PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (958409)

Clipboard (0)
None

Related Articles

1.  PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy 
Scientific Reports  2012;2:1002.
Parkinson's disease genes PINK1 and parkin encode kinase and ubiquitin ligase, respectively. The gene products PINK1 and Parkin are implicated in mitochondrial autophagy, or mitophagy. Upon the loss of mitochondrial membrane potential (ΔΨm), cytosolic Parkin is recruited to the mitochondria by PINK1 through an uncharacterised mechanism – an initial step triggering sequential events in mitophagy. This study reports that Ser65 in the ubiquitin-like domain (Ubl) of Parkin is phosphorylated in a PINK1-dependent manner upon depolarisation of ΔΨm. The introduction of mutations at Ser65 suggests that phosphorylation of Ser65 is required not only for the efficient translocation of Parkin, but also for the degradation of mitochondrial proteins in mitophagy. Phosphorylation analysis of Parkin pathogenic mutants also suggests Ser65 phosphorylation is not sufficient for Parkin translocation. Our study partly uncovers the molecular mechanism underlying the PINK1-dependent mitochondrial translocation and activation of Parkin as an initial step of mitophagy.
doi:10.1038/srep01002
PMCID: PMC3525937  PMID: 23256036
2.  The principal PINK1 and Parkin cellular events triggered in response to dissipation of mitochondrial membrane potential occur in primary neurons 
Genes to Cells  2013;18(8):672-681.
PINK1 and PARKIN are causal genes for hereditary Parkinsonism. Recent studies have shown that PINK1 and Parkin play a pivotal role in the quality control of mitochondria, and dysfunction of either protein likely results in the accumulation of low-quality mitochondria that triggers early-onset familial Parkinsonism. As neurons are destined to degenerate in PINK1/Parkin-associated Parkinsonism, it is imperative to investigate the function of PINK1 and Parkin in neurons. However, most studies investigating PINK1/Parkin have used non-neuronal cell lines. Here we show that the principal PINK1 and Parkin cellular events that have been documented in non-neuronal lines in response to mitochondrial damage also occur in primary neurons. We found that dissipation of the mitochondrial membrane potential triggers phosphorylation of both PINK1 and Parkin and that, in response, Parkin translocates to depolarized mitochondria. Furthermore, Parkin's E3 activity is re-established concomitant with ubiquitin–ester formation at Cys431 of Parkin. As a result, mitochondrial substrates in neurons become ubiquitylated. These results underscore the relevance of the PINK1/Parkin-mediated mitochondrial quality control pathway in primary neurons and shed further light on the underlying mechanisms of the PINK1 and Parkin pathogenic mutations that predispose Parkinsonism in vivo.
doi:10.1111/gtc.12066
PMCID: PMC3842116  PMID: 23751051
3.  Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling 
Human Molecular Genetics  2009;19(2):352-363.
Mutations in PTEN-induced putative kinase 1 (PINK1) or parkin cause autosomal recessive forms of Parkinson disease (PD), but how these mutations trigger neurodegeneration is poorly understood and the exact functional relationship between PINK1 and parkin remains unclear. Here, we report that PINK1 regulates the E3 ubiquitin-protein ligase function of parkin through direct phosphorylation. We find that phosphorylation of parkin by PINK1 activates parkin E3 ligase function for catalyzing K63-linked polyubiquitination and enhances parkin-mediated ubiquitin signaling through the IκB kinase/nuclear factor κB (NF-κB) pathway. Furthermore, the ability of PINK1 to promote parkin phosphorylation and activate parkin-mediated ubiquitin signaling is impaired by PD-linked pathogenic PINK1 mutations. Our findings support a direct link between PINK1-mediated phosphorylation and parkin-mediated ubiquitin signaling and implicate the deregulation of the PINK1/parkin/NF-κB neuroprotective signaling pathway in the pathogenesis of PD.
doi:10.1093/hmg/ddp501
PMCID: PMC2796895  PMID: 19880420
4.  PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria 
Nature Communications  2012;3:1016-.
Dysfunction of PINK1, a mitochondrial Ser/Thr kinase, causes familial Parkinson's disease (PD). Recent studies have revealed that PINK1 is rapidly degraded in healthy mitochondria but accumulates on the membrane potential (ΔΨm)-deficient mitochondria, where it recruits another familial PD gene product, Parkin, to ubiquitylate the damaged mitochondria. Despite extensive study, the mechanism underlying the homeostatic control of PINK1 remains unknown. Here we report that PINK1 is autophosphorylated following a decrease in ΔΨm and that most disease-relevant mutations hinder this event. Mass spectrometric and mutational analyses demonstrate that PINK1 autophosphorylation occurs at Ser228 and Ser402, residues that are structurally clustered together. Importantly, Ala mutation of these sites abolishes autophosphorylation of PINK1 and inhibits Parkin recruitment onto depolarized mitochondria, whereas Asp (phosphorylation-mimic) mutation promotes mitochondrial localization of Parkin even though autophosphorylation was still compromised. We propose that autophosphorylation of Ser228 and Ser402 in PINK1 is essential for efficient mitochondrial localization of Parkin.
The kinase PINK1 is mutated in Parkinson's disease and accumulates in defective mitochondria, where it recruits Parkin. Here, PINK1 is shown to be autophosphorylated and this is required for the localization of PINK1 to mitochondria with a reduced membrane potential, and for the recruitment of Parkin.
doi:10.1038/ncomms2016
PMCID: PMC3432468  PMID: 22910362
5.  Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin 
Developmental Cell  2012;22(2):320-333.
Summary
Mutations in the mitochondrial kinase PINK1 and the cytosolic E3 ligase Parkin can cause Parkinson’s disease. Damaged mitochondria accumulate PINK1 on the outer membrane where, dependent on kinase activity, it recruits and activates Parkin to induce mitophagy, potentially maintaining organelle fidelity. How PINK1 recruits Parkin is unknown. We show that endogenous PINK1 forms a 700 kDa complex with the translocase of the outer membrane (TOM) selectively on depolarized mitochondria whereas PINK1 ectopically targeted to the outer membrane retains association with TOM on polarized mitochondria. Inducibly targeting PINK1 to peroxisomes or lysosomes, which lack a TOM complex, recruits Parkin and activates ubiquitin ligase activity on the respective organelles. Once there, Parkin induces organelle selective autophagy of peroxisomes but not lysosomes. We propose that the association of PINK1 with the TOM complex allows rapid re-import of PINK1 to rescue repolarized mitochondria from mitophagy, and discount mitochondrial-specific factors for Parkin translocation and activation.
doi:10.1016/j.devcel.2011.12.014
PMCID: PMC3288275  PMID: 22280891
6.  Genome-wide screen for modifiers of Parkinson's disease genes in Drosophila 
Molecular Brain  2011;4:17.
Background
Mutations in parkin and PTEN-induced kinase 1 (Pink1) lead to autosomal recessive forms of Parkinson's disease (PD). parkin and Pink1 encode a ubiquitin-protein ligase and a mitochondrially localized serine/threonine kinase, respectively. Recent studies have implicated Parkin and Pink1 in a common and evolutionarily conserved pathway for protecting mitochondrial integrity.
Results
To systematically identify novel components of the PD pathways, we generated a genetic background that allowed us to perform a genome-wide F1 screen for modifiers of Drosophila parkin (park) and Pink1 mutant phenotype. From screening ~80% of the fly genome, we identified a number of cytological regions that interact with park and/or Pink1. Among them, four cytological regions were selected for identifying corresponding PD-interacting genes. By analyzing smaller deficiency chromosomes, available transgenic RNAi lines, and P-element insertions, we identified five PD-interacting genes. Among them, opa1 and drp1 have been previously implicated in the PD pathways, whereas debra (dbr), Pi3K21B and β4GalNAcTA are novel PD-interacting genes.
Conclusions
We took an unbiased genetic approach to systematically isolate modifiers of PD genes in Drosophila. Further study of novel PD-interacting genes will shed new light on the function of PD genes and help in the development of new therapeutic strategies for treating Parkinson's disease.
doi:10.1186/1756-6606-4-17
PMCID: PMC3094290  PMID: 21504582
7.  The Mitochondrial Fusion-Promoting Factor Mitofusin Is a Substrate of the PINK1/Parkin Pathway 
PLoS ONE  2010;5(4):e10054.
Loss-of-function mutations in the PINK1 or parkin genes result in recessive heritable forms of parkinsonism. Genetic studies of Drosophila orthologs of PINK1 and parkin indicate that PINK1, a mitochondrially targeted serine/threonine kinase, acts upstream of Parkin, a cytosolic ubiquitin-protein ligase, to promote mitochondrial fragmentation, although the molecular mechanisms by which the PINK1/Parkin pathway promotes mitochondrial fragmentation are unknown. We tested the hypothesis that PINK1 and Parkin promote mitochondrial fragmentation by targeting core components of the mitochondrial morphogenesis machinery for ubiquitination. We report that the steady-state abundance of the mitochondrial fusion-promoting factor Mitofusin (dMfn) is inversely correlated with the activity of PINK1 and Parkin in Drosophila. We further report that dMfn is ubiquitinated in a PINK1- and Parkin-dependent fashion and that dMfn co-immunoprecipitates with Parkin. By contrast, perturbations of PINK1 or Parkin did not influence the steady-state abundance of the mitochondrial fission-promoting factor Drp1 or the mitochondrial fusion-promoting factor Opa1, or the subcellular distribution of Drp1. Our findings suggest that dMfn is a direct substrate of the PINK1/Parkin pathway and that the mitochondrial morphological alterations and tissue degeneration phenotypes that derive from mutations in PINK1 and parkin result at least in part from reduced ubiquitin-mediated turnover of dMfn.
doi:10.1371/journal.pone.0010054
PMCID: PMC2850930  PMID: 20383334
8.  SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria 
Molecular Biology of the Cell  2013;24(18):2772-2784.
Dysfunction of PINK1 causes familial Parkinson's disease. Recent work suggested that accumulation of PINK1 on damaged mitochondria is a critical step for mitophagy. It was not clear, however, how PINK1 is stabilized. PINK1 forms a complex with SARM1 and TRAF6, which is important for stabilization of PINK1 and induction of mitophagy.
Mutations in PTEN-induced putative kinase 1 (PINK1) or parkin cause autosomal recessive forms of Parkinson's disease. Recent work suggests that loss of mitochondrial membrane potential stabilizes PINK1 and that accumulated PINK1 recruits parkin from the cytoplasm to mitochondria for elimination of depolarized mitochondria, which is known as mitophagy. In this study, we find that PINK1 forms a complex with sterile α and TIR motif containing 1 (SARM1) and tumor necrosis factor receptor–associated factor 6 (TRAF6), which is important for import of PINK1 in the outer membrane and stabilization of PINK1 on depolarized mitochondria. SARM1, which is known to be an adaptor protein for Toll-like receptor, binds to PINK1 and promotes TRAF6-mediated lysine 63 chain ubiquitination of PINK1 at lysine 433. Down-regulation of SARM1 and TRAF6 abrogates accumulation of PINK1, followed by recruitment of parkin to damaged mitochondria. Some pathogenic mutations of PINK1 reduce the complex formation and ubiquitination. These results indicate that association of PINK1 with SARM1 and TRAF6 is an important step for mitophagy.
doi:10.1091/mbc.E13-01-0016
PMCID: PMC3771941  PMID: 23885119
9.  Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations 
Open biology  2011;1(3):110012.
Missense mutations of the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) gene cause autosomal-recessive Parkinson's disease. To date, little is known about the intrinsic catalytic properties of PINK1 since the human enzyme displays such low kinase activity in vitro. We have discovered that, in contrast to mammalian PINK1, insect orthologues of PINK1 we have investigated—namely Drosophila melanogaster (dPINK1), Tribolium castaneum (TcPINK1) and Pediculus humanus corporis (PhcPINK1)—are active as judged by their ability to phosphorylate the generic substrate myelin basic protein. We have exploited the most active orthologue, TcPINK1, to assess its substrate specificity and elaborated a peptide substrate (PINKtide, KKWIpYRRSPRRR) that can be employed to quantify PINK1 kinase activity. Analysis of PINKtide variants reveal that PINK1 phosphorylates serine or threonine, but not tyrosine, and we show that PINK1 exhibits a preference for a proline at the +1 position relative to the phosphorylation site. We have also, for the first time, been able to investigate the effect of Parkinson's disease-associated PINK1 missense mutations, and found that nearly all those located within the kinase domain, as well as the C-terminal non-catalytic region, markedly suppress kinase activity. This emphasizes the crucial importance of PINK1 kinase activity in preventing the development of Parkinson's disease. Our findings will aid future studies aimed at understanding how the activity of PINK1 is regulated and the identification of physiological substrates.
doi:10.1098/rsob.110012
PMCID: PMC3352081  PMID: 22645651
biochemistry; Parkinson's disease; kinase
10.  PINK1- Phosphorylated Mitofusin 2 is a Parkin Receptor for Culling Damaged Mitochondria 
Science (New York, N.Y.)  2013;340(6131):471-475.
Senescent and damaged mitochondria undergo selective mitophagic elimination through mechanisms requiring two Parkinson’s disease factors, the mitochondrial kinase PINK1 and the cytosolic ubiquitin ligase Parkin. The nature of the PINK-Parkin interaction and identity of key factors directing Parkin to damaged mitochondria are unknown. We show that the mitochondrial outer membrane GTPase mitofusin (Mfn) 2 mediates Parkin recruitment to damaged mitochondria. Parkin bound to Mfn2 in a PINK1-dependent manner; PINK1 phosphorylated Mfn2 and promoted its Parkin-mediated ubiqitination. Ablation of Mfn2 in mouse cardiac myocytes prevented depolarization-induced translocation of Parkin to the mitochondria and suppressed mitophagy. Accumulation of morphologically and functionally abnormal mitochondria induced respiratory dysfunction in Mfn2-deficient mouse embryonic fibroblasts and cardiomyocytes, and in Parkin-deficient Drosophila heart tubes, causing dilated cardiomyopathy. Thus, Mfn2 functions as a mitochondrial receptor for Parkin, and is required for quality control of cardiac mitochondria.
doi:10.1126/science.1231031
PMCID: PMC3774525  PMID: 23620051
11.  The Loss of PGAM5 Suppresses the Mitochondrial Degeneration Caused by Inactivation of PINK1 in Drosophila 
PLoS Genetics  2010;6(12):e1001229.
PTEN-induced kinase 1 (PINK1), which is required for mitochondrial homeostasis, is a gene product responsible for early-onset Parkinson's disease (PD). Another early onset PD gene product, Parkin, has been suggested to function downstream of the PINK1 signalling pathway based on genetic studies in Drosophila. PINK1 is a serine/threonine kinase with a predicted mitochondrial target sequence and a probable transmembrane domain at the N-terminus, while Parkin is a RING-finger protein with ubiquitin-ligase (E3) activity. However, how PINK1 and Parkin regulate mitochondrial activity is largely unknown. To explore the molecular mechanism underlying the interaction between PINK1 and Parkin, we biochemically purified PINK1-binding proteins from human cultured cells and screened the genes encoding these binding proteins using Drosophila PINK1 (dPINK1) models to isolate a molecule(s) involved in the PINK1 pathology. Here we report that a PINK1-binding mitochondrial protein, PGAM5, modulates the PINK1 pathway. Loss of Drosophila PGAM5 (dPGAM5) can suppress the muscle degeneration, motor defects, and shorter lifespan that result from dPINK1 inactivation and that can be attributed to mitochondrial degeneration. However, dPGAM5 inactivation fails to modulate the phenotypes of parkin mutant flies. Conversely, ectopic expression of dPGAM5 exacerbated the dPINK1 and Drosophila parkin (dParkin) phenotypes. These results suggest that PGAM5 negatively regulates the PINK1 pathway related to maintenance of the mitochondria and, furthermore, that PGAM5 acts between PINK1 and Parkin, or functions independently of Parkin downstream of PINK1.
Author Summary
Parkinson's disease (PD) is a neurodegenerative disease pathologically characterized by degeneration of dopaminergic (DA) neurons in the midbrain. A small percentage of PD cases are inherited in a Mendelian manner, and several disease-causing genes have been identified. The PINK1 and Parkin genes have been isolated as the genes for autosomal recessive form of early-onset PD. Unexpectedly, loss of function of either PINK1 or Parkin in Drosophila causes mitochondrial degeneration in the flight muscles, which exhibits a visible phenotype of abnormal wing postures, allowing a rapid genetic screening. We purified PINK1-binding proteins from human cultured cells and screened the gene for these binding proteins using the PINK1 mutant flies. We found that inactivation of a PINK1-binding protein phosphoglycerate mutase 5 (PGAM5) suppresses mitochondrial degeneration caused by the loss of PINK1 activity. Although parkin is suggested to be genetically downstream of PINK1 in Drosophila, loss of PGAM5 failed to modulate the phenotypes by parkin inactivation. Our finding suggested that, for mitochondrial maintenance of tissues with high-energy demands such as the muscles and DA neurons, PGAM5 acts between PINK1 and Parkin, or functions independently of Parkin downstream of PINK1.
doi:10.1371/journal.pgen.1001229
PMCID: PMC2996328  PMID: 21151955
12.  PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility 
Cell  2011;147(4):893-906.
SUMMARY
Cells keep their energy balance and avoid oxidative stress by regulating mitochondrial movement, distribution, and clearance. We report here that two Parkinson’s disease proteins, the Ser/Thr-kinase PINK1 and ubiquitin-ligase Parkin, participate in this regulation by arresting mitochondrial movement. PINK1 phosphorylates Miro, a component of the primary motor/adaptor complex that anchors kinesin to the mitochondrial surface. The phosphorylation of Miro activates proteasomal degradation of Miro in a Parkin-dependent manner. Removal of Miro from the mitochondrion also detaches kinesin from its surface. By preventing mitochondrial movement, the PINK1/Parkin pathway may quarantine damaged mitochondria prior to their clearance. PINK1 has been shown to act upstream of Parkin but the mechanism corresponding to this relationship has not been known. We propose that PINK1 phosphorylation of substrates triggers the subsequent action of Parkin and the proteasome.
doi:10.1016/j.cell.2011.10.018
PMCID: PMC3261796  PMID: 22078885
13.  To Eat or Not to Eat: Neuronal Metabolism, Mitophagy, and Parkinson's Disease 
Antioxidants & Redox Signaling  2011;14(10):1979-1987.
Abstract
Neurons are exquisitely dependent upon mitochondrial respiration to support energy-demanding functions. Mechanisms that regulate mitochondrial quality control have recently taken center stage in Parkinson's disease research, particularly the selective degradation of mitochondria by autophagy (mitophagy). Unlike other cells, neurons show limited glycolytic potential, and both insufficient and excessive mitophagy have been linked to neurodegeneration. Kinases implicated in regulating mammalian mitophagy include extracellular signal-regulated protein kinases (ERK1/2) and PTEN-induced kinase 1 (PINK1). Increased expression of full-length PINK1 enhances recruitment of parkin to chemically depolarized mitochondria, resulting in rapid mitochondrial clearance in transformed cell lines. As parkin and PINK1 mutations cause autosomal recessive parkinsonism, potential defects in clearing dysfunctional mitochondria may contribute to mitochondrial abnormalities in disease. Given the unique features of metabolic regulation in neurons, however, mechanisms regulating mitochondrial network stability and the threshold for mitophagy are likely to vary from cells that preferentially utilize aerobic glycolysis. Moreover, removal of the entire mitochondrial complement may represent part of a neuronal cell death pathway. Future work utilizing physiological injuries that affect only a subset of mitochondria would help to elucidate whether defective recognition of damaged mitochondria, or alternatively, inability to maintain or generate healthy mitochondria, play the major roles in parkinsonian neurodegeneration. Antioxid. Redox Signal. 14, 1979–1987.
doi:10.1089/ars.2010.3763
PMCID: PMC3078495  PMID: 21126205
14.  Protein degradation in Parkinson disease revisited: it’s complex 
Mutations in the genes PTEN-induced putative kinase 1 (PINK1), PARKIN, and DJ-1 cause autosomal recessive forms of Parkinson disease (PD), and the Pink1/Parkin pathway regulates mitochondrial integrity and function. An important question is whether the proteins encoded by these genes function to regulate activities of other cellular compartments. A study in mice, reported by Xiong et al. in this issue of the JCI, demonstrates that Pink1, Parkin, and DJ-1 can form a complex in the cytoplasm, with Pink1 and DJ-1 promoting the E3 ubiquitin ligase activity of Parkin to degrade substrates via the proteasome (see the related article beginning on page 650). This protein complex in the cytosol may or may not be related to the role of these proteins in regulating mitochondrial function or oxidative stress in vivo.
doi:10.1172/JCI38619
PMCID: PMC2648670  PMID: 19306499
15.  p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria 
Genes to Cells  2010;15(8):887-900.
PINK1 and Parkin were first identified as the causal genes responsible for familial forms of early-onset Parkinson’s disease (PD), a prevalent neurodegenerative disorder. PINK1 encodes a mitochondrial serine/threonine protein kinase, whereas Parkin encodes an ubiquitin-protein ligase. PINK1 and Parkin cooperate to maintain mitochondrial integrity; however, the detailed molecular mechanism of how Parkin-catalyzed ubiquitylation results in mitochondrial integrity remains an enigma. In this study, we show that Parkin-catalyzed K63-linked polyubiquitylation of depolarized mitochondria resulted in ubiquitylated mitochondria being transported along microtubules to cluster in the perinuclear region, which was interfered by pathogenic mutations of Parkin. In addition, p62/SQSTM1 (hereafter referred to as p62) was recruited to depolarized mitochondria after Parkin-directed ubiquitylation. Intriguingly, deletion of p62 in mouse embryonic fibroblasts resulted in a gross loss of mitochondrial perinuclear clustering but did not hinder mitochondrial degradation. Thus, p62 is required for ubiquitylation-dependent clustering of damaged mitochondria, which resembles p62-mediated ‘aggresome’ formation of misfolded/unfolded proteins after ubiquitylation.
doi:10.1111/j.1365-2443.2010.01426.x
PMCID: PMC2970908  PMID: 20604804
16.  A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease 
Human Molecular Genetics  2010;19(R1):R28-R37.
The PTEN-induced putative kinase 1 (PINK1) is a mitochondrially targeted serine–threonine kinase, which is linked to autosomal recessive familial parkinsonism. Current literature implicates PINK1 as a pivotal regulator of mitochondrial quality control, promoting maintenance of respiring mitochondrial networks through cristae stabilization, phosphorylation of chaperones and possibly regulation of mitochondrial transport or autophagy. Pulse—chase studies indicate that PINK1 is rapidly processed into at least two shorter forms, which are distributed in both mitochondrial and cytosolic compartments. Through indirect regulation of mitochondrial proteases and Drp1, PINK1 may act to facilitate localized repair and fusion in response to minor mitochondrial stress. With severe mitochondrial damage, PINK1 facilitates aggregation and clearance of depolarized mitochondria through interactions with Parkin and possibly Beclin1. This switch in function most probably involves altered processing, post-translational modification and/or localization of PINK1, as overexpression of full-length PINK1 is required for mitochondrial Parkin recruitment. Under conditions of PINK1 deficiency, dysregulation of reactive oxygen species, electron transport chain function and calcium homeostasis trigger altered mitochondrial dynamics, indicating compromise of mitochondrial quality control mechanisms. Nevertheless, Parkin- and Beclin1-regulated mitochondrial autophagy remains effective at recycling PINK1-deficient mitochondria; failure of this final tier of mitochondrial quality control contributes to cell death. Thus, PINK1 plays a pivotal, multifactorial role in mitochondrial homeostasis. As autophagic recycling represents the final tier of mitochondrial quality control, whether PINK1 levels are enhanced or reduced, strategies to promote selective mitophagy and mitochondrial biogenesis may prove effective for multiple forms of Parkinson's disease.
doi:10.1093/hmg/ddq143
PMCID: PMC2875056  PMID: 20385539
17.  A neo-substrate that amplifies catalytic activity of Parkinson’s disease related kinase PINK1 
Cell  2013;154(4):737-747.
Summary
Mitochondria have long been implicated in the pathogenesis of Parkinson’s disease (PD). Mutations in the mitochondrial kinase PINK1 that reduce kinase activity are associated with mitochondrial defects and result in an autosomal recessive form of early onset PD. Therapeutic approaches for enhancing the activity of PINK1 have not been considered since no allosteric regulatory sites for PINK1 are known. Here we show that an alternative strategy, a neo-substrate approach involving the ATP analog kinetin triphosphate (KTP), can be used to increase the activity of both PD related mutant PINK1G309D and PINK1wt. Moreover, we show that application of the KTP precursor kinetin to cells results in biologically significant increases in PINK1 activity, manifest as higher levels of Parkin recruitment to depolarized mitochondria, reduced mitochondrial motility in axons, and lower levels of apoptosis. Discovery of neo-substrates for kinases could provide a heretofore-unappreciated modality for regulating kinase activity.
doi:10.1016/j.cell.2013.07.030
PMCID: PMC3950538  PMID: 23953109
18.  Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss 
Nature neuroscience  2009;12(9):1129-1135.
Mutations in PINK1 and parkin cause autosomal recessive parkinsonism, a neurodegenerative disorder characterized by the loss of dopaminergic neurons. To highlight potential therapeutic pathways we have identified factors that genetically interact with parkin/PINK1. Here we report that overexpression of the translation inhibitor 4E-BP can suppress all pathologic phenotypes including degeneration of dopaminergic neurons in Drosophila. 4E-BP is activated in vivo by the TOR inhibitor rapamycin, which we find can potently suppress pathology in PINK1/parkin mutants. Rapamycin also ameliorates mitochondrial defects in cells from parkin-mutant patients. Recently, 4E-BP was shown to be inhibited by the most common cause of parkinsonism, dominant mutations in LRRK2. Here we further show that loss of the Drosophila LRRK2 homolog activates 4E-BP and is also able to suppress PINK1/parkin pathology. Thus, in conjunction with recent findings our results suggest that pharmacologic stimulation of 4E-BP activity may represent a viable therapeutic approach for multiple forms of parkinsonism.
doi:10.1038/nn.2372
PMCID: PMC2745154  PMID: 19684592
parkinsonism; neurodegeneration; parkin; PINK1; 4E-BP; rapamycin; TOR; LRRK2
19.  DJ-1 regulation of mitochondrial function and autophagy through oxidative stress 
Autophagy  2011;7(5):531-532.
The dysregulation of mitochondrial function has been implicated in the pathogenesis of Parkinson disease. Mutations in the parkin, PINK1 and DJ-1 genes all result in recessive parkinsonism. Although the protein products of these genes have not been fully characterized, it has been established that all three contribute to the maintenance of mitochondrial function. PINK1 and parkin act in a common pathway to regulate the selective autophagic removal of depolarized mitochondria, but the relationship between DJ-1 and PINK1- and/or parkin-mediated effects on mitochondria and autophagy is less clear. We have shown that loss of DJ-1 leads to mitochondrial phenotypes including reduced membrane potential, increased fragmentation and accumulation of autophagic markers. Supplementing DJ-1-deficient cells with glutathione reverses both mitochondrial and autophagic changes suggesting that DJ-1 may act to maintain mitochondrial function during oxidative stress and thereby alter mitochondrial dynamics and autophagy indirectly.
doi:10.4161/auto.7.5.14684
PMCID: PMC3127213  PMID: 21317550
mitochondria; oxidative stress; Parkinson disease; PINK1; parkin; DJ-1
20.  PINK1 Protects against Oxidative Stress by Phosphorylating Mitochondrial Chaperone TRAP1 
PLoS Biology  2007;5(7):e172.
Mutations in the PTEN induced putative kinase 1 (PINK1) gene cause an autosomal recessive form of Parkinson disease (PD). So far, no substrates of PINK1 have been reported, and the mechanism by which PINK1 mutations lead to neurodegeneration is unknown. Here we report the identification of TNF receptor-associated protein 1 (TRAP1), a mitochondrial molecular chaperone also known as heat shock protein 75 (Hsp75), as a cellular substrate for PINK1 kinase. PINK1 binds and colocalizes with TRAP1 in the mitochondria and phosphorylates TRAP1 both in vitro and in vivo. We show that PINK1 protects against oxidative-stress-induced cell death by suppressing cytochrome c release from mitochondria, and this protective action of PINK1 depends on its kinase activity to phosphorylate TRAP1. Moreover, we find that the ability of PINK1 to promote TRAP1 phosphorylation and cell survival is impaired by PD-linked PINK1 G309D, L347P, and W437X mutations. Our findings suggest a novel pathway by which PINK1 phosphorylates downstream effector TRAP1 to prevent oxidative-stress-induced apoptosis and implicate the dysregulation of this mitochondrial pathway in PD pathogenesis.
Author Summary
Parkinson disease (PD) is characterized by the selective loss of midbrain dopaminergic neurons. Although the cause of PD is unknown, pathological analyses have suggested the involvement of oxidative stress and mitochondrial dysfunction. Recently, an inherited form of early-onset PD has been linked to mutations in both copies of the gene encoding the mitochondrial protein PINK1. Furthermore, increasing evidence indicates that single-copy mutations in PINK1 are a significant risk factor in the development of later-onset PD. Here we show that PINK1 is a protein kinase that phosphorylates the mitochondrial molecular chaperone TRAP1 to promote cell survival. We find that PINK1 normally protects against oxidative-stress-induced cell death by suppressing cytochrome c release from mitochondria. The PINK1 mutations linked to PD impair the ability of PINK1 to phosphorylate TRAP1 and promote cell survival. Our findings reveal a novel anti-apoptotic signaling pathway that is disrupted by mutations in PINK1. We suggest that this pathway has a role in PD pathogenesis and may be a target for therapeutic intervention.
Mutations in the gene that codes for PINK1 cause a common form of Parkinson disease. Here the authors show that PINK1 phosphorylates TRAP1, which suppresses apoptotic release of cytochrome c from mitochondria.
doi:10.1371/journal.pbio.0050172
PMCID: PMC1892574  PMID: 17579517
21.  Reduction of Protein Translation and Activation of Autophagy Protect against PINK1 Pathogenesis in Drosophila melanogaster 
PLoS Genetics  2010;6(12):e1001237.
Mutations in PINK1 and Parkin cause familial, early onset Parkinson's disease. In Drosophila melanogaster, PINK1 and Parkin mutants show similar phenotypes, such as swollen and dysfunctional mitochondria, muscle degeneration, energy depletion, and dopaminergic (DA) neuron loss. We previously showed that PINK1 and Parkin genetically interact with the mitochondrial fusion/fission pathway, and PINK1 and Parkin were recently proposed to form a mitochondrial quality control system that involves mitophagy. However, the in vivo relationships among PINK1/Parkin function, mitochondrial fission/fusion, and autophagy remain unclear; and other cellular events critical for PINK1 pathogenesis remain to be identified. Here we show that PINK1 genetically interacted with the protein translation pathway. Enhanced translation through S6K activation significantly exacerbated PINK1 mutant phenotypes, whereas reduction of translation showed suppression. Induction of autophagy by Atg1 overexpression also rescued PINK1 mutant phenotypes, even in the presence of activated S6K. Downregulation of translation and activation of autophagy were already manifested in PINK1 mutant, suggesting that they represent compensatory cellular responses to mitochondrial dysfunction caused by PINK1 inactivation, presumably serving to conserve energy. Interestingly, the enhanced PINK1 mutant phenotype in the presence of activated S6K could be fully rescued by Parkin, apparently in an autophagy-independent manner. Our results reveal complex cellular responses to PINK1 inactivation and suggest novel therapeutic strategies through manipulation of the compensatory responses.
Author Summary
Parkinson's disease is the most common neurodegenerative disease affecting the aging population. Clinically it manifests as tremor, muscle rigidity, slow movement, and postural instability. Parkinson's disease is a chronic disorder, and its occurrence and progression are determined by genetic backgrounds and environmental factors. Although the most common forms of Parkinson's disease, the so-called “idiopathic” forms, generally affect people older than 50, some familial forms of the disease occur before age 40. Mutations in PINK1 and Parkin genes have been associated with the latter forms of Parkinson's disease. The inactivation of PINK1 or Parkin causes dysfunction of mitochondria, the powerhouse of the cell, leading to the degeneration of tissues such as the brain and muscle that have high energy demand. In an effort to understand how genetic mutations in PINK1 result in disease and to find effective ways to intervene, we have performed genetic studies in the model organism Drosophila melanogaster and found that reduced protein translation or increased autophagy can efficiently mitigate the phenotypes caused by PINK1 inactivation. Our result suggests that pharmacological manipulations of these newly identified PINK1-interacting pathways may prove beneficial for the treatment of Parkinson's disease.
doi:10.1371/journal.pgen.1001237
PMCID: PMC3000346  PMID: 21151574
22.  Structure and Function of Parkin, PINK1, and DJ-1, the Three Musketeers of Neuroprotection 
Autosomal recessive forms of Parkinson’s disease are caused by mutations in three genes: Parkin, PINK1, and DJ-1. These genes encode for proteins with distinct enzymatic activities that may work together to confer neuroprotection. Parkin is an E3 ubiquitin ligase that has been shown to ubiquitinate substrates and to trigger proteasome-dependent degradation or autophagy, two crucial homeostatic processes in neurons. PINK1 is a mitochondrial protein kinase whose activity is required for Parkin-dependent mitophagy, a process that has been linked to neurodegeneration. Finally, DJ-1 is a protein homologous to a broad class of bacterial enzymes that may function as a sensor and modulator of reactive oxygen species, which have been implicated in neurodegenerative diseases. Here, we review the literature on the structure and biochemical functions of these three proteins.
doi:10.3389/fneur.2013.00038
PMCID: PMC3630392  PMID: 23626584
Parkinson’s disease; Parkin; PINK1; DJ-1; ubiquitin; phosphorylation; mitochondria; oxidative stress
23.  PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy 
The Journal of Cell Biology  2010;189(2):211-221.
Defective mitochondrial quality control is shown to be a mechanism for neurodegeneration in some forms of Parkinson's disease.
Parkinson's disease (PD) is a prevalent neurodegenerative disorder. Recent identification of genes linked to familial forms of PD such as Parkin and PINK1 (PTEN-induced putative kinase 1) has revealed that ubiquitylation and mitochondrial integrity are key factors in disease pathogenesis. However, the exact mechanism underlying the functional interplay between Parkin-catalyzed ubiquitylation and PINK1-regulated mitochondrial quality control remains an enigma. In this study, we show that PINK1 is rapidly and constitutively degraded under steady-state conditions in a mitochondrial membrane potential–dependent manner and that a loss in mitochondrial membrane potential stabilizes PINK1 mitochondrial accumulation. Furthermore, PINK1 recruits Parkin from the cytoplasm to mitochondria with low membrane potential to initiate the autophagic degradation of damaged mitochondria. Interestingly, the ubiquitin ligase activity of Parkin is repressed in the cytoplasm under steady-state conditions; however, PINK1-dependent mitochondrial localization liberates the latent enzymatic activity of Parkin. Some pathogenic mutations of PINK1 and Parkin interfere with the aforementioned events, suggesting an etiological importance. These results provide crucial insight into the pathogenic mechanisms of PD.
doi:10.1083/jcb.200910140
PMCID: PMC2856912  PMID: 20404107
24.  Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation 
Mutations in PARKIN, pten-induced putative kinase 1 (PINK1), and DJ-1 are individually linked to autosomal recessive early-onset familial forms of Parkinson disease (PD). Although mutations in these genes lead to the same disease state, the functional relationships between them and how their respective disease-associated mutations cause PD are largely unknown. Here, we show that Parkin, PINK1, and DJ-1 formed a complex (termed PPD complex) to promote ubiquitination and degradation of Parkin substrates, including Parkin itself and Synphilin-1 in neuroblastoma cells and human brain lysates. Genetic ablation of either Pink1 or Dj-1 resulted in reduced ubiquitination of endogenous Parkin as well as decreased degradation and increased accumulation of aberrantly expressed Parkin substrates. Expression of PINK1 enhanced Parkin-mediated degradation of heat shock–induced misfolded protein. In contrast, PD-pathogenic Parkin and PINK1 mutations showed reduced ability to promote degradation of Parkin substrates. This study identified a functional ubiquitin E3 ligase complex consisting of PD-associated Parkin, PINK1, and DJ-1 to promote degradation of un-/misfolded proteins and suggests that their PD-pathogenic mutations impair E3 ligase activity of the complex, which may constitute a mechanism underlying PD pathogenesis.
doi:10.1172/JCI37617
PMCID: PMC2648688  PMID: 19229105
25.  Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization 
Nature  2013;496(7445):372-376.
The PARKIN (PARK2) ubiquitin ligase and its regulatory kinase PINK1 (PARK6), often mutated in familial early onset Parkinson’s Disease (PD), play central roles in mitochondrial homeostasis and mitophagy.1–3 While PARKIN is recruited to the mitochondrial outer membrane (MOM) upon depolarization via PINK1 action and can ubiquitylate Porin, Mitofusin, and Miro proteins on the MOM,1,4–11 the full repertoire of PARKIN substrates – the PARKIN-dependent ubiquitylome - remains poorly defined. Here we employ quantitative diGLY capture proteomics12,13 to elucidate the ubiquitylation site-specificity and topology of PARKIN-dependent target modification in response to mitochondrial depolarization. Hundreds of dynamically regulated ubiquitylation sites in dozens of proteins were identified, with strong enrichment for MOM proteins, indicating that PARKIN dramatically alters the ubiquitylation status of the mitochondrial proteome. Using complementary interaction proteomics, we found depolarization-dependent PARKIN association with numerous MOM targets, autophagy receptors, and the proteasome. Mutation of PARKIN’s active site residue C431, which has been found mutated in PD patients, largely disrupts these associations. Structural and topological analysis revealed extensive conservation of PARKIN-dependent ubiquitylation sites on cytoplasmic domains in vertebrate and D. melanogaster MOM proteins. These studies provide a resource for understanding how the PINK1-PARKIN pathway re-sculpts the proteome to support mitochondrial homeostasis.
doi:10.1038/nature12043
PMCID: PMC3641819  PMID: 23503661

Results 1-25 (958409)