki'. Single-stem plants were grown in soil maintained at a temperature of 22 ± 1 C. Axenically cultured nematodes were suspended in water and introduced to the soil, at a rate of ca 5,000/25.4-cm pot, through holes made around each stem. Ten days after infestation with nematodes, conidial suspensions of Verticillium albo-atrum were introduced into the soil at a rate of ca 1,000,000/pot. Among Katahdin plants, the severity of foliar symptoms was increased in the presence of both pathogens 2 and 3 weeks after soil intestation. During the remaining 5 weeks, severity of foliar symptoms was not different between plants infected by both pathogens and those infected by Verticillium alone. Within the wilt-susceptible cultivar Kennebec and the resistant eultivar Abnaki, no effects on foliar symptom severity were observed. When plant heights, shoot weights, and tuber yields were analyzed, a Pratylenchus-Verticillium interaction was not evident within any of the cultivars tested. Nematode populations in roots and rhizosphere were suppressed in Kennebec and Katahdin plants in the presence of Verticillium.
PMCID: PMC2617862  PMID: 19305819
Lesion nematode; nematode-fungus interaction; Solanum tuberosum; Verticillium albo-atrum
18.  Population Dynamics of Heterodera glycines Life Stages on Soybean 
Journal of Nematology  1985;17(2):153-158.
Population fluctuations of Heterodera glycines differ in fields with high and low initial population densities. In a field with low initial numbers of nematodes, the numbers of cysts and eggs in soil remained low through 100 days from planting then increased during the remainder of the growing season. In a field with high initial nematode populations, numbers increased at 30 days, decreased to low numbers at 100 days, and then resurged to maximum populations at harvest. Numbers of juveniles were greatest at 100 days in the low initial population density field and at planting in the high initial population density field. The initial numbers of eggs in the soil gave the best correlation to soil and root nematode populations 15 and 30 days later. Juveniles in the soil at planting gave the largest correlation coefficients with nematode populations in the roots at 15 days in the field with the low initial population density. Eggs and juveniles in the soil at harvest were poorly related to numbers that overwintered.
PMCID: PMC2618449  PMID: 19294075
Glycine max; soybean cyst nematode; ecology; population fluctuations
19.  Edge Effects on Foliar Stable Isotope Values in a Madagascan Tropical Dry Forest 
PLoS ONE  2012;7(9):e44538.
Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ13C values where leaves collected close to the forest floor would have lower δ13C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ13C and δ15N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ13C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ13C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ15N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation biology of forest ecosystems in Madagascar.
doi:10.1371/journal.pone.0044538
PMCID: PMC3433415  PMID: 22973460
20.  Repellent Plants Provide Affordable Natural Screening to Prevent Mosquito House Entry in Tropical Rural Settings—Results from a Pilot Efficacy Study 
PLoS ONE  2011;6(10):e25927.
Sustained malaria control is underway using a combination of vector control, prompt diagnosis and treatment of malaria cases. Progress is excellent, but for long-term control, low-cost, sustainable tools that supplement existing control programs are needed. Conventional vector control tools such as indoor residual spraying and house screening are highly effective, but difficult to deliver in rural areas. Therefore, an additional means of reducing mosquito house entry was evaluated: the screening of mosquito house entry points by planting the tall and densely foliated repellent plant Lantana camara L. around houses. A pilot efficacy study was performed in Kagera Region, Tanzania in an area of high seasonal malaria transmission, where consenting families within the study village planted L. camara (Lantana) around their homes and were responsible for maintaining the plants. Questionnaire data on house design, socioeconomic status, malaria prevention knowledge, attitude and practices was collected from 231 houses with Lantana planted around them 90 houses without repellent plants. Mosquitoes were collected using CDC Light Traps between September 2008 and July 2009. Data were analysed with generalised negative binomial regression, controlling for the effect of sampling period. Indoor catches of mosquitoes in houses with Lantana were compared using the Incidence Rate Ratio (IRR) relative to houses without plants in an adjusted analysis. There were 56% fewer Anopheles gambiae s.s. (IRR 0.44, 95% CI 0.28–0.68, p<0.0001); 83% fewer Anopheles funestus s.s. (IRR 0.17, 95% CI 0.09–0.32, p<0.0001), and 50% fewer mosquitoes of any kind (IRR 0.50, 95% CI 0.38–0.67, p<0.0001) in houses with Lantana relative to controls. House screening using Lantana reduced indoor densities of malaria vectors and nuisance mosquitoes with broad community acceptance. Providing sufficient plants for one home costs US $1.50 including maintenance and labour costs, (30 cents per person). L. camara mode of action and suitability for mosquito control is discussed.
doi:10.1371/journal.pone.0025927
PMCID: PMC3192125  PMID: 22022471
21.  Distribution in the Western United States on Alfalfa and Cultivar Reaction to Mixed Populations of Ditylenchus dipsaci and Aphelenchoides ritzemabosi 
Journal of Nematology  1994;26(4S):705-719.
Ditylenchus dipsaci and Aphelenchoides ritzemabosi were extracted from 29 of 40 plant samples (72.5%) collected from Arizona, California, Colorado, Idaho, Montana, Oregon, South Dakota, Utah, Washington, and Wyoming. Percentages of A. ritzemabosi in tissue of the 29 samples ranged from 1.77 to 67.82%. Only Ditylenchus dipsaci was recovered from the remaining 11 samples. All of the 16 fields sampled in Wyoming contained both nematodes. Percentages of A. ritzemabosi in the Wyoming samples ranged from 0.7-30.0%, with an overall mean of 10.3%. Individual plants collected from a field in Big Horn, Wyoming, all contained both nematodes. Percentages of A. ritzemabosi in tissue ranged from 5-70%. Alfalfa stem nematode symptomatic plants in 17 of 18 alfalfa cultivars collected from a screening nursery in California contained both nematodes, of which 10-94% were A. ritzemabosi. Only one cultivar had D. dipsaci only, and no entries had A. ritzemabosi only. Under environmentally controlled conditions, A. ritzemabosi reproduced in all nine alfalfa cultivars tested at 6 weeks of age with a mean reproductive factor (final population/initial population) of 4.1. There were more (P ≤ 0.05) A. ritzemabosi in stem and bud tissue of the susceptible cultivars at harvest than in the resistant cultivars with combined cultivar means of 238, 42, 78, and 4 A. ritzemabosi/g tissue for the susceptible, moderately resistant, resistant, and highly resistant cultivars, respectively. Percentage A. ritzemabosi in tissues decreased over time in seedlings but increased in older plants.
PMCID: PMC2619569  PMID: 19279952
alfalfa stem nematode; Aphelenchoides ritzemabosi; chrysanthemum nematode; cultivar reaction; Ditylenchus dipsaci; geographic distribution; mixed population; nematode; red clover; Sonchus sp.; sow thistle; Trifolium pratense
22.  Seasonal Fluctuations of Soil and Tissue Populations of Ditylenchus dipsaci and Aphelenchoides ritzemabosi in Alfalfa 
Journal of Nematology  1999;31(1):27-36.
Population dynamics of A. ritzemabosi and D. dipsaci were studied in two alfalfa fields in Wyoming. Symptomatic stem-bud tissue and root-zone soil from alfalfa plants exhibiting symptoms of D. dipsaci infection were collected at intervals of 3 to 4 weeks. Both nematodes were extracted from stem tissue with the Baermann funnel method and from soil with the sieving and Baermann funnel method. Soil moisture and soil temperature at 5 cm accounted for 64.8% and 61.0%, respectively, of the variability in numbers of both nematodes in soil at the Big Horn field. Also at the Big Horn field, A. ritzemabosi was found in soil on only three of the 14 collection dates, whereas D. dipsaci was found in soil on 12 dates. Aphelenchoides ritzemabosi was found in stem tissue samples on 9 of the 14 sampling dates whereas D. dipsaci was found on all dates. Populations of both nematodes in stem tissue peaked in October, and soil populations of both peaked in January, when soil moisture was greatest. Numbers of D. dipsaci in stem tissue were related to mean air temperature 3 weeks prior to tissue collection, while none of the climatic factors measured were associated with numbers of A. ritzemabosi. At the Dayton field, soil moisture plus soil temperature at 5 cm accounted for 98.2% and 91.4% of the variability in the soil populations of A. ritzemabosi and D. dipsaci, respectively. Aphelenchoides ritzemabosi was extracted from soil at two of the five collection dates, compared to extraction of D. dipsaci at three dates. Aphelenchoides ritzemabosi was collected from stem tissue at six of the seven sampling dates while D. dipsaci was found at all sampling dates. The only environmental factor that was associated with an increase in the numbers of both nematodes in alfalfa stem tissue was total precipitation 1 week prior to sampling, and this occurred only at the Dayton field. Numbers of A. ritzemabosi in stem tissue appeared to be not affected by any of the environmental factors studied, while numbers of D. dipsaci in stem tissue were associated with cumulative monthly precipitation, snow cover at time of sampling, and the mean weekly temperature 3 weeks prior to sampling. Harvesting alfalfa reduced the numbers of A. ritzemabosi at the Big Horn field and both nematodes at the Dayton field.
PMCID: PMC2620350  PMID: 19270872
alfalfa; alfalfa stem nematode; Aphelenchoides ritzemabosi; chrysanthemum foliar nematode; climate; distribution; Ditylenchus dipsaci; Medicago sativa; nematode; sampling; seasonal fluctuations
23.  Effect of light on the growth and photosynthesis of an invasive shrub in its native range 
AoB Plants  2014;6:plu033.
We studied the growth and photosynthetic capacity of Berberis darwinii shrub growing under different light conditions in their native area of Argentina to test if plant physiology differs from invaded area (using studies carried out in New Zealand). In its native range B. darwinii grows under different light conditions by adjusting shoot and leaf morphology and physiology. Plants of B. darwinii growing under the same light environments show similar physiology in native and invasive ranges. Therefore, intra-specific variations of the functional traits in native area do not condition successful invasiveness.
Invasive species' success may depend on ecophysiological attributes present in their native area or those derived from changes that took place in the invaded environment. We studied the growth and photosynthetic capacity of Berberis darwinii shrubs growing under different light conditions (gap, forest edge and below the canopy) in their native area of Patagonia, Argentina. Leaf photosynthesis results determined in the native area were discussed in relation to information provided by studies carried out under the same light conditions in an invaded area in New Zealand. Shoot elongation, leaf production, stem and leaf biomass per shoot, and specific leaf area (SLA, cm2 g−1) were determined in five adult plants, randomly selected in each of the three light conditions at two forest sites. Net photosynthesis as a function of PPFD (photosynthetic photon flux density), stomatal conductance (gs), maximum light-saturated photosynthesis rate (Pmax), Pmass (on mass bases) and water-use efficiency (WUEi) were determined in plants of one site. We predicted that functional traits would differ between populations of native and invasive ranges. In their native area, plants growing under the canopy produced the longest shoots and had the lowest values for shoot emergence and foliar biomass per shoot, while their SLA was higher than gap and forest edge plants. Leaf number and stem biomass per shoot were independent of light differences. Leaves of gap plants showed higher Pmax, Pmass and gs but lower WUEi than plants growing at the forest edge. In its native range B. darwinii grows under different light conditions by adjusting shoot and leaf morphology and physiology. Plants of B. darwinii growing under the same light conditions show similar physiology in native and invasive ranges. This means that for B. darwinii, intra-specific variation of the functional traits studied here does not condition successful spread in new areas.
doi:10.1093/aobpla/plu033
PMCID: PMC4240251  PMID: 24969502
Berberis darwinii; ecophysiological attributes; light environments; native and invasion area; plant invasion.
24.  Spectral reflectance from a soybean canopy exposed to elevated CO2 and O3 
Journal of Experimental Botany  2010;61(15):4413-4422.
By affecting the physiology and structure of plant canopies, increasing atmospheric CO2 and O3 influence the capacity of agroecosystems to capture light and convert that light energy into biomass, ultimately affecting productivity and yield. The objective of this study was to determine if established remote sensing indices could detect the direct and interactive effects of elevated CO2 and elevated O3 on the leaf area, chlorophyll content, and photosynthetic capacity of a soybean canopy growing under field conditions. Large plots of soybean (Glycine max) were exposed to ambient air (∼380 μmol CO2 mol−1), elevated CO2 (∼550 μmol mol−1), elevated O3 (1.2× ambient), and combined elevated CO2 plus elevated O3 at the soybean free air gas concentration enrichment (SoyFACE) experiment. Canopy reflectance was measured weekly and the following indices were calculated from reflectance data: near infrared/red (NIR/red), normalized difference vegetation index (NDVI), canopy chlorophyll content index (chl. index), and photochemical reflectance index (PRI). Leaf area index (LAI) also was measured weekly. NIR/red and LAI were linearly correlated throughout the growing season; however, NDVI and LAI were correlated only up to LAI values of ∼3. Season-wide analysis demonstrated that elevated CO2 significantly increased NIR/red, PRI, and chl. index, indicating a stimulation of LAI and photosynthetic carbon assimilation, as well as delayed senescence; however, analysis of individual dates resolved fewer statistically significant effects of elevated CO2. Exposure to elevated O3 decreased LAI throughout the growing season. Although NIR/red showed the same trend, the effect of O3 on NIR/red was not statistically significant. Season-wide analysis showed significant effects of O3 on PRI; however, analysis of individual dates revealed that this effect was only statistically significant on two dates. Elevated O3 had minimal effects on the total canopy chlorophyll index. PRI appeared to be more sensitive to decreased photosynthetic capacity of the canopy as a whole compared with previously published single leaf gas exchange measurements at SoyFACE, possibly because PRI integrates the reflectance signal of older leaves with accumulated O3 damage and healthy young, upper canopy leaves, enabling detection of significant decreases in photosynthetic carbon assimilation which have not been detected in previous studies which measured gas exchange of upper canopy leaves. When the canopy was exposed to elevated CO2 and O3 simultaneously, the deleterious effects of elevated O3 were diminished. Reflectance data, while less sensitive than direct measurements of physiological/structural parameters, corroborate direct measurements of LAI and photosynthetic gas exchange made during the same season, as well as results from previous years at SoyFACE, demonstrating that these indices accurately represent structural and physiological effects of changing tropospheric chemistry on soybean growing in a field setting.
doi:10.1093/jxb/erq244
PMCID: PMC2955751  PMID: 20696654
Canopy reflectance; elevated CO2; elevated O3; NIR/red; PRI; soybean (Glycine max); SoyFACE
25.  Influence of Rotation Crops on the Strawberry Pathogens Pratylenchus penetrans, Meloidogyne hapla, and Rhizoctonia fragariae 
Journal of Nematology  1999;31(4S):650-655.
Field microplot, small plot, and greenhouse experiments were conducted to determine the effects of rotation crops on Pratylenchus penetrans, Meloidogyne hapla, and Rhizoctonia fragariae populations. Extraction of P. penetrans from roots and soil in microplots and field plots planted to rotation crops was highest for Garry oat, lowest for Triple S sorgho-sudangrass and Saia oat, and intermediate for strawberry, buckwheat, and canola. Isolation of R. fragariae from bait roots was highest for strawberry and canola after 2 years of rotation and lowest for Saia oat. Nematode extraction from roots of rotation crops in field soils was generally higher than from roots in microplots. Grasses were nonhosts of M. hapla. Strawberry, canola, and buckwheat supported root-knot populations over time, but there were no differences in nematode numbers regardless of crop after one season of strawberry growth. Garry oat, canola, and, to a lesser extent, buckwheat supported large populations of P. penetrans without visible root symptoms. Strawberry plants supported fewer nematodes due to root damage. Nematode numbers from soil were less than from roots for all crops. While there were similar trends for pathogen recovery after more than 1 year of strawberry growth following rotation, differences in pathogen density and fruit yield were not significant. In the greenhouse, P. penetrans populations in roots and soil in pots were much higher for Garry oat than for Saia oat. Total P. penetrans adult and juvenile numbers per pot ranged from 40 to 880 (mean = 365.6) for Garry oat and 0 to 40 (mean = 8.7) for Saia oat. Production of Saia oat as a rotation crop may be a means of managing strawberry nematodes and black root rot in Connecticut.
PMCID: PMC2620401  PMID: 19270931
black root rot; buckwheat; canola; crop rotation; Fragaria × ananassa; lesion nematode; Meloidogyne hapla; nematode; oat; Pratylenchus penetrans; Rhizoctonia fragariae; sorgho-sudangrass; strawberry

Results 1-25 (697547)