Search tips
Search criteria

Results 1-25 (958416)

Clipboard (0)

Related Articles

1.  The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? 
Biology Direct  2006;1:22.
Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes.
I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the α-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that ancestors of spliceosomal introns, indeed, have existed since the earliest stages of life's evolution, in a formal agreement with the introns-early scenario. However, there is no evidence that these ancient introns ever became widespread before the emergence of eukaryotes, hence, the central tenet of introns-early, the role of introns in early evolution of proteins, has no support. However, the demonstration that numerous introns invaded eukaryotic genes at the outset of eukaryotic evolution and that subsequent intron gain has been limited in many eukaryotic lineages implicates introns as an ancestral feature of eukaryotic genomes and refutes radical versions of introns-late. Perhaps, most importantly, I argue that the intron invasion triggered other pivotal events of eukaryogenesis, including the emergence of the spliceosome, the nucleus, the linear chromosomes, the telomerase, and the ubiquitin signaling system. This concept of eukaryogenesis, in a sense, revives some tenets of the exon hypothesis, by assigning to introns crucial roles in eukaryotic evolutionary innovation.
The scenario of the origin and evolution of introns that is best compatible with the results of comparative genomics and theoretical considerations goes as follows: self-splicing introns since the earliest stages of life's evolution – numerous spliceosomal introns invading genes of the emerging eukaryote during eukaryogenesis – subsequent lineage-specific loss and gain of introns. The intron invasion, probably, spawned by the mitochondrial endosymbiont, might have critically contributed to the emergence of the principal features of the eukaryotic cell. This scenario combines aspects of the introns-early and introns-late views.
this article was reviewed by W. Ford Doolittle, James Darnell (nominated by W. Ford Doolittle), William Martin, and Anthony Poole.
PMCID: PMC1570339  PMID: 16907971
2.  Intrinsic Disorder in the Human Spliceosomal Proteome 
PLoS Computational Biology  2012;8(8):e1002641.
The spliceosome is a molecular machine that performs the excision of introns from eukaryotic pre-mRNAs. This macromolecular complex comprises in human cells five RNAs and over one hundred proteins. In recent years, many spliceosomal proteins have been found to exhibit intrinsic disorder, that is to lack stable native three-dimensional structure in solution. Building on the previous body of proteomic, structural and functional data, we have carried out a systematic bioinformatics analysis of intrinsic disorder in the proteome of the human spliceosome. We discovered that almost a half of the combined sequence of proteins abundant in the spliceosome is predicted to be intrinsically disordered, at least when the individual proteins are considered in isolation. The distribution of intrinsic order and disorder throughout the spliceosome is uneven, and is related to the various functions performed by the intrinsic disorder of the spliceosomal proteins in the complex. In particular, proteins involved in the secondary functions of the spliceosome, such as mRNA recognition, intron/exon definition and spliceosomal assembly and dynamics, are more disordered than proteins directly involved in assisting splicing catalysis. Conserved disordered regions in spliceosomal proteins are evolutionarily younger and less widespread than ordered domains of essential spliceosomal proteins at the core of the spliceosome, suggesting that disordered regions were added to a preexistent ordered functional core. Finally, the spliceosomal proteome contains a much higher amount of intrinsic disorder predicted to lack secondary structure than the proteome of the ribosome, another large RNP machine. This result agrees with the currently recognized different functions of proteins in these two complexes.
Author Summary
In eukaryotic cells, introns are spliced out of proteincoding mRNAs by a highly dynamic and extraordinarily plastic molecular machine called the spliceosome. In recent years, multiple regions of intrinsic structural disorder were found in spliceosomal proteins. Intrinsically disordered regions lack stable native three-dimensional structure in solutions, which makes them structurally flexible and/or able to switch between different conformations. Hence, intrinsically disordered regions are the ideal candidate responsible for the spliceosome's plasticity. Intrinsically disordered regions are also frequently the sites of post-translational modifications, which were also proven to be important in spliceosome dynamics. In this article, we describe the results of a structural bioinformatics analysis focused on intrinsic disorder in the spliceosomal proteome. We systematically analyzed all known human spliceosomal proteins with regards to the presence and type of intrinsic disorder. Almost a half of the combined sequence of these spliceosomal proteins is predicted to be intrinsically disordered, and the type of intrinsic disorder in a protein varies with its function and its location in the spliceosome. The parts of the spliceosome that act earlier in the process are more disordered, which corresponds to their role in establishing a network of interactions, while the parts that act later are more ordered.
PMCID: PMC3415423  PMID: 22912569
3.  Evolutionary dynamics of U12-type spliceosomal introns 
Many multicellular eukaryotes have two types of spliceosomes for the removal of introns from messenger RNA precursors. The major (U2) spliceosome processes the vast majority of introns, referred to as U2-type introns, while the minor (U12) spliceosome removes a small fraction (less than 0.5%) of introns, referred to as U12-type introns. U12-type introns have distinct sequence elements and usually occur together in genes with U2-type introns. A phylogenetic distribution of U12-type introns shows that the minor splicing pathway appeared very early in eukaryotic evolution and has been lost repeatedly.
We have investigated the evolution of U12-type introns among eighteen metazoan genomes by analyzing orthologous U12-type intron clusters. Examination of gain, loss, and type switching shows that intron type is remarkably conserved among vertebrates. Among 180 intron clusters, only eight show intron loss in any vertebrate species and only five show conversion between the U12 and the U2-type. Although there are only nineteen U12-type introns in Drosophila melanogaster, we found one case of U2 to U12-type conversion, apparently mediated by the activation of cryptic U12 splice sites early in the dipteran lineage. Overall, loss of U12-type introns is more common than conversion to U2-type and the U12 to U2 conversion occurs more frequently among introns of the GT-AG subtype than among introns of the AT-AC subtype. We also found support for natural U12-type introns with non-canonical terminal dinucleotides (CT-AC, GG-AG, and GA-AG) that have not been previously reported.
Although complete loss of the U12-type spliceosome has occurred repeatedly, U12 introns are extremely stable in some taxa, including eutheria. Loss of U12 introns or the genes containing them is more common than conversion to the U2-type. The degeneracy of U12-type terminal dinucleotides among natural U12-type introns is higher than previously thought.
PMCID: PMC2831892  PMID: 20163699
4.  Evolutionary Convergence on Highly-Conserved 3′ Intron Structures in Intron-Poor Eukaryotes and Insights into the Ancestral Eukaryotic Genome 
PLoS Genetics  2008;4(8):e1000148.
The presence of spliceosomal introns in eukaryotes raises a range of questions about genomic evolution. Along with the fundamental mysteries of introns' initial proliferation and persistence, the evolutionary forces acting on intron sequences remain largely mysterious. Intron number varies across species from a few introns per genome to several introns per gene, and the elements of intron sequences directly implicated in splicing vary from degenerate to strict consensus motifs. We report a 50-species comparative genomic study of intron sequences across most eukaryotic groups. We find two broad and striking patterns. First, we find that some highly intron-poor lineages have undergone evolutionary convergence to strong 3′ consensus intron structures. This finding holds for both branch point sequence and distance between the branch point and the 3′ splice site. Interestingly, this difference appears to exist within the genomes of green alga of the genus Ostreococcus, which exhibit highly constrained intron sequences through most of the intron-poor genome, but not in one much more intron-dense genomic region. Second, we find evidence that ancestral genomes contained highly variable branch point sequences, similar to more complex modern intron-rich eukaryotic lineages. In addition, ancestral structures are likely to have included polyT tails similar to those in metazoans and plants, which we found in a variety of protist lineages. Intriguingly, intron structure evolution appears to be quite different across lineages experiencing different types of genome reduction: whereas lineages with very few introns tend towards highly regular intronic sequences, lineages with very short introns tend towards highly degenerate sequences. Together, these results attest to the complex nature of ancestral eukaryotic splicing, the qualitatively different evolutionary forces acting on intron structures across modern lineages, and the impressive evolutionary malleability of eukaryotic gene structures.
Author Summary
The spliceosomal introns that interrupt eukaryotic genes show great number and sequence variation across species, from the rare, highly uniform yeast introns to the ubiquitous and highly variable vertebrate intron sequences. The causes of these differences remain mysterious. We studied sequences of intron branch points and 3′ termini in 50 eukaryotic species. All intron-rich species exhibit variable 3′ sequences. However, intron-poor species range from variable sequences, to uniform branch point motifs, to uniform branch point motifs in uniform positions along the intronic sequence. This is a more complex pattern than the clear relationship between intron number and 5′ intron sequence uniformity found previously. The correspondence of sequence uniformity and intron number extends to species of the green algal genus Ostreococcus, in which the single intron-rich genomic region shows far more variable intron sequences than in the otherwise intron-poor genome. We suggest that different concentrations of spliceosomal complexes may explain these differences. In addition, we report the existence of 3′ polyT tails in diverse eukaryotic protists, suggesting that this structure is ancestral. Together, these results underscore the complexity of ancestral eukaryotic splicing, the qualitatively different evolutionary forces acting on intron sequences in modern eukaryotes, and the impressive evolutionary malleability of eukaryotic genes.
PMCID: PMC2483917  PMID: 18688272
5.  Analysis of Ribosomal Protein Gene Structures: Implications for Intron Evolution  
PLoS Genetics  2006;2(3):e25.
Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs), which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be “conserved,” i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.
Genes in eukaryotes are usually intervened by extra bits of DNA sequence, called introns, that have to be removed after the genes are transcribed into RNA. Why do introns exist in eukaryotic genes? What is the reason for the increased intron density in higher eukaryotes? There is much that is not known about introns. This research tries to clarify the evolutionary process by which introns arose by comparing the gene structures of two types of ribosomal proteins; one in cytoplasm and the other in mitochondria of the cell. Since cytoplasm and mitochondria are of archaeal and bacterial origin, respectively, cytoplasmic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs) are believed to diverge at the same time with the divergence of archaea and bacteria. Thus, a comparative analysis of CRP and MRP genes may reveal whether introns already existed at the last common ancestor of archaea and bacteria (introns-early) or whether they emerged late (introns-late). The results make it clear, at least, that all of the introns in MRP genes were gained during the course of eukaryotic evolution and therefore lend more support to the introns-late theory.
PMCID: PMC1386722  PMID: 16518464
6.  Nonsense-Mediated Decay Enables Intron Gain in Drosophila 
PLoS Genetics  2010;6(1):e1000819.
Intron number varies considerably among genomes, but despite their fundamental importance, the mutational mechanisms and evolutionary processes underlying the expansion of intron number remain unknown. Here we show that Drosophila, in contrast to most eukaryotic lineages, is still undergoing a dramatic rate of intron gain. These novel introns carry significantly weaker splice sites that may impede their identification by the spliceosome. Novel introns are more likely to encode a premature termination codon (PTC), indicating that nonsense-mediated decay (NMD) functions as a backup for weak splicing of new introns. Our data suggest that new introns originate when genomic insertions with weak splice sites are hidden from selection by NMD. This mechanism reduces the sequence requirement imposed on novel introns and implies that the capacity of the spliceosome to recognize weak splice sites was a prerequisite for intron gain during eukaryotic evolution.
Author Summary
The surprising observation 30 years ago that genes are interrupted by non-coding introns changed our view of gene architecture. Intron number varies dramatically among species; ranging from nine introns/gene in humans to less than one in some simple eukyarotes. Here we ask where new introns come from and how they are maintained in a population. We find that novel introns do not arise from pre-existing introns, although the mechanisms that generate novel introns remain unclear. We also show that novel introns carry only weak signals for their identification and removal, and therefore depend on nonsense-mediated decay (NMD). NMD maintains RNA quality control by degrading transcripts that have not been spliced properly. We propose that NMD shelters novel introns from natural selection. This increases the likelihood that a novel intron will rise in frequency and be maintained within a population, thus increasing the rate of intron gain.
PMCID: PMC2809761  PMID: 20107520
7.  Mechanisms Used for Genomic Proliferation by Thermophilic Group II Introns 
PLoS Biology  2010;8(6):e1000391.
Studies of mobile group II introns from a thermophilic cyanobacterium reveal how these introns proliferate within genomes and might explain the origin of introns and retroelements in higher organisms.
Mobile group II introns, which are found in bacterial and organellar genomes, are site-specific retroelments hypothesized to be evolutionary ancestors of spliceosomal introns and retrotransposons in higher organisms. Most bacteria, however, contain no more than one or a few group II introns, making it unclear how introns could have proliferated to higher copy numbers in eukaryotic genomes. An exception is the thermophilic cyanobacterium Thermosynechococcus elongatus, which contains 28 closely related copies of a group II intron, constituting ∼1.3% of the genome. Here, by using a combination of bioinformatics and mobility assays at different temperatures, we identified mechanisms that contribute to the proliferation of T. elongatus group II introns. These mechanisms include divergence of DNA target specificity to avoid target site saturation; adaptation of some intron-encoded reverse transcriptases to splice and mobilize multiple degenerate introns that do not encode reverse transcriptases, leading to a common splicing apparatus; and preferential insertion within other mobile introns or insertion elements, which provide new unoccupied sites in expanding non-essential DNA regions. Additionally, unlike mesophilic group II introns, the thermophilic T. elongatus introns rely on elevated temperatures to help promote DNA strand separation, enabling access to a larger number of DNA target sites by base pairing of the intron RNA, with minimal constraint from the reverse transcriptase. Our results provide insight into group II intron proliferation mechanisms and show that higher temperatures, which are thought to have prevailed on Earth during the emergence of eukaryotes, favor intron proliferation by increasing the accessibility of DNA target sites. We also identify actively mobile thermophilic introns, which may be useful for structural studies, gene targeting in thermophiles, and as a source of thermostable reverse transcriptases.
Author Summary
Group II introns are bacterial mobile elements thought to be ancestors of introns and retroelements in higher organisms. They comprise a catalytically active intron RNA and an intron-encoded reverse transcriptase, which promotes splicing of the intron from precursor RNA and integration of the excised intron into new genomic sites. While most bacteria have small numbers of group II introns, in the thermophilic cyanobacterium Thermosynechococcus elongatus, a single intron has proliferated and constitutes 1.3% of the genome. Here, we investigated how the T. elongatus introns proliferated to such high copy numbers. We found divergence of DNA target specificity, evolution of reverse transcriptases that splice and mobilize multiple degenerate introns, and preferential insertion into other mobile introns or insertion elements, which provide new integration sites in non-essential regions of the genome. Further, unlike mesophilic group II introns, the thermophilic T. elongatus introns rely on higher temperatures to help promote DNA strand separation, facilitating access to DNA target sites. We speculate how these mechanisms, including elevated temperature, might have contributed to intron proliferation in early eukaryotes. We also identify actively mobile thermophilic introns, which may be useful for structural studies and biotechnological applications.
PMCID: PMC2882425  PMID: 20543989
8.  Transcript Specificity in Yeast Pre-mRNA Splicing Revealed by Mutations in Core Spliceosomal Components 
PLoS Biology  2007;5(4):e90.
Appropriate expression of most eukaryotic genes requires the removal of introns from their pre–messenger RNAs (pre-mRNAs), a process catalyzed by the spliceosome. In higher eukaryotes a large family of auxiliary factors known as SR proteins can improve the splicing efficiency of transcripts containing suboptimal splice sites by interacting with distinct sequences present in those pre-mRNAs. The yeast Saccharomyces cerevisiae lacks functional equivalents of most of these factors; thus, it has been unclear whether the spliceosome could effectively distinguish among transcripts. To address this question, we have used a microarray-based approach to examine the effects of mutations in 18 highly conserved core components of the spliceosomal machinery. The kinetic profiles reveal clear differences in the splicing defects of particular pre-mRNA substrates. Most notably, the behaviors of ribosomal protein gene transcripts are generally distinct from other intron-containing transcripts in response to several spliceosomal mutations. However, dramatically different behaviors can be seen for some pairs of transcripts encoding ribosomal protein gene paralogs, suggesting that the spliceosome can readily distinguish between otherwise highly similar pre-mRNAs. The ability of the spliceosome to distinguish among its different substrates may therefore offer an important opportunity for yeast to regulate gene expression in a transcript-dependent fashion. Given the high level of conservation of core spliceosomal components across eukaryotes, we expect that these results will significantly impact our understanding of how regulated splicing is controlled in higher eukaryotes as well.
Author Summary
The spliceosome is a large RNA-protein machine responsible for removing the noncoding (intron) sequences that interrupt eukaryotic genes. Nearly everything known about the behavior of this machine has been based on the analysis of only a handful of genes, despite the fact that individual introns vary greatly in both size and sequence. Here we have utilized a microarray-based platform that allows us to simultaneously examine the behavior of all intron-containing genes in the budding yeast S. cerevisiae. By systematically examining the effects of individual mutants in the spliceosome on the splicing of all substrates, we have uncovered a surprisingly complex relationship between the spliceosome and its full complement of substrates. Contrary to the idea that the spliceosome engages in “generic” interactions with all intron-containing substrates in the cell, our results show that the identity of the transcript can differentially affect splicing efficiency when the machine is subtly perturbed. We propose that the wild-type spliceosome can also distinguish among its many substrates as external conditions warrant to function as a specific regulator of gene expression.
Many eukaryotic gene transcripts are spliced; here the authors show that components of the splicing complex can distinguish between different introns in highly homologous transcripts.
PMCID: PMC1831718  PMID: 17388687
9.  U12 type introns were lost at multiple occasions during evolution 
BMC Genomics  2010;11:106.
Two categories of introns are known, a common U2 type and a rare U12 type. These two types of introns are removed by distinct spliceosomes. The phylogenetic distribution of spliceosomal RNAs that are characteristic of the U12 spliceosome, i.e. the U11, U12, U4atac and U6atac RNAs, suggest that U12 spliceosomes were lost in many phylogenetic groups. We have now examined the distribution of U2 and U12 introns in many of these groups.
U2 and U12 introns were predicted by making use of available EST and genomic sequences. The results show that in species or branches where U12 spliceosomal components are missing, also U12 type of introns are lacking. Examples are the choanoflagellate Monosiga brevicollis, Entamoeba histolytica, green algae, diatoms, and the fungal lineage Basidiomycota. Furthermore, whereas U12 splicing does not occur in Caenorhabditis elegans, U12 introns as well as U12 snRNAs are present in Trichinella spiralis, which is deeply branching in the nematode tree. A comparison of homologous genes in T. spiralis and C. elegans revealed different mechanisms whereby U12 introns were lost.
The phylogenetic distribution of U12 introns and spliceosomal RNAs give further support to an early origin of U12 dependent splicing. In addition, this distribution identifies a large number of instances during eukaryotic evolution where such splicing was lost.
PMCID: PMC2846911  PMID: 20149226
10.  Sm/Lsm Genes Provide a Glimpse into the Early Evolution of the Spliceosome 
PLoS Computational Biology  2009;5(3):e1000315.
The spliceosome, a sophisticated molecular machine involved in the removal of intervening sequences from the coding sections of eukaryotic genes, appeared and subsequently evolved rapidly during the early stages of eukaryotic evolution. The last eukaryotic common ancestor (LECA) had both complex spliceosomal machinery and some spliceosomal introns, yet little is known about the early stages of evolution of the spliceosomal apparatus. The Sm/Lsm family of proteins has been suggested as one of the earliest components of the emerging spliceosome and hence provides a first in-depth glimpse into the evolving spliceosomal apparatus. An analysis of 335 Sm and Sm-like genes from 80 species across all three kingdoms of life reveals two significant observations. First, the eukaryotic Sm/Lsm family underwent two rapid waves of duplication with subsequent divergence resulting in 14 distinct genes. Each wave resulted in a more sophisticated spliceosome, reflecting a possible jump in the complexity of the evolving eukaryotic cell. Second, an unusually high degree of conservation in intron positions is observed within individual orthologous Sm/Lsm genes and between some of the Sm/Lsm paralogs. This suggests that functional spliceosomal introns existed before the emergence of the complete Sm/Lsm family of proteins; hence, spliceosomal machinery with considerably fewer components than today's spliceosome was already functional.
Author Summary
The spliceosome is a complex molecular machine that removes intervening sequences (introns) from mRNAs. It is unique to eukaryotes. Although prokaryotes have self-splicing introns, they completely lack spliceosomal introns and the spliceosome itself. Yet even the simplest eukaryotic organisms have introns and a rather complex spliceosomal apparatus. Little is known about how this amazing machine rapidly evolved in early eukaryotes. Here, we attempt to reconstruct a part of this evolutionary process using one of the most fundamental components of the spliceosome—the Sm and Lsm family of proteins. Using sequence and structure analysis as well as the analysis of the intron positions in Sm and Lsm genes in conjunction with a wealth of published data, we propose a plausible scenario for some aspects of spliceosomal evolution. In particular, we suggest that the Lsm family of genes could have been the first and the most essential component that allowed rudimentary splicing of early spliceosomal introns. Extensive duplications of Lsm genes and the later rise of the Sm gene family likely reflect a gradual increase in complexity of the spliceosome.
PMCID: PMC2650416  PMID: 19282982
11.  Recurrent Loss of Specific Introns during Angiosperm Evolution 
PLoS Genetics  2014;10(12):e1004843.
Numerous instances of presence/absence variations for introns have been documented in eukaryotes, and some cases of recurrent loss of the same intron have been suggested. However, there has been no comprehensive or phylogenetically deep analysis of recurrent intron loss. Of 883 cases of intron presence/absence variation that we detected in five sequenced grass genomes, 93 were confirmed as recurrent losses and the rest could be explained by single losses (652) or single gains (118). No case of recurrent intron gain was observed. Deep phylogenetic analysis often indicated that apparent intron gains were actually numerous independent losses of the same intron. Recurrent loss exhibited extreme non-randomness, in that some introns were removed independently in many lineages. The two larger genomes, maize and sorghum, were found to have a higher rate of both recurrent loss and overall loss and/or gain than foxtail millet, rice or Brachypodium. Adjacent introns and small introns were found to be preferentially lost. Intron loss genes exhibited a high frequency of germ line or early embryogenesis expression. In addition, flanking exon A+T-richness and intron TG/CG ratios were higher in retained introns. This last result suggests that epigenetic status, as evidenced by a loss of methylated CG dinucleotides, may play a role in the process of intron loss. This study provides the first comprehensive analysis of recurrent intron loss, makes a series of novel findings on the patterns of recurrent intron loss during the evolution of the grass family, and provides insight into the molecular mechanism(s) underlying intron loss.
Author Summary
The spliceosomal introns are nucleotide sequences that interrupt coding regions of eukaryotic genes and are removed by RNA splicing after transcription. Recent studies have reported several examples of possible recurrent intron loss or gain, i.e., introns that are independently removed from or inserted into the identical sites more than once in an investigated phylogeny. However, the frequency, evolutionary patterns or other characteristics of recurrent intron turnover remain unknown. We provide results for the first comprehensive analysis of recurrent intron turnover within a plant family and show that recurrent intron loss represents a considerable portion of all intron losses identified and intron loss events far outnumber intron gain events. We also demonstrate that recurrent intron loss is non-random, affecting only a small number of introns that are repeatedly lost, and that different lineages show significantly different rates of intron loss. Our results suggest a possible role of DNA methylation in the process of intron loss. Moreover, this study provides strong support for the model of intron loss by reverse transcriptase mediated conversion of genes by their processed mRNA transcripts.
PMCID: PMC4256211  PMID: 25474210
12.  Origin and evolution of spliceosomal introns 
Biology Direct  2012;7:11.
Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers’ Reports section.
PMCID: PMC3488318  PMID: 22507701
Intron sliding; Intron gain; Intron loss; Spliceosome; Splicing signals; Evolution of exon/intron structure; Alternative splicing; Phylogenetic trees; Mobile domains; Eukaryotic ancestor
13.  Intronization, de-intronization and intron sliding are rare in Cryptococcus 
Eukaryotic pre-mRNA gene transcripts are processed by the spliceosome to remove portions of the transcript, called spliceosomal introns. The spliceosome recognizes intron boundaries by the presence of sequence signals (motifs) contained in the actual transcript, thus sequence changes in the genome that affect existing splicing signals or create new signals may lead to changes in transcript splicing patterns. Such changes may lead to previously excluded (intronic) transcript regions being included (exonic) or vice versa. Such changes can affect the encoded protein sequence and/or post-transcriptional regulation, and are thus a potentially important source of genomic and phenotypic novelty. Two recent papers suggest that such changes may be a major force in remodeling of eukaryotic gene structures, however the rate of occurrence of such changes has not been assessed at the genomic level.
I studied four closely related species of Cryptoccocus fungi. Among 28,256 studied introns, canonical GT/C...AG boundaries are nearly universally conserved across all four species. Among only 40 observed cases of cDNA-confirmed non-conserved intron boundaries, most are likely to involve alternative splicing. I find only five cases of "intronization," intron creation from an internal exonic region by de novo emergence of new splicing boundaries, and no cases of the reverse process, "de-intronization." I find no more than ten clear cases of true movement of an intron boundary of a possibly constitutively spliced intron, and no clear cases of true "intron sliding," in which changes in the positions of both intron boundaries could lead to a movement of the intron position along the coding sequence.
These results suggest that intronization, de-intronization, and intron boundary movement are rare events in evolution.
PMCID: PMC2740785  PMID: 19664208
14.  Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA 
eLife  2013;2:e00780.
Eukaryotes have two types of spliceosomes, comprised of either major (U1, U2, U4, U5, U6) or minor (U11, U12, U4atac, U6atac; <1%) snRNPs. The high conservation of minor introns, typically one amidst many major introns in several hundred genes, despite their poor splicing, has been a long-standing enigma. Here, we discovered that the low abundance minor spliceosome’s catalytic snRNP, U6atac, is strikingly unstable (t½<2 hr). We show that U6atac level depends on both RNA polymerases II and III and can be rapidly increased by cell stress-activated kinase p38MAPK, which stabilizes it, enhancing mRNA expression of hundreds of minor intron-containing genes that are otherwise suppressed by limiting U6atac. Furthermore, p38MAPK-dependent U6atac modulation can control minor intron-containing tumor suppressor PTEN expression and cytokine production. We propose that minor introns are embedded molecular switches regulated by U6atac abundance, providing a novel post-transcriptional gene expression mechanism and a rationale for the minor spliceosome’s evolutionary conservation.
eLife digest
The central dogma of biology states that genetic material, DNA, is transcribed into RNA, which is then translated into proteins. However, the genes of many organisms have stretches of non-coding DNA that interrupt the sequences that code for protein. These non-coding sequences, which are called introns, must be removed, and the remaining sequences—which are called exons—must then be joined together to produce a messenger RNA (mRNA) transcript that is ready to be translated into protein.
The process of removing the introns and joining the exons is called splicing, and it is carried out by a molecular machine called the spliceosome. However, in addition to containing typical (‘major’) introns, several hundred human genes also contain a single ‘minor’ intron, and a minor spliceosome is needed to remove it. Minor introns occur in many highly conserved genes, but they are often inefficiently spliced. This means that the resulting mRNA transcripts may not be translated into proteins—which is puzzling given that these proteins perform important roles within the cell.
The major and minor spliceosomes are composed of proteins and small non-coding RNA molecules (which, as their name suggests, are never translated in cells). Now Younis et al. shed new light on the minor spliceosome by showing that a small non-coding RNA molecule known as U6atac, which catalyzes the removal of introns by the minor spliceosome, is highly unstable in human cells. This means that U6atac is a limiting factor for the splicing of minor introns—a process that is already limited by the very low abundance of the minor spliceosome under normal conditions. However, Younis et al. found that this bottleneck could be relieved by halting the degradation of U6atac. Experiments showed that U6atac can be stabilized by a key signaling molecule, a protein kinase (called p38MAPK), which is activated in response to stress. The resulting higher levels of U6atac promoted splicing of the introns in its target mRNA transcripts, and also modulated various signaling pathways in the cells.
Together, these results imply that the minor spliceosome is used as a valve that can help cells to adapt to stress and other changes. Moreover, by helping to translate mRNA transcripts that are already present in cells, it enables proteins to be produced rapidly in response to stress, bypassing the need for a fresh round of transcription.
PMCID: PMC3728624  PMID: 23908766
snRNA; U6atac; splicing; gene regulation; Human
15.  New Maximum Likelihood Estimators for Eukaryotic Intron Evolution 
PLoS Computational Biology  2005;1(7):e79.
The evolution of spliceosomal introns remains poorly understood. Although many approaches have been used to infer intron evolution from the patterns of intron position conservation, the results to date have been contradictory. In this paper, we address the problem using a novel maximum likelihood method, which allows estimation of the frequency of intron insertion target sites, together with the rates of intron gain and loss. We analyzed the pattern of 10,044 introns (7,221 intron positions) in the conserved regions of 684 sets of orthologs from seven eukaryotes. We determined that there is an average of one target site per 11.86 base pairs (bp) (95% confidence interval, 9.27 to 14.39 bp). In addition, our results showed that: (i) overall intron gains are ~25% greater than intron losses, although specific patterns vary with time and lineage; (ii) parallel gains account for ~18.5% of shared intron positions; and (iii) reacquisition following loss accounts for ~0.5% of all intron positions. Our results should assist in resolving the long-standing problem of inferring the evolution of spliceosomal introns.
When did spliceosomal introns originate, and what is their role? These questions are the central subject of the introns-early versus introns-late debate. Inference of intron evolution from the pattern of intron position conservation is vital for resolving this debate. So far, different methods of two approaches, maximum parsimony (MP) and maximum likelihood (ML), have been developed, but the results are contradictory. The differences between previous ML results are due predominantly to differing assumptions concerning the frequency of target sites for intron insertion. This paper describes a new ML method that treats this frequency as a parameter requiring optimization. Using the pattern of intron position in conserved regions of 684 clusters of gene orthologs from seven eukaryotes, the authors found that, on average, there is one target site per ~12 base pairs. The results of intron evolution inferred using this optimal frequency are more definitive than previous ML results. Since the ML method is preferred to the MP one for large datasets, the current results should be the most reliable ones to date. The results show that during the course of evolution there have been slightly more intron gains than losses, and thus they favor introns-late. These results should shed new light on our understanding of intron evolution.
PMCID: PMC1323467  PMID: 16389300
16.  An ancient spliceosomal intron in the ribosomal protein L7a gene (Rpl7a) of Giardia lamblia 
Only one spliceosomal-type intron has previously been identified in the unicellular eukaryotic parasite, Giardia lamblia (a diplomonad). This intron is only 35 nucleotides in length and is unusual in possessing a non-canonical 5' intron boundary sequence, CT, instead of GT.
We have identified a second spliceosomal-type intron in G. lamblia, in the ribosomal protein L7a gene (Rpl7a), that possesses a canonical GT 5' intron boundary sequence. A comparison of the two known Giardia intron sequences revealed extensive nucleotide identity at both the 5' and 3' intron boundaries, similar to the conserved sequence motifs recently identified at the boundaries of spliceosomal-type introns in Trichomonas vaginalis (a parabasalid). Based on these observations, we searched the partial G. lamblia genome sequence for these conserved features and identified a third spliceosomal intron, in an unassigned open reading frame. Our comprehensive analysis of the Rpl7a intron in other eukaryotic taxa demonstrates that it is evolutionarily conserved and is an ancient eukaryotic intron.
An analysis of the phylogenetic distribution and properties of the Rpl7a intron suggests its utility as a phylogenetic marker to evaluate particular eukaryotic groupings. Additionally, analysis of the G. lamblia introns has provided further insight into some of the conserved and unique features possessed by the recently identified spliceosomal introns in related organisms such as T. vaginalis and Carpediemonas membranifera.
PMCID: PMC1201135  PMID: 16109161
17.  Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns 
BMC Genomics  2006;7:311.
The signals that determine the specificity and efficiency of splicing are multiple and complex, and are not fully understood. Among other factors, the relative contributions of different mechanisms appear to depend on intron size inasmuch as long introns might hinder the activity of the spliceosome through interference with the proper positioning of the intron-exon junctions. Indeed, it has been shown that the information content of splice sites positively correlates with intron length in the nematode, Drosophila, and fungi. We explored the connections between the length of vertebrate introns, the strength of splice sites, exonic splicing signals, and evolution of flanking exons.
A compensatory relationship is shown to exist between different types of signals, namely, the splice sites and the exonic splicing enhancers (ESEs). In the range of relatively short introns (approximately, < 1.5 kilobases in length), the enhancement of the splicing signals for longer introns was manifest in the increased concentration of ESEs. In contrast, for longer introns, this effect was not detectable, and instead, an increase in the strength of the donor and acceptor splice sites was observed. Conceivably, accumulation of A-rich ESE motifs beyond a certain limit is incompatible with functional constraints operating at the level of protein sequence evolution, which leads to compensation in the form of evolution of the splice sites themselves toward greater strength. In addition, however, a correlation between sequence conservation in the exon ends and intron length, particularly, in synonymous positions, was observed throughout the entire length range of introns. Thus, splicing signals other than the currently defined ESEs, i.e., potential new classes of ESEs, might exist in exon sequences, particularly, those that flank long introns.
Several weak but statistically significant correlations were observed between vertebrate intron length, splice site strength, and potential exonic splicing signals. Taken together, these findings attest to a compensatory relationship between splice sites and exonic splicing signals, depending on intron length.
PMCID: PMC1713244  PMID: 17156453
18.  Distribution of Conventional and Nonconventional Introns in Tubulin (α and β) Genes of Euglenids 
Molecular Biology and Evolution  2013;31(3):584-593.
The nuclear genomes of euglenids contain three types of introns: conventional spliceosomal introns, nonconventional introns for which a splicing mechanism is unknown (variable noncanonical borders, RNA secondary structure bringing together intron ends), and so-called intermediate introns, which combine features of conventional and nonconventional introns. Analysis of two genes, tubA and tubB, from 20 species of euglenids reveals contrasting distribution patterns of conventional and nonconventional introns—positions of conventional introns are conserved, whereas those of the nonconventional ones are unique to individual species or small groups of closely related taxa. Moreover, in the group of phototrophic euglenids, 11 events of conventional intron loss versus 15 events of nonconventional intron gain were identified. A comparison of all nonconventional intron sequences highlighted the most conserved elements in their sequence and secondary structure. Our results led us to put forward two hypotheses. 1) The first one posits that mutational changes in intron sequence could lead to a change in their excision mechanism—intermediate introns would then be a transitional form between the conventional and nonconventional introns. 2) The second hypothesis concerns the origin of nonconventional introns—because of the presence of inverted repeats near their ends, insertion of MITE-like transposon elements is proposed as a possible source of new introns.
PMCID: PMC3935182  PMID: 24296662
euglenids; nonconventional introns; conventional spliceosomal introns; tubulin gene
19.  Localization of a Bacterial Group II Intron-Encoded Protein in Eukaryotic Nuclear Splicing-Related Cell Compartments 
PLoS ONE  2013;8(12):e84056.
Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP) in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns.
PMCID: PMC3877140  PMID: 24391881
20.  Identification, characterization and molecular phylogeny of U12-dependent introns in the Arabidopsis thaliana genome 
Nucleic Acids Research  2003;31(15):4561-4572.
U12-dependent introns are spliced by the minor U12-type spliceosome and occur in a variety of eukaryotic organisms, including Arabidopsis. In this study, a set of putative U12-dependent introns was compiled from a large collection of cDNA/EST- confirmed introns in the Arabidopsis thaliana genome by means of high-throughput bioinformatic analysis combined with manual scrutiny. A total of 165 U12-type introns were identified based upon stringent criteria. This number of sequences well exceeds the total number of U12-type introns previously reported for plants and allows a more thorough statistical analysis of U12-type signals. Of particular note is the discovery that the distance between the branch site adenosine and the acceptor site ranges from 10 to 39 nt, significantly longer than the previously postulated limit of 21 bp. Further analysis indicates that, in addition to the spacing constraint, the sequence context of the potential acceptor site may have an important role in 3′ splice site selection. Several alternative splicing events involving U12-type introns were also captured in this study, providing evidence that U12-dependent acceptor sites can also be recognized by the U2-type spliceosome. Furthermore, phylogenetic analysis suggests that both U12-type AT-AC and U12-type GT-AG introns occurred in Na+/H+ antiporters in a progenitor of animals and plants.
PMCID: PMC169882  PMID: 12888517
21.  A computational scan for U12-dependent introns in the human genome sequence 
Nucleic Acids Research  2001;29(19):4006-4013.
U12-dependent introns are found in small numbers in most eukaryotic genomes, but their scarcity makes accurate characterisation of their properties challenging. A computational search for U12-dependent introns was performed using the draft version of the human genome sequence. Human expressed sequences confirmed 404 U12-dependent introns within the human genome, a 6-fold increase over the total number of non-redundant U12-dependent introns previously identified in all genomes. Although most of these introns had AT-AC or GT-AG terminal dinucleotides, small numbers of introns with a surprising diversity of termini were found, suggesting that many of the non-canonical introns found in the human genome may be variants of U12-dependent introns and, thus, spliced by the minor spliceosome. Comparisons with U2-dependent introns revealed that the U12-dependent intron set lacks the ‘short intron’ peak characteristic of  U2-dependent introns. Analysis of this U12-dependent intron set confirmed reports of a biased distribution of U12-dependent introns in the genome and allowed the identification of several alternative splicing events as well as a surprising number of apparent splicing errors. This new larger reference set of U12-dependent introns will serve as a resource for future studies of both the properties and evolution of the U12 spliceosome.
PMCID: PMC60238  PMID: 11574683
22.  Alternative splicing and bioinformatic analysis of human U12-type introns 
Nucleic Acids Research  2007;35(6):1833-1841.
U12-type introns exist, albeit rarely, in a variety of multicellular organisms. Splicing of U12 intron-containing precursor mRNAs takes place in the U12-type spliceosome that is distinct from the major U2-type spliceosome. Due to incompatibility of these two spliceosomes, alternative splicing involving a U12-type intron may give rise to a relatively complicated impact on gene expression. We studied alternative U12-type intron splicing in an attempt to gain more mechanistic insights. First, we characterized mutually exclusive exon selection of the human JNK2 gene, which involves an unusual intron possessing the U12-type 5′ splice site and the U2-type 3′ splice site. We demonstrated that the long and evolutionary conserved polypyrimidine tract of this hybrid intron provides important signals for inclusion of its downstream alternative exon. In addition, we examined the effects of single nucleotide polymorphisms in the human WDFY1 U12-type intron on pre-mRNA splicing. These results provide mechanistic implications on splice-site selection of U12-type intron splicing. We finally discuss the potential effects of splicing of a U12-type intron with genetic defects or within a set of genes encoding RNA processing factors on global gene expression.
PMCID: PMC1874599  PMID: 17332017
23.  Exon definition as a potential negative force against intron losses in evolution 
Biology Direct  2008;3:46.
Previous studies have indicated that the wide variation in intron density (the number of introns per gene) among different eukaryotes largely reflects varying degrees of intron loss during evolution. The most popular model, which suggests that organisms lose introns through a mechanism in which reverse-transcribed cDNA recombines with the genomic DNA, concerns only one mutational force.
Using exons as the units of splicing-site recognition, exon definition constrains the length of exons. An intron-loss event results in fusion of flanking exons and thus a larger exon. The large size of the newborn exon may cause splicing errors, i.e., exon skipping, if the splicing of pre-mRNAs is initiated by exon definition. By contrast, if the splicing of pre-mRNAs is initiated by intron definition, intron loss does not matter. Exon definition may thus be a selective force against intron loss. An organism with a high frequency of exon definition is expected to experience a low rate of intron loss throughout evolution and have a high density of spliceosomal introns.
The majority of spliceosomal introns in vertebrates may be maintained during evolution not because of potential functions, but because of their splicing mechanism (i.e., exon definition). Further research is required to determine whether exon definition is a negative force in maintaining the high intron density of vertebrates.
This article was reviewed by Dr. Scott W. Roy (nominated by Dr. John Logsdon), Dr. Eugene V. Koonin, and Dr. Igor B. Rogozin (nominated by Dr. Mikhail Gelfand). For the full reviews, please go to the Reviewers' comments section.
PMCID: PMC2614967  PMID: 19014515
24.  Trichinella pseudospiralis vs. T. spiralis thymidylate synthase gene structure and T. pseudospiralis thymidylate synthase retrogene sequence 
Parasites & Vectors  2014;7:175.
Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T. pseudospiralis.
Based on the sequence of parasitic nematode Trichinella spiralis thymidylate synthase cDNA, PCR techniques were employed.
Each of the respective gene structures encompassed 6 exons and 5 introns located in conserved sites. Comparison with the corresponding gene structures of other eukaryotic species revealed lack of common introns that would be shared among selected fungi, nematodes, mammals and plants. The two deduced amino acid sequences were 96% identical. In addition to the thymidylate synthase gene, the intron-less retrocopy, i.e. a processed pseudogene, with sequence identical to the T. spiralis gene coding region, was found to be present within the T. pseudospiralis genome. This pseudogene, instead of the gene, was confirmed by RT-PCR to be expressed in the parasite muscle larvae.
Intron load, as well as distribution of exon and intron phases in thymidylate synthase genes from various sources, point against the theory of gene assembly by the primordial exon shuffling and support the theory of evolutionary late intron insertion into spliceosomal genes. Thymidylate synthase pseudogene expressed in T. pseudospiralis muscle larvae is designated a retrogene.
PMCID: PMC4022200  PMID: 24716800
Trichinella spiralis; Trichinella pseudospiralis; Thymidylate synthase; Gene structure; Introns-late theory; Retrogene
25.  The exon context and distribution of Euascomycetes rRNA spliceosomal introns 
We have studied spliceosomal introns in the ribosomal (r)RNA of fungi to discover the forces that guide their insertion and fixation.
Comparative analyses of flanking sequences at 49 different spliceosomal intron sites showed that the G – intron – G motif is the conserved flanking sequence at sites of intron insertion. Information analysis showed that these rRNA introns contain significant information in the flanking exons. Analysis of all rDNA introns in the three phylogenetic domains and two organelles showed that group I introns are usually located after the most conserved sites in rRNA, whereas spliceosomal introns occur at less conserved positions. The distribution of spliceosomal and group I introns in the primary structure of small and large subunit rRNAs was tested with simulations using the broken-stick model as the null hypothesis. This analysis suggested that the spliceosomal and group I intron distributions were not produced by a random process. Sequence upstream of rRNA spliceosomal introns was significantly enriched in G nucleotides. We speculate that these G-rich regions may function as exonic splicing enhancers that guide the spliceosome and facilitate splicing.
Our results begin to define some of the rules that guide the distribution of rRNA spliceosomal introns and suggest that the exon context is of fundamental importance in intron fixation.
PMCID: PMC156610  PMID: 12716459

Results 1-25 (958416)