PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (597769)

Clipboard (0)
None

Related Articles

1.  Rapid Detection of Contagious Bovine Pleuropneumonia by a Mycoplasma mycoides subsp. mycoides SC Capsular Polysaccharide-Specific Antigen Detection Latex Agglutination Test 
A latex agglutination test (LAT) has been developed for the diagnosis of contagious bovine pleuropneumonia (CBPP). The latex microspheres were coated with MmmSC polyclonal immunoglobulin G antiserum and detected MmmSC antigen in the serum of cattle infected with CBPP and in growth medium containing MmmSC. The specific antigen recognizsed by this test appeared to be the capsular polysaccharide (CPS). The LAT recognized all 23 strains of MmmSC examined in this study, with a sensitivity level of 2 ng of CPS, or the equivalent of 5 × 103 CFU, in a reaction volume of 0.03 ml. Therefore, rapid identification of MmmSC cultures should be possible. Agglutination was also observed with the related goat pathogens and “Mycoplasma mycoides” cluster members Mycoplasma mycoides subsp. mycoides large colony biotype (four of six strains positive) and Mycoplasma mycoides subsp. capri (three of six strains positive), in agreement with the suggestion that these latter two mycoplasmas may in fact represent a single species (although collectively exhibiting two capsular serotypes). Comparisons in diagnosis with the complement fixation test (CFT) were made by using African field sera from CBPP-infected cattle. After 2 (or 3) min of incubation, the test detected 55% (or 61%) of CFT-positive sera and 29% (or 40%) of CFT-negative sera, with an overall correlation in diagnosis of 62% (or 61%). The rates for false-positive diagnoses made by using “known” CBPP-negative sera from the United Kingdom were 3 or 13% after 2 or 3 min of incubation, respectively. The data agree with previous findings that some CBPP CFT-negative misdiagnoses may occur due to “antibody eclipsing” by excess circulating antigen. The LAT combines low cost and high specificity with ease of application in the field, without the need for any specialist training or equipment.
doi:10.1128/CDLI.10.2.233-240.2003
PMCID: PMC150542  PMID: 12626448
2.  Identification of Mycoplasma mycoides subsp. mycoides Small Colony Genes Coding for T-Cell Antigens ▿  
Genes of the Mycoplasma mycoides subsp. mycoides small colony biotype (MmmSC) coding for proteins capable of eliciting protective T-cell memory responses have potential for incorporation into a recombinant subunit vaccine against contagious bovine pleuropneumonia (CBPP). Here we used lymphocytes from cattle that had completely recovered from infection to screen products of MmmSC genes for recognition by CD4+ effector memory (Tem) and central memory (Tcm) T lymphocytes. Six MmmSC genes (abc, gapN, glpO, lppA, lppB, and ptsG) were expressed as histidine-tagged recombinant polypeptides, or synthetic overlapping peptides, before inclusion in proliferation and gamma interferon (IFN-γ) assays. Only two MmmSC antigens, LppA and PtsG, consistently induced recall proliferation from immune CD4+ T cells and IFN-γ production in all animals tested. Moreover, LppA and PtsG were shown to possess epitopes recognized by both short-lived CD4+ Tem and long-lived CD4+ Tcm cells.
doi:10.1128/CVI.00132-10
PMCID: PMC2916241  PMID: 20534794
3.  Characterization of Strains of Mycoplasma mycoides subsp. mycoides Small Colony Type Isolated from Recent Outbreaks of Contagious Bovine Pleuropneumonia in Botswana and Tanzania: Evidence for a New Biotype 
Journal of Clinical Microbiology  2000;38(4):1419-1425.
Four strains of Mycoplasma mycoides subsp. mycoides small colony type (MmmSC) isolated from recent outbreaks of contagious bovine pleuropneumonia (CBPP) in Africa have been investigated. One Botswanan strain, M375, displayed numerous and significant phenotypic differences from both contemporary field isolates and older field and vaccine strains (African, Australian, and European strains dating back to 1936). Differences include altered morphology, reduced capsular polysaccharide production, high sensitivity to MmmSC rabbit hyperimmune antisera in vitro, and unique polymorphisms following immunoblotting. While insertion sequence analysis using IS1634 clearly indicates a close evolutionary relationship to west African strains, hybridization with IS1296 shows the absence of a band present in all other strains of MmmSC examined. The data suggest that a deletion has occurred in strain M375, which may explain its altered phenotype, including poor growth in vitro and a relative inability to cause septicemia in mice. These characteristics are also exhibited by Mycoplasma capricolum subsp. capripneumoniae (causal agent of contagious caprine pleuropneumonia [CCPP]), against which M375 antiserum exhibited some activity in vitro (unique among the various MmmSC antisera tested). These findings may have evolutionary implications, since CCPP is believed to be lung specific and without a septicemic phase (unlike CBPP). Since M375 was isolated from a clinical case of CBPP, this novel biotype may be fairly widespread but not normally isolated due to difficulty of culture and/or a potentially altered disease syndrome. Bovine convalescent antisera (obtained from contemporary naturally infected cattle in Botswana) were active against strain M375 in an in vitro growth inhibition test but not against any other strains of MmmSC tested. There exists the possibility therefore, that strain M375 may possess a set of protective antigens different from those of other strains of MmmSC (including vaccine strains). These findings have implications for the control of the current CBPP epidemic in Africa.
PMCID: PMC86456  PMID: 10747118
4.  Mycoplasma mycoides, from "mycoides Small Colony" to "capri". A microevolutionary perspective 
BMC Genomics  2011;12:114.
Background
The Mycoplasma mycoides cluster consists of five species or subspecies that are ruminant pathogens. One subspecies, Mycoplasma mycoides subspecies mycoides Small Colony (MmmSC), is the causative agent of contagious bovine pleuropneumonia. Its very close relative, Mycoplasma mycoides subsp. capri (Mmc), is a more ubiquitous pathogen in small ruminants causing mastitis, arthritis, keratitis, pneumonia and septicaemia and is also found as saprophyte in the ear canal. To understand the genetics underlying these phenotypic differences, we compared the MmmSC PG1 type strain genome, which was already available, with the genome of an Mmc field strain (95010) that was sequenced in this study. We also compared the 95010 genome with the recently published genome of another Mmc strain (GM12) to evaluate Mmc strain diversity.
Results
The MmmSC PG1 genome is 1,212 kbp and that of Mmc 95010 is ca. 58 kbp shorter. Most of the sequences present in PG1 but not 95010 are highly repeated Insertion Sequences (three types of IS) and large duplicated DNA fragments. The 95010 genome contains five types of IS, present in fewer copies than in PG1, and two copies of an integrative conjugative element. These mobile genetic elements have played a key role in genome plasticity, leading to inversions of large DNA fragments. Comparison of the two genomes suggested a marked decay of the PG1 genome that seems to be correlated with a greater number of IS. The repertoire of gene families encoding surface proteins is smaller in PG1. Several genes involved in polysaccharide metabolism and protein degradation are also absent from, or degraded in, PG1.
Conclusions
The genome of MmmSC PG1 is larger than that of Mmc 95010, its very close relative, but has less coding capacity. This is the result of large genetic rearrangements due to mobile elements that have also led to marked gene decay. This is consistent with a non-adaptative genomic complexity theory, allowing duplications or pseudogenes to be maintained in the absence of adaptive selection that would lead to purifying selection and genome streamlining over longer evolutionary times. These findings also suggest that MmmSC only recently adapted to its bovine host.
doi:10.1186/1471-2164-12-114
PMCID: PMC3053259  PMID: 21324191
5.  Pharmacodynamics of Antimicrobials against Mycoplasma mycoides mycoides Small Colony, the Causative Agent of Contagious Bovine Pleuropneumonia 
PLoS ONE  2012;7(8):e44158.
Background
Mycoplasma mycoides subspecies mycoides Small Colony (MmmSC) is the causative agent of Contagious Bovine Pleuropneumonia (CBPP), a disease of substantial economic importance in sub-Saharan Africa. Failure of vaccination to curtail spread of this disease has led to calls for evaluation of the role of antimicrobials in CBPP control. Three major classes of antimicrobial are effective against mycoplasmas, namely tetracyclines, fluoroquinolones and macrolides. Therefore, the objectives of this study were to determine the effector kinetics of oxytetracycline, danofloxacin and tulathromycin against two MmmSC field strains in artificial medium and adult bovine serum.
Methods
Minimum inhibitory concentrations (MIC) were determined for oxytetracycline, danofloxacin and tulathromycin against MmmSC strains B237 and Tan8 using a macrodilution technique, and time-kill curves were constructed for various multiples of the MIC over a 24 hour period in artificial medium and serum. Data were fitted to sigmoid Emax models to obtain 24 hour-area under curve/MIC ratios for mycoplasmastasis and, where appropriate, for mycoplasmacidal activity and virtual mycoplasmal elimination.
Results
Minimum inhibitory concentrations against B237 were 20-fold higher, 2-fold higher and approximately 330-fold lower in serum than in artificial medium for oxytetracycline, danofloxacin and tulathromycin, respectively. Such differences were mirrored in experiments using Tan8. Oxytetracycline was mycoplasmastatic against both strains in both matrices. Danofloxacin elicited mycoplasmacidal activity against B237 and virtual elimination of Tan8; similar maximum antimycoplasmal effects were observed in artificial medium and serum. Tulathromycin effected virtual elimination of B237 but was mycoplasmastatic against Tan8 in artificial medium. However, this drug was mycoplasmastatic against both strains in the more physiologically relevant matrix of serum.
Conclusions
Oxytetracycline, danofloxacin and tulathromycin are all suitable candidates for further investigation as potential treatments for CBPP. This study also highlights the importance of testing drug activity in biological matrices as well as artificial media.
doi:10.1371/journal.pone.0044158
PMCID: PMC3428318  PMID: 22952911
6.  Evolutionary History of Contagious Bovine Pleuropneumonia Using Next Generation Sequencing of Mycoplasma mycoides Subsp. mycoides “Small Colony” 
PLoS ONE  2012;7(10):e46821.
Mycoplasma mycoides subsp. mycoides “Small Colony” (MmmSC) is responsible for contagious bovine pleuropneumonia (CBPP) in bovidae, a notifiable disease to the World Organization for Animal Health (OIE). Although its origin is not documented, the disease was known in Europe in 1773. It reached nearly world-wide distribution in the 19th century through the cattle trade and was eradicated from most continents by stamping-out policies. During the 20th century it persisted in Africa, and it reappeared sporadically in Southern Europe. Yet, classical epidemiology studies failed to explain the re-occurrence of the disease in Europe in the 1990s. The objectives of this study were to obtain a precise phylogeny of this pathogen, reconstruct its evolutionary history, estimate the date of its emergence, and determine the origin of the most recent European outbreaks. A large-scale genomic approach based on next-generation sequencing technologies was applied to construct a robust phylogeny of this extremely monomorphic pathogen by using 20 representative strains of various geographical origins. Sixty two polymorphic genes of the MmmSC core genome were selected, representing 83601 bp in total and resulting in 139 SNPs within the 20 strains. A robust phylogeny was obtained that identified a lineage specific to European strains; African strains were scattered in various branches. Bayesian analysis allowed dating the most recent common ancestor for MmmSC around 1700. The strains circulating in Sub-Saharan Africa today, however, were shown to descend from a strain that existed around 1810. MmmSC emerged recently, about 300 years ago, and was most probably exported from Europe to other continents, including Africa, during the 19th century. Its diversity is now greater in Africa, where CBPP is enzootic, than in Europe, where outbreaks occurred sporadically until 1999 and where CBPP may now be considered eradicated unless MmmSC remains undetected.
doi:10.1371/journal.pone.0046821
PMCID: PMC3468273  PMID: 23071648
7.  Domain analysis of lipoprotein LppQ in Mycoplasma mycoides subsp. mycoides SC 
Antonie Van Leeuwenhoek  2007;93(1-2):175-183.
The lipoprotein LppQ is the most prominent antigen of Mycoplasma mycoides subsp. mycoides small colony type (SC) during infection of cattle. This pathogen causes contagious bovine pleuropneumonia (CBPP), a devastating disease of considerable socio-economic importance in many countries worldwide. The dominant antigenicity and high specificity for M. mycoides subsp. mycoides SC of lipoprotein LppQ have been exploited for serological diagnosis and for epidemiological investigations of CBPP. Scanning electron microscopy and immunogold labelling were used to provide ultrastructural evidence that LppQ is located to the cell membrane at the outer surface of M. mycoides subsp. mycoides SC. The selectivity and specificity of this method were demonstrated through discriminating localization of extracellular (i.e., in the zone of contact with host cells) vs. integral membrane domains of LppQ. Thus, our findings support the suggestion that the accessible N-terminal domain of LppQ is surface exposed and such surface localization may be implicated in the pathogenesis of CBPP.
doi:10.1007/s10482-007-9191-1
PMCID: PMC2140093  PMID: 17674137
Contagious bovine pleuropneumonia (CBPP); Immunogold labeling; Lipoprotein LppQ; Domain analysis; Mycoplasma mycoides subsp. mycoides SC; Scanning electron microscopy (SEM)
8.  Identification of genes coding for B cell antigens of Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC) by using phage display 
BMC Microbiology  2009;9:215.
Background
Contagious bovine pleuropneumonia (CBPP) is a mycoplasmal disease caused by Mycoplasma mycoides subsp. mycoides SC (MmmSC). Since the disease is a serious problem that can affect cattle production in parts of Africa, there is a need for an effective and economical vaccine. Identifying which of the causative agent's proteins trigger potentially protective immune responses is an important step towards developing a subunit vaccine. Accordingly, the purpose of this study was to determine whether phage display combined with bioinformatics could be used to narrow the search for genes that code for potentially immunogenic proteins of MmmSC. Since the production of IgG2 and IgA are associated with a Th1 cellular immune response which is implicated in protection against CBPP, antigens which elicit these immunoglobulin subclasses may be useful in developing a subunit vaccine.
Results
A filamentous phage library displaying a repertoire of peptides expressed by fragments of the genome of MmmSC was constructed. It was subjected to selection using antibodies from naturally- and experimentally-infected cattle. Mycoplasmal genes were identified by matching the nucleotide sequences of DNA from immunoselected phage particles with the mycoplasmal genome. This allowed a catalogue of genes coding for the proteins that elicited an immune response to be compiled. Using this method together with computer algorithms designed to score parameters that influence surface accessibility and hence potential antigenicity, five genes (abc, gapN, glpO, lppB and ptsG) were chosen to be expressed in Escherichia coli. After appropriate site-directed mutagenesis, polypeptides representing portions of each of these proteins were tested for immunoreactivity. Of these five, polypeptides representing expression products of abc and lppB were recognised on immunoblots by sera obtained from cattle during a natural outbreak of the disease.
Conclusion
Since phage display physically couples phenotype with genotype, it was used to compile a list of sequences that code for MmmSC proteins bearing epitopes which were recognised by antibodies in the serum of infected animals. Together with the appropriate bioinformatic analyses, this approach provided several potentially useful vaccine or diagnostic leads. The phage display step empirically identified sequences by their interaction with antibodies which accordingly reduced the number of ORFs that had to be expressed for testing. This is a particular advantage when working with MmmSC since the mycoplasmal codon for tryptophan needs to be mutated to prevent it from being translated as a stop in E. coli.
doi:10.1186/1471-2180-9-215
PMCID: PMC2767359  PMID: 19818124
9.  Detection of Mycoplasma mycoides subsp. mycoides SC in bronchoalveolar lavage fluids of cows based on a TaqMan real-time PCR discriminating wild type strains from an lppQ− mutant vaccine strain used for DIVA-strategies 
Contagious bovine pleuropneumonia (CBPP) is the most serious cattle disease in Africa, caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC). CBPP control strategies currently rely on vaccination with a vaccine based on live attenuated strains of the organism. Recently, an lppQ− mutant of the existing vaccine strain T1/44 has been developed (Janis et al., 2008). This T1lppQ− mutant strain is devoid of lipoprotein LppQ, a potential virulence attribute of M. mycoides subsp. mycoides SC. It is designated as a potential live DIVA (Differentiating Infected from Vaccinated Animals) vaccine strain allowing both serological and etiological differentiation. The present paper reports on the validation of a control strategy for CBPP in cattle, whereby a TaqMan real-time PCR based on the lppQ gene has been developed for the direct detection of M. mycoides subsp. mycoides SC in ex vivo bronchoalveolar lavage fluids of cows and for the discrimination of wild type strains from the lppQ− mutant vaccine strain.
doi:10.1016/j.mimet.2010.03.025
PMCID: PMC2877883  PMID: 20381545
Mycoplasma mycoides subsp. mycoides SC; TaqMan real-time PCR; Bronchoalveolar lavage fluids; lppQ− mutant vaccine strain; DIVA
10.  Differentiation of Mycoplasma mycoides subsp. mycoides from certain closely related caprine mycoplasmas by mycoplasmaemia and cross-protection tests in mice. 
The Journal of Hygiene  1979;82(3):407-418.
In recent years, mycoplasma taxonomists have found that numerous mycoplasma strains from goats are serologically indistinguishable from Mycoplasma mycoides subsp. mycoides, the causative agent of contagious bovine pleuropneumonia (CBPP), by routinely used tests, e.g. the metabolism- and growth-inhibition tests. As a result, such organisms are now openly referred to as M. mycoides subsp. mycoides. Seven of these so-called M. mycoides subsp. mycoides strains from goats were compared with two strains of M. mycoides subsp. mycoides from CBPP, and with one strain of M. mycoides subsp. capri, by means of two in-vivo tests, namely, (1) a test of the ability of each strain, injected intraperitoneally into mice, to produce mycoplasmaemia, and (2) a cross-protection test in mice. Of the seven strains, only one ('O goat') was indistinguishable from genuine M. mycoides subsp. mycoides; it also had small colonies resembling those of genuine M. mycoides subsp. mycoides. The other six were easily distinguished from genuine M. mycoides subsp. mycoides, and they produced large colonies. These six strains and others like them should no longer be given a name that fails to distinguish them from the causative agent of CBPP. Cross-protection tests showed that the seven goat strains referred to above differed from M. mycoides subsp. capri.
PMCID: PMC2130076  PMID: 376695
11.  Plasma levels of TNF-α, IFN-γ, IL-4 and IL-10 during a course of experimental contagious bovine pleuropneumonia 
Background
Contagious Bovine Pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides, is widespread in sub-Saharan Africa. The current live vaccine T1/44 has limited efficacy and occasionally leads to severe side effects in the animals. A better understanding of the immune responses triggered by Mycoplasma mycoides subsp. mycoides and their role in disease progression will help to facilitate the design of a rational vaccine. Currently, knowledge of cytokines involved in immunity and immunopathology in CBPP is rather limited. The aim of this study was to characterize the in vivo plasma concentrations of the cytokines TNF-α, IFN-γ, IL-4, IL-10 and the overall role of CD4+ T cells in the development of cytokine levels during a primary infection. Plasma cytokine concentrations in two groups of cattle (CD4+ T cell-depleted and non-depleted cattle) experimentally infected with Mycoplasma mycoides subsp. mycoides were measured and their relationship to the clinical outcomes was investigated.
Results
Plasma cytokine concentrations varied between animals in each group. Depletion of CD4+ T cells did not induce significant changes in plasma levels of TNF-α, IL-4, and IL-10, suggesting a minor role of CD4+ T cells in regulation or production of the three cytokines during the time window of depletion (1-2 weeks post depletion). Unexpectedly, the IFN-γ concentrations were slightly, but statistically significantly higher in the depleted group (p < 0.05) between week three and four post infection. Three CD4+ T cell-depleted animals that experienced severe disease, had high levels of TNF-α and IFN-γ. Only one severely diseased non-depleted animal showed a high serum concentration of IL-4 post infection.
Conclusions
Comparison of most severely diseased animals, which had to be euthanized prior to the expected date, versus less severe diseased animals, irrespective of the depletion status, suggested that high TNF-α levels are correlated with more severe pathology in concomitance with high IFN-γ levels.
doi:10.1186/1746-6148-8-44
PMCID: PMC3378467  PMID: 22533922
Contagious bovine pleuropneumonia; Mycoplasma mycoides subsp. mycoides; Cytokines; TNF-α; IFN-γ; IL-4; IL-10
12.  Further studies on caprine and ovine mycoplasmas related to Mycoplasma mycoides subsp. mycoides 
The Journal of Hygiene  1980;85(2):247-256.
Nine caprine and ovine mycoplasma strains, said to be indistinguishable serologically from Mycoplasma mycoides subsp. mycoides (the causative organism of contagious bovine pleuropneumonia; CBPP) were examined in mice by (1) a mycoplasmaemia test, and (2) a cross-protection test. Of the nine strains, two from goats belonged to a small colony (SC) type; four caprine and three ovine strains belonged to a large colony (LC) type.
The two SC strains — like a single SC strain examined in an earlier study — were indistinguishable from genuine M. mycoides subsp. mycoides as isolated from CBPP. They produced mycoplasmaemia readily. In a cross-protection test, the two SC strains and a CBPP strain immunized completely against each other.
Of the seven LC strains, six — like six LC strains examined in an earlier study — were easily distinguished from genuine M. mycoides subsp. mycoides; except for one that was not tested, all were shown to lack the ability to produce mycoplasmaemia readily. In cross-protection tests all six strains immunized partially but not completely against a CBPP strain.
The seventh LC strain (Mankefår 2833) was exceptional: it produced mycoplasmaemia readily, resembling the SC strains in this respect. Like other LC strains, in cross-protection tests it protected only partially against a CBPP strain. Strain Mankefår 2833 was isolated in ca. 1965 by Brack from a Barbary sheep (Ammotragus lervia) in a German zoo.
The ability of Mankefår 2833 to produce mycoplasmaemia enabled it to be used as a challenge strain in cross-protection tests. For the purpose of such tests the collection of nine mycoplasma strains referred to above was augmented with six LC strains from an earlier study. Partial but not complete protection against Mankefår 2833 was produced by two caprine SC strains, one CBPP strain, and nine LC strains. Three further LC strains gave protection that may have been as strong as that produced by the homologous strain, but confirmatory experiments are needed. A strain of M. mycoides subsp. capri gave no protection against Mankefår 2833.
PMCID: PMC2133930  PMID: 7005327
13.  Multiplex Screening of Surface Proteins from Mycoplasma mycoides subsp. mycoides Small Colony for an Antigen Cocktail Enzyme-Linked Immunosorbent Assay▿ †  
Clinical and Vaccine Immunology : CVI  2009;16(11):1665-1674.
A recombinant antigen cocktail enzyme-linked immunosorbent assay (ELISA) for diagnosis of contagious bovine pleuropneumonia (CBPP) was developed after careful selection of antigens among one-third of the surface proteome proteins of the infectious agent Mycoplasma mycoides subsp. mycoides small colony (M. mycoides SC). First, a miniaturized and parallelized assay system employing antigen suspension bead array technology was used to screen 97 bovine sera for humoral immune responses toward 61 recombinant surface proteins from M. mycoides SC. Statistical analysis of the data resulted in selection of eight proteins that showed strong serologic responses in CBPP-affected sera and minimal reactivity in negative control sera, with P values of <10−6. Only minor cross-reactivity to hyperimmune sera against other mycoplasmas was observed. When applied in an ELISA, the cocktail of eight recombinant antigens allowed a fivefold signal separation between 24 CBPP-affected and 23 CBPP-free sera from different geographical origins. No false-positive results and only two false-negative results were obtained. In conclusion, the selected recombinant mycoplasma antigens qualified as highly specific markers for CBPP and could be employed in both a suspension bead array platform and a cocktail ELISA setting. This set of proteins and technologies therefore offers a powerful combination to drive and further improve serological assays toward reliable, simple, and cost-effective diagnosis of CBPP.
doi:10.1128/CVI.00223-09
PMCID: PMC2772386  PMID: 19726613
14.  Protein-Specific Analysis of Humoral Immune Responses in a Clinical Trial for Vaccines against Contagious Bovine Pleuropneumonia▿ †  
Specific humoral immune responses in a clinical trial on cattle for vaccines against contagious bovine pleuropneumonia (CBPP) were investigated. The trial included a subunit vaccine consisting of five recombinant putative variable surface proteins of the infectious agent Mycoplasma mycoides subsp. mycoides small colony type (M. mycoides SC) compared to the currently approved attenuated vaccine strain T1/44 and untreated controls. Humoral immune responses to 65 individual recombinant surface proteins of M. mycoides SC were monitored by a recently developed bead-based array assay. Responses to the subunit vaccine components were found to be weak. Animals vaccinated with this vaccine were not protected and had CBPP lesions similar to those of the untreated controls. In correlating protein-specific humoral responses to T1/44-induced immunity, five proteins associated with a protective immune response were identified by statistical evaluation, namely, MSC_1046 (LppQ), MSC_0271, MSC_0136, MSC_0079, and MSC_0431. These five proteins may be important candidates in the development of a novel subunit vaccine against CBPP.
doi:10.1128/CVI.00019-10
PMCID: PMC2863394  PMID: 20357055
15.  Unmarked insertional mutagenesis in the bovine pathogen Mycoplasma mycoides subsp. mycoides SC 
Microbiology (Reading, England)  2008;154(Pt 8):2427-2436.
Mycoplasma mycoides subspecies mycoides small colony (SC) is the aetiologic agent of contagious bovine pleuropneumonia (CBPP), a respiratory disease causing important losses in cattle production. The publication of the genome sequence of M. mycoides subsp. mycoides SC should facilitate the identification of putative virulence factors. However, real progress in the study of molecular mechanisms of pathogenicity also requires efficient molecular tools for gene inactivation. In the present study, we have developed a transposon-based approach for the random mutagenesis of M. mycoides subsp. mycoides SC. A PCR-based screening assay enabled the characterization of several mutants with knockouts of genes potentially involved in pathogenicity. The initial transposon was further improved by combining it with the transposon γδ TnpR/res recombination system to allow the production of unmarked mutations. Using this approach, we isolated a mutant free of antibiotic-resistance genes, in which the gene encoding the main lipoprotein LppQ was disrupted. The mutant was found to express only residual amounts of the truncated N-terminal end of LppQ. This approach opens the way to study virulence factors and pathogen-host interactions of M. mycoides subsp. mycoides SC and to develop new, genetically defined vaccine strains.
doi:10.1099/mic.0.2008/017640-0
PMCID: PMC2628567  PMID: 18667575
16.  The ability of Mycoplasma mycoides subspecies mycoides and closely related strains from goats and sheep to immunize mice against subspecies capri. 
The Journal of Hygiene  1981;87(2):321-329.
Small colony (SC) strains of Mycoplasma mycoides subsp. mycoides from contagious bovine pleuropneumonia (CBPP) and from goats were compared with large colony (LC) strains of so-called M. mycoides subsp. mycoides from goats and sheep by means of a cross-protection test in which mice were challenged with M. mycoides subsp. capri. Of 13 LC strains, all gave partial cross-protection, and 11 were shown to be more closely related than four SC strains to subspecies capri. In a further experiment, six SC strains--three from CBPP and three from goats--all gave weak partial cross-protection against subspecies capri.
PMCID: PMC2134042  PMID: 7026674
17.  Observations on experimental inactivated vaccines for contagious bovine pleuropneumonia. 
The Journal of Hygiene  1986;97(2):305-315.
In two trials the efficacy of inactivated vaccines against contagious bovine pleuropneumonia was tested by exposing vaccinated cattle to droplet infection provided by close contact with experimentally infected 'donors'. Complete protection was given by an extreme form of vaccination in which a heavy suspension of killed Mycoplasma mycoides subsp. mycoides emulsified with Freund's complete adjuvant was given in two large doses. 'Mouse-protective antibody' (MPA) was also produced, i.e. serum transferred to mice 2-4 h before intraperitoneal challenge prevented the development of mycoplasmaemia. However, the study did not answer the question 'Is MPA protective for cattle?'. No protection was given by a milder form of vaccination in which a lighter suspension of killed mycoplasmas emulsified with Freund's incomplete adjuvant was given in a comparatively small dose on a single occasion.
PMCID: PMC2083532  PMID: 3782785
18.  Cattle immunized against the pathogenic l-α-glycerol-3-phosphate oxidase of Mycoplasma mycoides subs. mycoides fail to generate neutralizing antibodies and succumb to disease on challenge☆ 
Vaccine  2013;31(44):5020-5025.
Highlights
•Cattle were vaccinated with Mycoplasma mycoides mycoides (Mmm) recombinant l-α-glycerol-3-phosphate oxidase.•A mouse mAb to l-α-glycerol-3-phosphate oxidase was generated.•Mouse mAb blocked H2O2 release by Mmm, but cattle antisera did not.•Cattle were not protected after challenge.
The membrane-associated enzyme l-α-glycerol-3-phosphate oxidase (GlpO) of Mycoplasma mycoides subs. mycoides (Mmm), the causal agent of contagious bovine pleuropneumonia (CBPP) has been identified as a virulence factor responsible for the release of toxic by-products such as H2O2 that mediate host cell injury. Since CBPP pathogenesis is based on host inflammatory reactions, we have determined the capacity of recombinant GlpO to generate in vivo protective responses against challenge in immunized cattle. We also investigated whether sera raised against recombinant GlpO in cattle and mice inhibit production of H2O2 by Mmm. Immunization of cattle with recombinant GlpO did not protect against challenge with a virulent strain of Mmm. Further, although both murine and bovine antisera raised against recombinant GlpO detected recombinant and native forms of GlpO in immunoblot assays with similar titres, only murine antibodies could neutralize GlpO enzymatic function. The data raise the possibility that Mmm has adapted to evade potential detrimental antibody responses in its definitive host.
doi:10.1016/j.vaccine.2013.08.100
PMCID: PMC3989769  PMID: 24035434
Mycoplasma; Antibody; Vaccination; Cattle; Evolution; l-α-glycerol-3-phosphate oxidase
19.  Development of an improved vaccine for contagious bovine pleuropneumonia: an African perspective on challenges and proposed actions 
Veterinary Research  2013;44(1):122.
Contagious bovine pleuropneumonia (CBPP) caused by Mycoplasma mycoides subsp. mycoides (Mmm) is an economically very important cattle disease in sub-Saharan Africa. CBPP impacts animal health and poverty of livestock-dependent people through decreased animal productivity, reduced food supply, and the cost of control measures. CBPP is a barrier to trade in many African countries and this reduces the value of livestock and the income of many value chain stakeholders. The presence of CBPP also poses a constant threat to CBPP-free countries and creates costs in terms of the measures necessary to ensure the exclusion of disease. This opinion focuses on the biomedical research needed to foster the development of better control measures for CBPP. We suggest that different vaccine development approaches are followed in parallel. Basic immunology studies and systematic OMICs studies will be necessary in order to identify the protective arms of immunity and to shed more light on the pathogenicity mechanisms in CBPP. Moreover a robust challenge model and a close collaboration with African research units will be crucial to foster and implement a new vaccine for the progressive control of this cattle plague.
doi:10.1186/1297-9716-44-122
PMCID: PMC3910389  PMID: 24359340
20.  Characterization of Free Exopolysaccharides Secreted by Mycoplasma mycoides Subsp. mycoides 
PLoS ONE  2013;8(7):e68373.
Contagious bovine pleuropneumonia is a severe respiratory disease of cattle that is caused by a bacterium of the Mycoplasma genus, namely Mycoplasma mycoides subsp. mycoides (Mmm). In the absence of classical virulence determinants, the pathogenicity of Mmm is thought to rely on intrinsic metabolic functions and specific components of the outer cell surface. One of these latter, the capsular polysaccharide galactan has been notably demonstrated to play a role in Mmm persistence and dissemination. The free exopolysaccharides (EPS), also produced by Mmm and shown to circulate in the blood stream of infected cattle, have received little attention so far. Indeed, their characterization has been hindered by the presence of polysaccharide contaminants in the complex mycoplasma culture medium. In this study, we developed a method to produce large quantities of EPS by transfer of mycoplasma cells from their complex broth to a chemically defined medium and subsequent purification. NMR analyses revealed that the purified, free EPS had an identical β(1−>6)-galactofuranosyl structure to that of capsular galactan. We then analyzed intraclonal Mmm variants that produce opaque/translucent colonies on agar. First, we demonstrated that colony opacity was related to the production of a capsule, as observed by electron microscopy. We then compared the EPS extracts and showed that the non-capsulated, translucent colony variants produced higher amounts of free EPS than the capsulated, opaque colony variants. This phenotypic variation was associated with an antigenic variation of a specific glucose phosphotransferase permease. Finally, we conducted in silico analyses of candidate polysaccharide biosynthetic pathways in order to decipher the potential link between glucose phosphotransferase permease activity and attachment/release of galactan. The co-existence of variants producing alternative forms of galactan (capsular versus free extracellular galactan) and associated with an antigenic switch constitutes a finely tuned mechanism that may be involved in virulence.
doi:10.1371/journal.pone.0068373
PMCID: PMC3711806  PMID: 23869216
21.  A minor role of CD4+ T lymphocytes in the control of a primary infection of cattle with Mycoplasma mycoides subsp. mycoides 
Veterinary Research  2011;42(1):77.
Contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides, is an important livestock disease in Africa. The current control measures rely on a vaccine with limited efficacy and occasional severe side effects. Knowledge of the protective arms of immunity involved in this disease will be beneficial for the development of an improved vaccine. In previous studies on cattle infected with M. mycoides subsp. mycoides, a correlation was detected between the levels of mycoplasma-specific IFN-γ-secreting CD4+ T lymphocytes and reduced clinical signs. However, no cause and effect has been established, and the role of such cells and of protective responses acquired during a primary infection is not known.
We investigated the role of CD4+ T lymphocytes in CBPP by comparing disease patterns and post mortem findings between CD4+ T cell depleted and non-depleted cattle. The depletion was carried out using several injections of BoCD4 specific murine monoclonal antibody on day 6 after experimental endotracheal infection with the strain Afadé. All cattle were monitored clinically daily and sacrificed 28-30 days post-infection. Statistically significant but small differences were observed in the mortality rate between the depleted and non-depleted animals. However, no differences in clinical parameters (fever, signs of respiratory distress) and pathological lesions were observed, despite elimination of CD4+ T cells for more than a week. The slightly higher mortality in the depleted group suggests a minor role of CD4+ T cells in control of CBPP.
doi:10.1186/1297-9716-42-77
PMCID: PMC3148206  PMID: 21663697
22.  Isothermal loop-mediated amplification (lamp) for diagnosis of contagious bovine pleuro-pneumonia 
Background
Contagious Bovine Pleuropneumonia (CBPP) is the most important chronic pulmonary disease of cattle on the African continent causing severe economic losses. The disease, caused by infection with Mycoplasma mycoides subsp. mycoides is transmitted by animal contact and develops slowly into a chronic form preventing an early clinical diagnosis. Because available vaccines confer a low protection rate and short-lived immunity, the rapid diagnosis of infected animals combined with traditional curbing measures is seen as the best way to control the disease. While traditional labour-intensive bacteriological methods for the detection of M. mycoides subsp. mycoides have been replaced by molecular genetic techniques in the last two decades, these latter approaches require well-equipped laboratories and specialized personnel for the diagnosis. This is a handicap in areas where CBPP is endemic and early diagnosis is essential.
Results
We present a rapid, sensitive and specific diagnostic tool for M. mycoides subsp. mycoides detection based on isothermal loop-mediated amplification (LAMP) that is applicable to field conditions. The primer set developed is highly specific and sensitive enough to diagnose clinical cases without prior cultivation of the organism. The LAMP assay detects M. mycoides subsp. mycoides DNA directly from crude samples of pulmonary/pleural fluids and serum/plasma within an hour using a simple dilution protocol. A photometric detection of LAMP products allows the real-time visualisation of the amplification curve and the application of a melting curve/re-association analysis presents a means of quality assurance based on the predetermined strand-inherent temperature profile supporting the diagnosis.
Conclusion
The CBPP LAMP developed in a robust kit format can be run on a battery-driven mobile device to rapidly detect M. mycoides subsp. mycoides infections from clinical or post mortem samples. The stringent innate quality control allows a conclusive on-site diagnosis of CBPP such as during farm or slaughter house inspections.
doi:10.1186/1746-6148-9-108
PMCID: PMC3671963  PMID: 23710975
CBPP Mycoplasma mycoides; Isothermal; Loop-mediated amplification LAMP; Molecular diagnostic; Field test
23.  β-D-Glucoside utilization by Mycoplasma mycoides subsp. mycoides SC: possible involvement in the control of cytotoxicity towards bovine lung cells 
BMC Microbiology  2007;7:31.
Background
Contagious bovine pleuropneumonia (CBPP) caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC) is among the most serious threats for livestock producers in Africa. Glycerol metabolism-associated H2O2 production seems to play a crucial role in virulence of this mycoplasma. A wide number of attenuated strains of M. mycoides subsp. mycoides SC are currently used in Africa as live vaccines. Glycerol metabolism is not affected in these vaccine strains and therefore it does not seem to be the determinant of their attenuation. A non-synonymous single nucleotide polymorphism (SNP) in the bgl gene coding for the 6-phospho-β-glucosidase (Bgl) has been described recently. The SNP differentiates virulent African strains isolated from outbreaks with severe CBPP, which express the Bgl isoform Val204, from strains to be considered less virulent isolated from CBPP outbreaks with low mortality and vaccine strains, which express the Bgl isoform Ala204.
Results
Strains of M. mycoides subsp. mycoides SC considered virulent and possessing the Bgl isoform Val204, but not strains with the Bgl isoform Ala204, do trigger elevated levels of damage to embryonic bovine lung (EBL) cells upon incubation with the disaccharides (i.e., β-D-glucosides) sucrose and lactose. However, strains expressing the Bgl isoform Val204 show a lower hydrolysing activity on the chromogenic substrate p-nitrophenyl-β-D-glucopyranoside (pNPbG) when compared to strains that possess the Bgl isoform Ala204. Defective activity of Bgl in M. mycoides subsp. mycoides SC does not lead to H2O2 production. Rather, the viability during addition of β-D-glucosides in medium-free buffers is higher for strains harbouring the Bgl isoform Val204 than for those with the isoform Ala204.
Conclusion
Our results indicate that the studied SNP in the bgl gene is one possible cause of the difference in bacterial virulence among strains of M. mycoides subsp. mycoides SC. Bgl does not act as a direct virulence factor, but strains possessing the Bgl isoform Val204 with low hydrolysing activity are more prone to survive in environments that contain high levels of β-D-glucosides, thus contributing in some extent to mycoplasmaemia.
doi:10.1186/1471-2180-7-31
PMCID: PMC1855930  PMID: 17439646
24.  An international collaborative study to determine the prevalence of contagious caprine pleuropneumonia by monoclonal antibody-based cELISA 
Background
Few serological tests are available for detecting antibodies against Mycoplasma capricolum subsp. capripneumoniae, the causal agent of contagious caprine pleuropneumonia (CCPP). The complement fixation test, the test prescribed for international trade purposes, uses a crude antigen that cross-reacts with all the other mycoplasma species of the “mycoides cluster” frequently infecting goat herds. The lack of a more specific test has been a real obstacle to the evaluation of the prevalence and economic impact of CCPP worldwide. A new competitive ELISA kit for CCPP, based on a previous blocking ELISA, was formatted at CIRAD and used to evaluate the prevalence of CCPP in some regions of Kenya, Ethiopia, Mauritius, Tajikistan and Pakistan in an international collaborative study.
Results
The strict specificity of the test was confirmed in CCPP-free goat herds exposed to other mycoplasma species of the “mycoides cluster”. Prevalence studies were performed across the enzootic range of the disease in Africa and Asia. Seroprevalence was estimated at 14.6% in the Afar region of Ethiopia, whereas all the herds presented for CCPP vaccination in Kenya tested positive (individual seroprevalence varied from 6 to 90% within each herd). In Mauritius, where CCPP emerged in 2009, nine of 62 herds tested positive. In Central Asia, where the disease was confirmed only recently, no positive animals were detected in the Wakhan District of Afghanistan or across the border in neighboring areas of Tajikistan, whereas seroprevalence varied between 2.7% and 44.2% in the other districts investigated and in northern Pakistan. The test was also used to monitor seroconversion in vaccinated animals.
Conclusions
This newly formatted CCPP cELISA kit has retained the high specificity of the original kit. It can therefore be used to evaluate the prevalence of CCPP in countries or regions without vaccination programs. It could also be used to monitor the efficacy of vaccination campaigns as high-quality vaccines induce high rates of seroconversion.
doi:10.1186/1746-6148-10-48
PMCID: PMC3938968  PMID: 24565080
Contagious caprine pleuropneumonia; Competitive ELISA; Seroprevalence; Kenya; Ethiopia; Mauritius; Tajikistan; Afghanistan; Pakistan; Vaccine quality control
25.  Host specificity of mollicutes oriC plasmids: functional analysis of replication origin 
Nucleic Acids Research  2003;31(22):6610-6618.
Recently, artificial oriC plasmids containing the chromosomal dnaA gene and surrounding DnaA box sequences were obtained for the mollicutes Spiroplasma citri and Mycoplasma pulmonis. In order to study the specificity of these plasmids among mollicutes, a set of similar oriC plasmids was developed for three mycoplasmas belonging to the mycoides cluster, Mycoplasma mycoides subsp. mycoides LC (MmmLC), M.mycoides subsp. mycoides SC (MmmSC) and Mycoplasma capricolum subsp. capricolum. Mycoplasmas from the mycoides cluster, S.citri and M.pulmonis were used as recipients for transformation experiments by homologous and heterologous oriC plasmids. All five mollicutes were successfully transformed by homologous plasmids, suggesting that the dnaA gene region represents the functional replication origin of the mollicute chromosomes. However, the ability of mollicutes to replicate heterologous oriC plasmids was found to vary noticeably with the species. For example, the oriC plasmid from M.capricolum did not replicate in the closely related species MmmSC and MmmLC. In contrast, plasmids harbouring the oriC from MmmSC, MmmLC and the more distant species S.citri were all found to replicate in M.capricolum. Our results suggest that the cis-elements present in oriC sequences are not the only determinants of this host specificity.
doi:10.1093/nar/gkg848
PMCID: PMC275544  PMID: 14602921

Results 1-25 (597769)