Search tips
Search criteria

Results 1-25 (277861)

Clipboard (0)

Related Articles

1.  Phytochemicals and biological studies of plants from the genus Balanophora 
This review focus on the phytochemical progress and biological studies of plants from the genus Balanophora (Balanophoraceae) over the past few decades, in which most plants growth in tropical and subtropical regions of Asia and Oceania, and nearly 20 species ranged in southwest China. These dioeciously parasitic plants are normally growing on the roots of the evergreen broadleaf trees, especially in the family of Leguminosae, Ericaceae, Urticaceae, and Fagaceae. The plants are mainly used for clearing away heat and toxic, neutralizing the effect of alcoholic drinks, and as a tonic for the treatment of hemorrhoids, stomachache and hemoptysis. And it has been used widely throughtout local area by Chinese people.
Cinnamic acid derivative tannins, possessing a phenylacrylic acid derivative (e. g. caffeoyl, coumaroyl, feruloyl or cinnamoyl), which connected to the C(1) position of a glucosyl unit by O-glycosidic bond, are the characteristic components in genus Balanophora. In addition, several galloyl, caffeoyl and hexahydroxydiphenoyl esters of dihydrochalcone glucosides are found in B. tobiracola, B. harlandii, and B. papuana. Other compounds like phenylpropanoids, flavonoids, terpenoids and sterols are also existed. And their biological activities, such as radical scavenging activities, HIV inhibiting effects, and hypoglycemic effects are highlighted in the review.
PMCID: PMC3475005  PMID: 22853440
2.  Rate heterogeneity in six protein-coding genes from the holoparasite Balanophora (Balanophoraceae) and other taxa of Santalales 
Annals of Botany  2012;110(6):1137-1147.
Background and Aims
The holoparasitic flowering plant Balanophora displays extreme floral reduction and was previously found to have enormous rate acceleration in the nuclear 18S rDNA region. So far, it remains unclear whether non-ribosomal, protein-coding genes of Balanophora also evolve in an accelerated fashion and whether the genes with high substitution rates retain their functionality. To tackle these issues, six different genes were sequenced from two Balanophora species and their rate variation and expression patterns were examined.
Sequences including nuclear PI, euAP3, TM6, LFY and RPB2 and mitochondrial matR were determined from two Balanophora spp. and compared with selected hemiparasitic species of Santalales and autotrophic core eudicots. Gene expression was detected for the six protein-coding genes and the expression patterns of the three B-class genes (PI, AP3 and TM6) were further examined across different organs of B. laxiflora using RT-PCR.
Key Results
Balanophora mitochondrial matR is highly accelerated in both nonsynonymous (dN) and synonymous (dS) substitution rates, whereas the rate variation of nuclear genes LFY, PI, euAP3, TM6 and RPB2 are less dramatic. Significant dS increases were detected in Balanophora PI, TM6, RPB2 and dN accelerations in euAP3. All of the protein-coding genes are expressed in inflorescences, indicative of their functionality. PI is restrictively expressed in tepals, synandria and floral bracts, whereas AP3 and TM6 are widely expressed in both male and female inflorescences.
Despite the observation that rates of sequence evolution are generally higher in Balanophora than in hemiparasitic species of Santalales and autotrophic core eudicots, the five nuclear protein-coding genes are functional and are evolving at a much slower rate than 18S rDNA. The mechanism or mechanisms responsible for rapid sequence evolution and concomitant rate acceleration for 18S rDNA and matR are currently not well understood and require further study in Balanophora and other holoparasites.
PMCID: PMC3478055  PMID: 23041381
Balanophora; Balanophoraceae; B-class genes; LFY; RPB2; mitochondrial matR; substitution rate; phylogeny; Santalales; parasitic plants.
3.  Botanical pharmacognosy of stem of Gmelina asiatica Linn 
Ancient Science of Life  2012;31(4):190-193.
Gmelina asiatica Linn (G. parvifolia Roxb.) is a large shrub or a small tree. Roots and aerial parts are used in Ayurvedic medicine and also have ethno-medical uses. Root is reported as adulterant to G. arborea roxb roots. Pharmacognostical characters of root were reported. Owing to the shortage of genuine drug and ever-increasing demands in market, it becomes necessary to search an alternative with equal efficacy without compromising the therapeutic value. Nowadays, it becomes a common practice of using stem. In case of roots phytochemical and pharmacological analysis of stem was reported. However, there is no report on the pharmacognostical characters of stem and to differentiate it from roots. The present report describes the botanical pharmacognostical characters of stem and a note to differentiate it from root. Hollow pith, faint annual rings in cut ends, alternatively arranged macrosclereids and bundle cap fibers, and presence of abundant starch grains and calcium oxalates in pith and in ray cells are the diagnostic microscopic characters of stem. Stem pieces can be differentiated from roots by absence of tylosis.
PMCID: PMC3644757  PMID: 23661867
Botanical pharmacognosy; ethnobotany; Gmelina arborea; Gmelina asiatica; pharmacognosy; root; stem
4.  Antioxidant and anticancer evaluation of Scindapsus officinalis (Roxb.) Schott fruits 
Ayu  2011;32(3):388-394.
Several methods exist for the treatment of cancer in modern medicine. These include chemotherapy, radiotherapy, and surgery; most cancer chemotherapeutants severely affect the host normal cells. Hence the use of natural products now has been contemplated of exceptional value in the control of cancer. Plant-derived natural products such as flavonoids, terpenes, alkaloids, etc., have received considerable attention in recent years due to their diverse pharmacological properties including cytotoxic and cancer chemopreventive effects. Looking into this, the antioxidant and anticancer evaluation of Scindapsus officinalis (Roxb.) Schott fruits has been attempted to investigate its antitumor activity. The collection and authentication of the plant material mainly fruits and their various extractions was done. Identification of plant's active constituents by preliminary phytochemical screening was carried out. An in-vitro cytotoxic assay using the brine shrimp lethality assay with brine shrimp eggs (Artemia salina) at a dose of 1–10 μg/ml with the fruit extract was performed by the method described by Mayer et al. Cell viability using the Trypan blue dye exclusion test at a dose of 20, 40, 80, 120, and 160 μg/ml dissolved in DMSO (final concentration 0.1%), and cytotoxicity using the MTT assay where viable cells convert MTT into a formazan salt were performed. All pharmacological screening for acute toxicity and anti tumour studies using EAC 1 × 106 cells/mouse treated Swiss albino mice at a dose of 100 and 200 mg/kg/day orally was carried out. Biochemical and antioxidants predictions from various parameters like hematological, RBC, WBC count, PVC, total protein, Tissue Lipid Peroxidation, SOD, CATALASE, GPx, GST levels and anti tumour activity of Scindapsus officinalis were observed. The data was statistically analyzed by one-way ANOVA followed by Dunnett's and Tukey's multiple comparison test. The antitumor effect of the extract is evident from the increase in mean survival time (MST) lifespan, reduction in the solid tumor volume, and also the reversal of altered hematological parameters almost equal to normal. The methanolic extract (100–200 mg/kg/day orally) was found to be cytotoxic on human cancer cell lines. In addition, the methanolic extract had an antioxidant effect as reflected by a decrease in LPO, GST, and GPx (oxidant enzymes), and an increase in SOD and catalase.
PMCID: PMC3326889  PMID: 22529657
Antioxidant; Ehrlich's ascites carcinoma; hematological parameter; mean survival time; solid tumor volume; Scindapsus officinalis
5.  Pharmacognostical and physicochemical analysis of Tamarindus indica Linn. stem 
Tamarindus indica Linn. fruits (Chincha) are extensively used in culinary preparations in Indian civilization. Its vast medicinal uses are documented in Ayurvedic classics and it can be used singly or as a component of various formulations. Besides fruit, the Kasta (wood) of T. indica L. is also important and used to prepare Kshara (alkaline extract) an Ayurvedic dosage form. Pharmacognostical and physicochemical details of Chincha Kasta are not available in authentic literature including API (Ayurvedic Pharmacopoeia of India). The study is an attempt in this direction. T. indica L. stem with heartwood was selected and morphological, microscopic and physicochemical standardization characters along with TLC finger print, and fluorescence analysis were documented. Transverse section of stem showed important characters such as phelloderm, stone cells layer, fiber groups, calcium oxalate, crystal fibers, and tylosis in heartwood region. Four characteristic spots were observed under UV long wave, in thin layer chromatography with the solvent combination of toluene: ethyl acetate (8:2). The study can help correct identification and standardization of this plant material.
PMCID: PMC3326798  PMID: 22529673
Ayurveda; Chincha; powder microscopy; tamarind; thin layer chromatography
6.  Pharmacognostic evaluation of leaf of Cordia macleodii Hook., An ethnomedicinally important plant 
Ayu  2011;32(2):254-257.
Plants of ethnomedicinal importance have contributed for the development of many new pharmacologically effective molecules/chemical entities to modern medicine. India, the country having one of the richest biodiversity of its flora in its forest, with numerous tribal inhabitants, is able to contribute a lot from ethnomedicine to the ailing humanity. Cordia macleodii Hook. (Boraginaceae), an ethnomedicinal plant has been highlighted for its wound healing, aphrodisiac and hepatoprotective activities. It is a medium-sized tree, known as Panki/Shikari by the tribals, rarely found in the forests of Orissa, Chhattisgarh and Madhya Pradesh. So far, the plant has been studied neither for its pharmacognostical characters nor for its pharmacological actions except its hepatoprotective activity. Hence, it has been selected for a detailed investigation which includes pharmacognostic study of its leaf to find out the diagnostic characters and preliminary physicochemical analysis. Results of the study will help in identifying the plant pharmacognostically. Presence of alkaloids, glycosides and tannins were found during the study.
PMCID: PMC3296350  PMID: 22408312
Cordia macleodii; ethnomedicine; pharmacognostical evaluation
7.  Pharmacognostical and preliminary phytochemical evaluation of Alysicarpus longifolius W. and A. Prodr 
Ayu  2013;34(2):229-232.
Ayurveda, the science of life, deals with the drugs of animal, herbal, or mineral origin. Drugs of plant origin occupy more than 90% of the constituents of the Ayurvedic formulations used during treatment. Due to over exploitation and non-availability of medicinal plants, certain classical drugs are being substituted by locally available ethnomedicinal plants that are being claimed to possess similar activity by the tribal and local practitioners. The authentic source of Prishniparni is Uraria picta Desv. (Fabaceae) and is being substituted by Alysicarpus longifolius W. and A. Prodr. (Fabaceae) by some traditional healers of Gujarat (Saurashtra region). Both the plants are locally known by the names Samervo or Pithvan and both have similar characteristics with reference to leaves and flowers (inflorescence type). Pharmacognostical and Phytochemical evaluation of Alysicarpus longifolius W. and A. Prodr has been carried out and results are reported.
PMCID: PMC3821257  PMID: 24250137
Alysicarpus longifolius; pharmacognosy; phytochemistry; Prishniparni; Samervo; Uraria picta
8.  A comparative pharmacognostical profile of Desmodium gangeticum DC. and Desmodium laxiflorum DC. 
Ayu  2012;33(4):552-556.
Shaliparni is one of the Laghupanchamoola ingredients. Desmodium gangeticum DC. is an accepted source of Shaliparni as per Ayurvedic Pharmacopoea of India (API). Desmodium laxiflorum DC. is the drug commonly used instead of D. gangeticum in the Saurashtra region. The study is an attempt to compare the above said two species on the basis of their pharmacognostical profiles. The macroscopy and microscopy of roots of both plants were studied as per standard procedures. Root powders of both Desmodium species used in the experimental study to ascertain its Rasa by dilution method. Both the species show the same Rasa and Anurasa i.e., Madhura and Kashaya and almost same morphological and microscopical characters like prismatic crystals, starch grains etc. Hence it is concluded that D. laxiflorum may be considered as a substitute for D. gangeticum on the basis of present pharmacognostical study.
PMCID: PMC3665189  PMID: 23723675
Desmodium gangeticum DC.; Desmodium laxiflorum DC.; pharmacognosy
9.  Physico-chemical and Pharmacognostic Investigation of Fruit Pulp of Mangifera Indica Linn. 
Ancient Science of Life  2005;24(4):199-204.
Fruit pulp of Mangifera indica Linn. is an important Ayurvedic medicine which is useful in gastric disorders, dyspepsia, loss of appetite, urine incontinence, uterine diseases, heat apoplexy, pharyngitis, ulcer, dysentery, sun stroke etc. The present study for the first time attempts to investigate physico-chemical and pharmacognostic properties as per WHO guidelines of this drug. Detailed account of physico-chemical and microscopic analysis have been given in the paper
PMCID: PMC3330939  PMID: 22557178
Physico-chemical; pharmacognostic; Ayurveda
10.  Comparative pharmacognostical investigation on four ethanobotanicals traditionally used as Shankhpushpi in India 
People in Indian region often apply Shankhpushpi and other Sanskrit-based common name to Evolvulus alsinoides, Convolvulus pluricaulis, Canscora decussata, and Clitorea ternatea. These are pre-European names that are applied to a medicinal plant. Before the establishment of British rule, like the other books, ayurvedic treatises were also hand written. This might be one of the reasons due to which ayurveda could not stand parallel to the western medicine and an ambiguity is reflected in the interpretation of names and description of drugs found in the books like Charaka Samhita and Sushruta Samhita. The most widespread application of Shankhpushpi is for mental problems, but they have been considered for an array of other human maladies. The present investigation deals with the comparative pharmacognostical evaluation of four ethanobotanicals of Shankhpushpi. A comparative morphoanatomy of the root, stem, and leaves has been studied with the aim to aid pharmacognostic and taxonomic species identification. Various physicochemical, morphological, histological parameters, comparative high-performance thin-layer chromatography (HPTLC), and comparative high-performance liquid chromatography (HPLC), chromatogram of methanolic extract presented in this communication may serve the purpose of standard parameters to establish the authenticity of commercialized varieties and can possibly help to differentiate the drug from the other species. All the parameters were studied according to the WHO and pharmacopoeial guidelines.
PMCID: PMC3255406  PMID: 22247878
Ethanobotanicals; HPLC; HPTLC; physiochemical; Shankhpushpi
11.  Comparative pharmacognostical and phytochemical study on Bergenia ligulata Wall. and Ammania buccifera Linn 
Ayu  2013;34(4):406-410.
“Pashanbheda” is a controversial plant. Pharmacopeia considers Bergenia ligulata as official source of Pashanbheda and official substitute is Avera lanta. Review of the literature reveals that 23 different plants are reported in name of “Pashanbheda”. Ammania buccifera is an adulterant, which is used in Kerala under the name of Pashanbheda, found in moist places of India. The present study was undertaken to compare the roots of both the plants and to have a brief view point on similarities and dissimilarities between the plants. The pharmacognostical evaluation reveals that the rosette crystals of B. ligulata are bigger in size compared to that of A. buccifera and cork is present in B. ligulata, whereas it is absent in A. buccifera. HPTLC shows similar Rf values of both the drug, The quantitative estimation showed that total phenol content of both the drug was almost equal.
PMCID: PMC3968705
Ammania buccifera; Bergenia ligulata; Pashanbheda; pharmacognosy; phytochemistry
Ancient Science of Life  2007;26(3):40-44.
Pharmacognostical and preliminary phytochemical studies of Triphala churnam were carried out. The churnam of triphala consists of equal quantities of deseeded fruits of Terminalia chebula, Terminalia bellerica and Emblica officinalis. Triphala is exclusively used in more than 200 drug formulations in Indian system of Medicine. The present study involved the pharmacognostical evaluation of Triphala, in which morphological and powder microscopical characters were established. In addition, physico-chemical parameters such as ash values viz, total ash (10.21± 0.42), acid insoluble ash (2.54 ± 0.06), water-soluble ash (5.46±0.24) and sulphated ash (13.12 ± 0.63), extractive values viz, alcohol soluble extractive (11.20±0.18)) and water-soluble extractive (52.56±2.04), fluorescent analysis and microchmical tests were determined. The preliminary phytochemical study revealed the presence of carbohydrates, reducing sugar and tannins in aqueous extract and carbohydrates, flavonoids and tannins in alcoholic extract. This standardization would be very much helpful for the identification of Triphala churnam to differentiate from other powdered sources.
PMCID: PMC3330880  PMID: 22557240
13.  Pharmacognostical evaluation of Launaea sarmentosa (Willd.) schultz-bip.ex Kuntze root 
Ayu  2013;34(1):90-94.
Launaea sarmentosa (Willd) Schultz-Bip.ex Kuntze (Asteraceae), locally known as Kulhafila in the Maldives, is a creeping herb, native to tropical Indian coastlines. According to anecdotal evidence from locals in the Maldives, the roots of this plant are used as an ingredient of a popular medicinal preparation (Hilibeys) taken by mothers after childbirth. It is also used in various other ailments in different parts of the Maldives, as well as in India. So far, there has been no scientific documentation of this plant. The only source of information available is held by natives and traditional medical practitioners. The present study was conducted on the root of L. sarmentosa for its pharmacognostical and phytochemical characteristics as per Ayurvedic Pharmacopoea of India (API) parameters. The microscopic characteristics of the root show prismatic crystals, multiseriate medullary rays, laticiferous cells, and pitted parenchyma. Qualitative analyses, such as loss on drying, ash value, pH, etc., were conducted. Preliminary phytochemical screening shows the presence of alkaloids, tannin, steroids, etc.
PMCID: PMC3764888  PMID: 24049412
Asteraceae; Kulhafila; Launaea sarmentosa; pharmacognosy; phytochemistry
14.  Pharmacognostic evaluation of leaves of certain Phyllanthus species used as a botanical source of Bhumyamalaki in Ayurveda 
Ayu  2011;32(2):250-253.
Today, World over, there is a great deal of interest in Ayurvedic system of medicine and thus the demand for various medicinal plants in the production of Ayurvedic medicines is ever increasing. Due to varied geographical locations where these plants grow, a great deal of adulteration or substitution is encountered in the commercial markets. Histological studies of the plant drugs are not only to study the adulterants but also are indispensable in accurate identification. Microscopic observations of the Phyllanthus species revealed the occurrence of anisocytic and paracytic type of stomata in Phyllanthus amarus , while only anisocytic type of stomata is present in P. fraternus and P. maderaspatensis. Epidermal cell walls of P. amarus and P. fraternus are wavy and straight walled epidermal walls are observed in P. maderaspatensis. In India all the above-mentioned species of Phyllanthus are called “Bhumyamalaki” and they are being used in the treatment of various liver disorders. However, all the species of Phyllanthus doesn’t have the active constituents responsible for the treatment of liver disorders. In the present investigation by using simple micro techniques accurate identification of different species of Phyllanthus has been established.
PMCID: PMC3296349  PMID: 22408311
Bhumyamalaki; Pharamcognosy; Phyllanthus
15.  In Vitro Screening for Anti-Cholinesterase and Antioxidant Activity of Methanolic Extracts of Ayurvedic Medicinal Plants Used for Cognitive Disorders 
PLoS ONE  2014;9(1):e86804.
Inhibition of Acetylcholinesterase (AChE) is still considered as the main therapeutic strategy against Alzheimer’s disease (AD). Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman’s microplate colorimetric method. Out of 20 extracts, Emblica officinalis, Nardostachys jatamansi, Nelumbo nucifera, Punica granatum and Raulfia Serpentina showed IC50 values <100 µg/ml for acetylcholinesterase inhibitory activity. Antioxidant activities of these plants were assessed by DPPH scavenging assay. Among the extracts used, antioxidant activity was highest for Terminalia chebula and Emblica officinalis with IC50 values <10 µg/ml. Considering the complex multifactorial etiology of AD, these plant extracts will be safer and better candidates for the future disease modifying therapies against this devastating disease.
PMCID: PMC3900633  PMID: 24466247
16.  The Hypouricemic Effect of Balanophora laxiflora Extracts and Derived Phytochemicals in Hyperuricemic Mice 
The objective of this study is to evaluate the lowering of uric acid using Balanophora laxiflora extracts and derived phytochemicals on potassium-oxonate-(PO-) induced hyperuricemia in mice. The results revealed that ethyl acetate (EtOAc) fraction of B. laxiflora extracts exhibited strong xanthine-oxidase-(XOD-) inhibitory activity. In addition, among the 10 subfractions (EA1–10) derived from EtOAc fraction, subfraction 8 (EA8) exhibited the best XOD-inhibitory activity. Four specific phytochemicals, 1-O-(E)-caffeoyl-β-D-glucopyranose (1), 1-O-(E)-p-coumaroyl-β-D-glucopyranose (2), 1,3-di-O-galloyl-4,6-(S)-hexahydroxydiphenoyl-β-D-glucopyranose (3), and 1-O-(E)-caffeoyl-4,6-(S)-hexahydroxydiphenoyl-β-D-glucopyranose (4), were further isolated and identified from this subfraction. Compounds 3 and 4 exhibited the strongest XOD-inhibitory activity compared with other compounds, and both hydrolyzable tannins were determined to be noncompetitive inhibitors according to the Lineweaver-Burk plot. On the other hand, the in vivo hypouricemic effect in hyperuricemic mice was consistent with XOD-inhibitory activity, indicating that B. laxiflora extracts and derived phytochemicals could be potential candidates as new hypouricemic agents.
PMCID: PMC3388452  PMID: 22778779
17.  Balanophora spicata and Lupeol Acetate Possess Antinociceptive and Anti-Inflammatory Activities In Vivo and In Vitro 
Aims of the present study were to investigate effects of Balanophora spicata (BS) on antinociception and anti-inflammation both in vivo and in vitro. Crude extract of BS inhibited vascular permeability induced by histamine, serotonin, bradykinin, and PGE2, but not by PAF. Furthermore, BS crude extract, different layers (n-hexane, ethyl acetate, n-butanol, and water layer), and lupeol acetate had significant antinociceptive and anti-inflammatory effects on acetic acid-induced abdominal writhing response, formalin-induced licking behavior, carrageenan-, and serotonin-induced paw edema. The n-hexane layer had the most effective potency among all layers (IC50: 67.33 mg/kg on writhing response; IC50s: 34.2 mg/kg and 21.29 mg/kg on the early phase and late phase of formalin test, resp.). Additionally, lupeol acetate which was isolated from the n-hexane layer of BS effectively inhibited the acetic acid-induced writhing response (IC50: 28.32 mg/kg), formalin-induced licking behavior (IC50: 20.95 mg/kg), NO production (IC50: 4.102 μM), iNOS expression (IC50: 5.35 μM), and COX2 expression (IC50: 5.13 μM) in LPS-stimulated RAW 264.7 cells. In conclusion, BS has antinociceptive and anti-inflammatory effects which may be partially due to the inhibition of changes in vascular permeability induced by histamine, serotonin, bradykinin, and PGE2 and the attenuation of iNOS and COX-2 expression.
PMCID: PMC3518255  PMID: 23243439
18.  A review on ethnobotany, phytochemistry and pharmacology of Fumaria indica (Fumitory) 
Fumaria indica (Hausskn.) Pugsley (Fumariaceae), known as “Fumitory”, is an annual herb found as a common weed all over the plains of India and Pakistan. The whole plant is widely used in traditional and folkloric systems of medicine. In traditional systems of medicine, the plant is reputed for its anthelmintic, diuretic, diaphoretic, laxative, cholagogue, stomachic and sedative activities and is used to purify blood and in liver obstruction in ethnopharmacology. The whole plant is ascribed to possess medicinal virtues in Ayurvedic and Unani systems of medicine and is also used in preparation of important Ayurvedic medicinal preparations and polyherbal liver formulations. The review reveals that phytochemical constituents of wide range have been separated from the plants and it possesses important pharmacological activities like smooth muscle relaxant, spasmogenic and spasmolytic, analgesic, anti-inflammatory, neuropharmacological and antibacterial activities. The separation of hepatoprotective and antifungal constituents from this plant was also reported newly. This review highlights the traditional, ethnobotanical, phytochemical, pharmacological information available on Fumaria indica, which might be helpful for scientists and researchers to find out new chemical entities responsible for its claimed traditional uses.
PMCID: PMC3609363  PMID: 23569991
Fumaria indica; Phytochemistry; Protopine; Hepatoprotective
19.  Effect ofCoccinia indica (L.) andAbroma augusta (L.) on glycemia, lipid profile and on indicators of end-organ damage in streptozotocin induced diabetic rats 
InAyurvedic system of medicine in India, not only extracts of one plant or the other but also a combination of plant extracts are used for the treatment of diabetes mellitus. The present paper reports the combined effect ofAbroma augusta andCoccinia indica known to be useful for the treatment of diabetes in Ayurveda on the fasting blood sugar, glucose tolerance and lipid profile of Streptozotocin (STZ) induced albino rats. 300mg of water extract of the mixture of dried powdered roots ofA. augusta and leaves ofC. indica in equal proportions was given once daily for 8 weeks. After 8 weeks of treatment of Streptozotocin (STZ) diabetic rats, the fasting blood sugar came down to almost normal value and improvement in glucose tolerance and serum lipid profile were also observed.
PMCID: PMC3453865  PMID: 23105393
Hypoglycaemic plants; Abroma augusta, Coccinia indica; Streptozotocin (STZ), diabetes neuropathy
20.  Identity and pharmacognosy of Ruta graveolens Linn 
Ancient Science of Life  2012;32(1):16-19.
Ruta graveolens L., is a odoriferous herb belonging to the family Rutaceae. It is the source of Rue or Rue oil, called as Sadab or Satab in Hindi. It is distributed throughout the world and cultivated as a medicinal and ornamental herb. The ancient Greeks and Romans, held the plant in high esteem. It is used in Ayurveda, Homoeopathy and Unani. Phytochemical constituents and pharmacological properties were studied in depth. In 14 species of genus Ruta, R. graveolens and R. chalepensis are available in India and also cultivated in gardens. Taxonomical characters to identify the Indian plants are very clear with fringed and or non-fringed petals. However, references to it are confused in the traditional literature. Due to sharing of regional language name, its identity is confused with Euphorbia dracunculoides. Morphological and anatomical characters were described. Pharmacognostic studies with microscopic characters were also published. Upon reviewing the anatomical characters and pharmacognostic characters one finds that it is highly confused and conflicting. The characters described are opposite of each other and authenticity of the market sample of R. graveolens cannot be guaranteed and able to be differentiated from R. chalepensis. Present work is to describe the pharmacognostic characters of R. graveolens to differentiate it from R. chalepensis. It is concluded that morphologically, R. graveolens can be identified with its non-fringed petals and blunted apices of fruit lobes. Whereas, in R. chalepensis petals are fringed or ciliated and apices of the fruit lobes are sharp and projected. Microscopically, in stem of R. graveolens pericyclic fibers have wide lumen. Whereas, in R. chalepensis, it is narrow. The published pharmacognosy reports do not pertain to authentic plant or some of the characteristic features like glandular trichomes are not observed in our samples.
PMCID: PMC3733200  PMID: 23929988
Pharmacognosy; ruta chalepensis; ruta graveolens; rutaceae
Ancient Science of Life  1992;12(1-2):299-308.
Janakia arayalpatra (Periplocaceae) known to the local kani tribe as ‘Amruthapala’ is a rare and endemic wild plant species of southern forested region of Western Ghats. The medicinal value of this plant as a potential drug was reported by the authors earlier (on the basis of the information collected from the Kani tribe). Preliminary ethnopharmacological investigation of the plant showed promising results. In view of the emerging medical importance of this plant, a detailed pharmacognostical investigation of this plant species was carried out. The plant species is now placed under the family periploaceae which was formerly considered to be a sub-division of the family Asclepiadaceae. Pharmacognostical investigation of the root of this plant showed certain characterstic anatomical features like those of the Asclepiadaceae. The aroma and physical characterstics of the roots have close resemblance with plant species like Utleria salicifolia Bedd. and Hemidesmus indicus R. Br.
PMCID: PMC3336625  PMID: 22556607
Ancient Science of Life  1992;11(3-4):143-152.
Tribals of India have been using many plants for curing their ailments since time immemorial. Plants most commonly used by different tribal population in India against skin infections have been listed out in this report. Some of these plants have already been proved scientifically to possess antimicrobial and antiallergic principles. Many more are yet to be surveyed and proven for their known medicinal value. Once the principles underlying the particular activity of the plants described are known, they could safely by recommended for use for the rest of the population of our country, as it would not only be effective but also a cheaper source of drug.
PMCID: PMC3336605  PMID: 22556578
23.  Antibacterial Activity of Medicinal Plants Against Pathogens causing Complicated Urinary Tract Infections 
Seventeen Indian folklore medicinal plants were investigated to evaluate antibacterial activity of aqueous, ethanol and acetone extracts against 66 multidrug resistant isolates of major urinary tract pathogens (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis) by disc diffusion method. Ethanol extract of Zingiber officinale and Punica granatum showed strong antibacterial activity against Escherichia coli. Ethanol extracts of Terminalia chebula and Ocimum sanctum exhibited antibacterial activity against Klebsiella pneumoniae. Ethanol extract of Cinnamomum cassia showed maximum antibacterial activity against Pseudomonas aeruginosa while ethanol extract of Azadirachta indica and Ocimum sanctum exhibited antibacterial activity against Enterococcus faecalis. The results support the folkloric use of these plants in the treatment of urinary tract infections by the tribals of Mahakoshal region of central India.
PMCID: PMC2839399  PMID: 20336211
Urinary tract infection (UTI); multidrug resistant; antibacterial activity; Indian medicinal plants
24.  Pharmacognostic and phytochemical studies on Ficus Microcarpa L. fil 
Ancient Science of Life  2012;32(2):107-111.
Ficus microcarpa L. fil. (Syn: Ficus retusa) (Moraceae) is well-known traditional medicinal plant. The bark is used for diverse health ailments in traditional and folklore remedies.
The present study was undertaken to lay down pharmacognostical and phytochemical standards.
Materials and Methods:
Pharmacognostic studies on fresh, dried and powdered bark was carried out to determine it's morphological, anatomical, and phytochemical diagnostic features. Furthermore, major phytoconstituents were identified from the extracts with the help of high performance liquid chromatography (HPLC) study.
The morphology showed to be soft, brittle, rough, shallow vertical, irregularly oriented fissures, curved surface; with splintering, laminated fracture. Microscopically F. microcarpa showed all general characteristics of bark with some distinct differentiation. The phellem is thin and even, phelloderm few cell and rectangular and followed by smaller sclerides, the phloem rays are broad, multi-serrate and showed the scattered bundles of sclerides. The fluorescence and physicochemical standards for bark were established. HPLC analysis showed the predominant presence of therapeutically important phytoconstituents such as oleanolic, betulinic acid, lupeol, β-sitosterol, catechin, and gallic acid.
The bark of F. microcarpa considered equivalent to other Ficus species, such as Ficus virens, Ficus infectoria, Ficus arnottiana, Ficus lacor, and Ficus talboti. However, there is no pharmacognostical and phytochemical reports on F. microcarpa to authenticate and differentiate it from similar species. Present work has described pharmacognostical and phytochemical characteristics of F. microcarpa and diagnostic features to differentiate it.
PMCID: PMC3807953  PMID: 24167337
Ficus microcarpa; Ficus retusa; pharmacognostic; phytochemical study
25.  Differentiation of Saraca Asoca Crude Drug From Its Adulterant 
Ancient Science of Life  2005;24(4):174-178.
Saraca asoca commonly known as asoka, which is considered as a sacred tree by Hindus and Buddhists possesses various medicinal uses. The stem bark of the tree is the principal constituent of several ayurvedic preparations which are widely prescribed in leucorrhoea, haematuria, menorrhagia and other diseases of the female genitourinary system. Because of destructive extraction and the absence of an organized cultivation programme, the avilbility of the crude drug is diminishing and this has resulted in the sale of adulterants. The commonly used adulterant is the bark of Polyalthia longifolia which shows some similarity with that of asoka. Studies were conducted at Aromatic and Medicinal Plants Research station, Odakkali (Kerala Agricultural University) during 2001-2002 to evolve methods for differentiating the original drug from the adulterant species by anatomical biochemical and chromatographic techniques.
PMCID: PMC3330942  PMID: 22557174

Results 1-25 (277861)