Search tips
Search criteria

Results 1-25 (1122793)

Clipboard (0)

Related Articles

1.  Vitamin K Supplementation in Postmenopausal Women with Osteopenia (ECKO Trial): A Randomized Controlled Trial 
PLoS Medicine  2008;5(10):1-12.
Vitamin K has been widely promoted as a supplement for decreasing bone loss in postmenopausal women, but the long-term benefits and potential harms are unknown. This study was conducted to determine whether daily high-dose vitamin K1 supplementation safely reduces bone loss, bone turnover, and fractures.
Methods and Findings
This single-center study was designed as a 2-y randomized, placebo-controlled, double-blind trial, extended for earlier participants for up to an additional 2 y because of interest in long-term safety and fractures. A total of 440 postmenopausal women with osteopenia were randomized to either 5 mg of vitamin K1 or placebo daily. Primary outcomes were changes in BMD at the lumbar spine and total hip at 2 y. Secondary outcomes included changes in BMD at other sites and other time points, bone turnover markers, height, fractures, adverse effects, and health-related quality of life. This study has a power of 90% to detect 3% differences in BMD between the two groups. The women in this study were vitamin D replete, with a mean serum 25-hydroxyvitamin D level of 77 nmol/l at baseline. Over 2 y, BMD decreased by −1.28% and −1.22% (p = 0.84) (difference of −0.06%; 95% confidence interval [CI] −0.67% to 0.54%) at the lumbar spine and −0.69% and −0.88% (p = 0.51) (difference of 0.19%; 95% CI −0.37% to 0.75%) at the total hip in the vitamin K and placebo groups, respectively. There were no significant differences in changes in BMD at any site between the two groups over the 2- to 4-y period. Daily vitamin K1 supplementation increased serum vitamin K1 levels by 10-fold, and decreased the percentage of undercarboxylated osteocalcin and total osteocalcin levels (bone formation marker). However, C-telopeptide levels (bone resorption marker) were not significantly different between the two groups. Fewer women in the vitamin K group had clinical fractures (nine versus 20, p = 0.04) and fewer had cancers (three versus 12, p = 0.02). Vitamin K supplements were well-tolerated over the 4-y period. There were no significant differences in adverse effects or health-related quality of life between the two groups. The study was not powered to examine fractures or cancers, and their numbers were small.
Daily 5 mg of vitamin K1 supplementation for 2 to 4 y does not protect against age-related decline in BMD, but may protect against fractures and cancers in postmenopausal women with osteopenia. More studies are needed to further examine the effect of vitamin K on fractures and cancers.
Trial registration: (#NCT00150969) and Current Controlled Trials (#ISRCTN61708241)
Angela Cheung and colleagues investigate whether vitamin K1 can prevent bone loss among postmenopausal women with osteopenia.
Editors' Summary
Osteoporosis is a bone disease in which the bones gradually become less dense and more likely to break. In the US, 10 million people have osteoporosis and 18 million have osteopenia, a milder condition that precedes osteoporosis. In both conditions, insufficient new bone is made and/or too much old bone is absorbed. Although bone appears solid and unchanging, very little bone in the human body is more than 10 y old. Old bone is continually absorbed and new bone built using calcium, phosphorous, and proteins. Because the sex hormones control calcium and phosphorous deposition in the bones and thus bone strength, the leading cause of osteoporosis in women is reduced estrogen levels after menopause. In men, an age-related decline in testosterone levels can cause osteoporosis. Most people discover they have osteoporosis only when they break a bone, but the condition can be diagnosed and monitored using bone mineral density (BMD) scans. Treatments can slow down or reverse bone loss (antiresorptive therapies) and some (bone formation therapies) can even make bone and build bone tissue.
Why Was This Study Done?
Although regular exercise and a healthy diet can help to keep bones strong, other ways of preventing osteoporosis are badly needed. Recently, the lay media has promoted vitamin K supplements as a way to reduce bone loss in postmenopausal women. Vitamin K (which is found mainly in leafy green vegetables) is required for a chemical modification of proteins called carboxylation. This modification is essential for the activity of three bone-building proteins. In addition, there is some evidence that low bone density and fractures are associated with a low vitamin K intake. However, little is known about the long-term benefits or harms of vitamin K supplements. In this study, the researchers investigate whether a high-dose daily vitamin K supplement can safely reduce bone loss, bone turnover, and fractures in postmenopausal women with osteopenia in a randomized controlled trial called the “Evaluation of the Clinical Use of Vitamin K Supplementation in Post-Menopausal Women With Osteopenia” (ECKO) trial.
What Did the Researchers Do and Find?
In the study, 440 postmenopausal women with osteopenia were randomized to receive 5mg of vitamin K1 (the type of vitamin K in North American food; the recommended daily adult intake of vitamin K1 is about 0.1 mg) or an inactive tablet (placebo) daily for 2 y; 261 of the women continued their treatment for 2 y to gather information about the long-term effects of vitamin K1 supplementation. All the women had regular bone density scans of their lower back and hips and were examined for fractures and for changes in bone turnover. After 2 y and after 4 y, lower back and hip bone density measurements had decreased by similar amounts in both treatment groups. The women who took vitamin K1 had 10-fold higher amounts of vitamin K1 in their blood than the women who took placebo and lower amounts of a bone formation marker; the levels of a bone resorption marker were similar in both groups. Over the 4-y period, fewer women in the vitamin K group had fractures (nine versus 20 women in the placebo group), and fewer had cancer (three versus 12). Finally, vitamin K supplementation was well tolerated over the 4-y period and adverse health effects were similar in the two treatment groups.
What Do These Findings Mean?
These findings indicate that a high daily dose of vitamin K1 provides no protection against the age-related decline in bone density in postmenopausal women with osteopenia, but that vitamin K1 supplementation may protect against fractures and cancers in these women. The apparent contradiction between the effects of vitamin K1 on bone density and on fractures could mean that vitamin K1 supplements strengthen bone by changing factors other than bone density, e.g., by changing its fine structure rather than making it denser. However, because so few study participants had fractures, the difference in the fracture rate between the two treatment groups might have occurred by chance. Larger studies are therefore needed to examine the effect of vitamin K1 on fractures (and on cancer) and, until these are done, high-dose vitamin K1 supplementation should not be recommended for the prevention of osteoporosis.
Additional Information.
Please access these Web sites via the online version of this summary at
The US National Institute of Arthritis and Musculoskeletal and Skin Diseases provides detailed information about osteoporosis (in English and Spanish) and links to other resources, including an interactive web tool called Check Up On Your Bones
MedlinePlus provides links to additional information about osteoporosis (in English and Spanish)
The MedlinePlus Encyclopedia has a page about vitamin K
The UK Food Standards Agency provides information about vitamin K
Full details about the ECKO trial are available on the Web site
The Canadian Task Force for Preventive Health Care provides recommendations on the prevention of osteoporosis and osteoporotic fractures in postmenopausal women
Osteoporosis Canada provides information on current topics related to osteoporosis
PMCID: PMC2566998  PMID: 18922041
2.  Utilization of DXA Bone Mineral Densitometry in Ontario 
Executive Summary
Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario.
Dual Energy X-ray Absorptiometry Bone Mineral Density Assessment
Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <–2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< –1 & ≥–2.5). DXA densitometry is presently an insured health service in Ontario.
Clinical Need
Burden of Disease
The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased mortality, and decreased functional capacity and quality of life. A Canadian study showed that at 1 year after a hip fracture, the mortality rate was 20%. Another 20% required institutional care, 40% were unable to walk independently, and there was lower health-related quality of life due to attributes such as pain, decreased mobility and decreased ability to self-care. The cost of osteoporosis and osteoporotic fractures in Canada was estimated to be $1.3 billion in 1993.
Guidelines for Bone Mineral Density Testing
With 2 exceptions, almost all guidelines address only women. None of the guidelines recommend blanket population-based BMD testing. Instead, all guidelines recommend BMD testing in people at risk of osteoporosis, predominantly women aged 65 years or older. For women under 65 years of age, BMD testing is recommended only if one major or two minor risk factors for osteoporosis exist. Osteoporosis Canada did not restrict its recommendations to women, and thus their guidelines apply to both sexes. Major risk factors are age greater than or equal to 65 years, a history of previous fractures, family history (especially parental history) of fracture, and medication or disease conditions that affect bone metabolism (such as long-term glucocorticoid therapy). Minor risk factors include low body mass index, low calcium intake, alcohol consumption, and smoking.
Current Funding for Bone Mineral Density Testing
The Ontario Health Insurance Program (OHIP) Schedule presently reimburses DXA BMD at the hip and spine. Measurements at both sites are required if feasible. Patients at low risk of accelerated bone loss are limited to one BMD test within any 24-month period, but there are no restrictions on people at high risk. The total fee including the professional and technical components for a test involving 2 or more sites is $106.00 (Cdn).
Method of Review
This review consisted of 2 parts. The first part was an analysis of Ontario administrative data relating to DXA BMD, wrist and hip fractures, and use of antiresorptive drugs in people aged 65 years and older. The Institute for Clinical Evaluative Sciences extracted data from the OHIP claims database, the Canadian Institute for Health Information hospital discharge abstract database, the National Ambulatory Care Reporting System, and the Ontario Drug Benefit database using OHIP and ICD-10 codes. The data was analyzed to examine the trends in DXA BMD use from 1992 to 2005, and to identify areas requiring improvement.
The second part included systematic reviews and analyses of evidence relating to issues identified in the analyses of utilization data. Altogether, 8 reviews and qualitative syntheses were performed, consisting of 28 published systematic reviews and/or meta-analyses, 34 randomized controlled trials, and 63 observational studies.
Findings of Utilization Analysis
Analysis of administrative data showed a 10-fold increase in the number of BMD tests in Ontario between 1993 and 2005.
OHIP claims for BMD tests are presently increasing at a rate of 6 to 7% per year. Approximately 500,000 tests were performed in 2005/06 with an age-adjusted rate of 8,600 tests per 100,000 population.
Women accounted for 90 % of all BMD tests performed in the province.
In 2005/06, there was a 2-fold variation in the rate of DXA BMD tests across local integrated health networks, but a 10-fold variation between the county with the highest rate (Toronto) and that with the lowest rate (Kenora). The analysis also showed that:
With the increased use of BMD, there was a concomitant increase in the use of antiresorptive drugs (as shown in people 65 years and older) and a decrease in the rate of hip fractures in people age 50 years and older.
Repeat BMD made up approximately 41% of all tests. Most of the people (>90%) who had annual BMD tests in a 2-year or 3-year period were coded as being at high risk for osteoporosis.
18% (20,865) of the people who had a repeat BMD within a 24-month period and 34% (98,058) of the people who had one BMD test in a 3-year period were under 65 years, had no fracture in the year, and coded as low-risk.
Only 19% of people age greater than 65 years underwent BMD testing and 41% received osteoporosis treatment during the year following a fracture.
Men accounted for 24% of all hip fractures and 21 % of all wrist fractures, but only 10% of BMD tests. The rates of BMD tests and treatment in men after a fracture were only half of those in women.
In both men and women, the rate of hip and wrist fractures mainly increased after age 65 with the sharpest increase occurring after age 80 years.
Findings of Systematic Review and Analysis
Serial Bone Mineral Density Testing for People Not Receiving Osteoporosis Treatment
A systematic review showed that the mean rate of bone loss in people not receiving osteoporosis treatment (including postmenopausal women) is generally less than 1% per year. Higher rates of bone loss were reported for people with disease conditions or on medications that affect bone metabolism. In order to be considered a genuine biological change, the change in BMD between serial measurements must exceed the least significant change (variability) of the testing, ranging from 2.77% to 8% for precisions ranging from 1% to 3% respectively. Progression in BMD was analyzed, using different rates of baseline BMD values, rates of bone loss, precision, and BMD value for initiating treatment. The analyses showed that serial BMD measurements every 24 months (as per OHIP policy for low-risk individuals) is not necessary for people with no major risk factors for osteoporosis, provided that the baseline BMD is normal (T-score ≥ –1), and the rate of bone loss is less than or equal to 1% per year. The analyses showed that for someone with a normal baseline BMD and a rate of bone loss of less than 1% per year, the change in BMD is not likely to exceed least significant change (even for a 1% precision) in less than 3 years after the baseline test, and is not likely to drop to a BMD level that requires initiation of treatment in less than 16 years after the baseline test.
Serial Bone Mineral Density Testing in People Receiving Osteoporosis Therapy
Seven published meta-analysis of randomized controlled trials (RCTs) and 2 recent RCTs on BMD monitoring during osteoporosis therapy showed that although higher increases in BMD were generally associated with reduced risk of fracture, the change in BMD only explained a small percentage of the fracture risk reduction.
Studies showed that some people with small or no increase in BMD during treatment experienced significant fracture risk reduction, indicating that other factors such as improved bone microarchitecture might have contributed to fracture risk reduction.
There is conflicting evidence relating to the role of BMD testing in improving patient compliance with osteoporosis therapy.
Even though BMD may not be a perfect surrogate for reduction in fracture risk when monitoring responses to osteoporosis therapy, experts advised that it is still the only reliable test available for this purpose.
A systematic review conducted by the Medical Advisory Secretariat showed that the magnitude of increases in BMD during osteoporosis drug therapy varied among medications. Although most of the studies yielded mean percentage increases in BMD from baseline that did not exceed the least significant change for a 2% precision after 1 year of treatment, there were some exceptions.
Bone Mineral Density Testing and Treatment After a Fragility Fracture
A review of 3 published pooled analyses of observational studies and 12 prospective population-based observational studies showed that the presence of any prevalent fracture increases the relative risk for future fractures by approximately 2-fold or more. A review of 10 systematic reviews of RCTs and 3 additional RCTs showed that therapy with antiresorptive drugs significantly reduced the risk of vertebral fractures by 40 to 50% in postmenopausal osteoporotic women and osteoporotic men, and 2 antiresorptive drugs also reduced the risk of nonvertebral fractures by 30 to 50%. Evidence from observational studies in Canada and other jurisdictions suggests that patients who had undergone BMD measurements, particularly if a diagnosis of osteoporosis is made, were more likely to be given pharmacologic bone-sparing therapy. Despite these findings, the rate of BMD investigation and osteoporosis treatment after a fracture remained low (<20%) in Ontario as well as in other jurisdictions.
Bone Mineral Density Testing in Men
There are presently no specific Canadian guidelines for BMD screening in men. A review of the literature suggests that risk factors for fracture and the rate of vertebral deformity are similar for men and women, but the mortality rate after a hip fracture is higher in men compared with women. Two bisphosphonates had been shown to reduce the risk of vertebral and hip fractures in men. However, BMD testing and osteoporosis treatment were proportionately low in Ontario men in general, and particularly after a fracture, even though men accounted for 25% of the hip and wrist fractures. The Ontario data also showed that the rates of wrist fracture and hip fracture in men rose sharply in the 75- to 80-year age group.
Ontario-Based Economic Analysis
The economic analysis focused on analyzing the economic impact of decreasing future hip fractures by increasing the rate of BMD testing in men and women age greater than or equal to 65 years following a hip or wrist fracture. A decision analysis showed the above strategy, especially when enhanced by improved reporting of BMD tests, to be cost-effective, resulting in a cost-effectiveness ratio ranging from $2,285 (Cdn) per fracture avoided (worst-case scenario) to $1,981 (Cdn) per fracture avoided (best-case scenario). A budget impact analysis estimated that shifting utilization of BMD testing from the low risk population to high risk populations within Ontario would result in a saving of $0.85 million to $1.5 million (Cdn) to the health system. The potential net saving was estimated at $1.2 million to $5 million (Cdn) when the downstream cost-avoidance due to prevention of future hip fractures was factored into the analysis.
Other Factors for Consideration
There is a lack of standardization for BMD testing in Ontario. Two different standards are presently being used and experts suggest that variability in results from different facilities may lead to unnecessary testing. There is also no requirement for standardized equipment, procedure or reporting format. The current reimbursement policy for BMD testing encourages serial testing in people at low risk of accelerated bone loss. This review showed that biannual testing is not necessary for all cases. The lack of a database to collect clinical data on BMD testing makes it difficult to evaluate the clinical profiles of patients tested and outcomes of the BMD tests. There are ministry initiatives in progress under the Osteoporosis Program to address the development of a mandatory standardized requisition form for BMD tests to facilitate data collection and clinical decision-making. Work is also underway for developing guidelines for BMD testing in men and in perimenopausal women.
Increased use of BMD in Ontario since 1996 appears to be associated with increased use of antiresorptive medication and a decrease in hip and wrist fractures.
Data suggest that as many as 20% (98,000) of the DXA BMD tests in Ontario in 2005/06 were performed in people aged less than 65 years, with no fracture in the current year, and coded as being at low risk for accelerated bone loss; this is not consistent with current guidelines. Even though some of these people might have been incorrectly coded as low-risk, the number of tests in people truly at low risk could still be substantial.
Approximately 4% (21,000) of the DXA BMD tests in 2005/06 were repeat BMDs in low-risk individuals within a 24-month period. Even though this is in compliance with current OHIP reimbursement policies, evidence showed that biannual serial BMD testing is not necessary in individuals without major risk factors for fractures, provided that the baseline BMD is normal (T-score < –1). In this population, BMD measurements may be repeated in 3 to 5 years after the baseline test to establish the rate of bone loss, and further serial BMD tests may not be necessary for another 7 to 10 years if the rate of bone loss is no more than 1% per year. Precision of the test needs to be considered when interpreting serial BMD results.
Although changes in BMD may not be the perfect surrogate for reduction in fracture risk as a measure of response to osteoporosis treatment, experts advised that it is presently the only reliable test for monitoring response to treatment and to help motivate patients to continue treatment. Patients should not discontinue treatment if there is no increase in BMD after the first year of treatment. Lack of response or bone loss during treatment should prompt the physician to examine whether the patient is taking the medication appropriately.
Men and women who have had a fragility fracture at the hip, spine, wrist or shoulder are at increased risk of having a future fracture, but this population is presently under investigated and under treated. Additional efforts have to be made to communicate to physicians (particularly orthopaedic surgeons and family physicians) and the public about the need for a BMD test after fracture, and for initiating treatment if low BMD is found.
Men had a disproportionately low rate of BMD tests and osteoporosis treatment, especially after a fracture. Evidence and fracture data showed that the risk of hip and wrist fractures in men rises sharply at age 70 years.
Some counties had BMD utilization rates that were only 10% of that of the county with the highest utilization. The reasons for low utilization need to be explored and addressed.
Initiatives such as aligning reimbursement policy with current guidelines, developing specific guidelines for BMD testing in men and perimenopausal women, improving BMD reports to assist in clinical decision making, developing a registry to track BMD tests, improving access to BMD tests in remote/rural counties, establishing mechanisms to alert family physicians of fractures, and educating physicians and the public, will improve the appropriate utilization of BMD tests, and further decrease the rate of fractures in Ontario. Some of these initiatives such as developing guidelines for perimenopausal women and men, and developing a standardized requisition form for BMD testing, are currently in progress under the Ontario Osteoporosis Strategy.
PMCID: PMC3379167  PMID: 23074491
3.  Increased Levels of Circulating Advanced Glycation End-Products in Menopausal Women with Osteoporosis 
Background: Advanced glycation end-products (AGEs) can accumulate in organs and tissues during ageing and diabetes. Increased levels of AGEs are found in the bone tissue of patients with osteoporosis. The purpose of this study was to evaluate circulating AGEs in patients with osteoporosis.
Methods: We evaluated plasma AGEs, osteoporosis-related biomarkers, and bone mass in 82 menopausal women with osteoporosis or osteopenia, 16 young women with osteopenia, and 43 healthy women without osteoporosis or osteopenia.
Results: Higher levels of serum AGEs were found in the osteoporosis or osteopenia group compared to healthy women (P < 0.0001). A negative correlation was observed between serum AGEs and lumbar spine bone density (BMD of lumbar spine, r = -0.249, P = 0.028; T-score of lumbar spine, r = -0.261, P = 0.021). Women with a increased level of serum AGEs (> 8.12 U/mL) had a 5.34-fold risk of osteopenia regarding lumbar spine T-score and a 3.31-fold risk of osteopenia regarding the hip T-score.
Conclusion: Serum AGEs could be used to monitor the severity and progression of osteoporosis. An increased serum level of AGEs was associated with impaired bone formation and was a risk factor for the development of osteoporosis. Targeting AGEs may represent a novel therapeutic approach for primary or secondary osteoporosis.
PMCID: PMC3970097  PMID: 24688308
Advanced glycation end-products; Osteopenia; Osteoporosis; Biomarker; Osteopontin.
4.  Relationship between body mass index and bone mineral density in HIV-infected patients referred for DXA 
Journal of the International AIDS Society  2014;17(4Suppl 3):19569.
Reduced bone mass density (BMD) is a frequent observation in HIV-infected persons. Relationship between body mass index (BMI), weight, height and BMD was reported for many populations. In particular, BMI has been found to be inversely related to the risk of osteoporosis.
This is a cross-sectional, monocentric study where all HIV-infected patients referred to first DXA scan in clinical routine during 2010–2013 were included. Osteopenia and osteoporosis were defined by T- score <−1 and <−2.5, respectively. Patients were categorized according to WHO BMI classification: underweight <18.5 kg/m2; normal weight 18.5–24.9 kg/m2; over weight 25–29.9 kg/m2; obese >30 kg/m2. Statistical analysis was carried using logistic regression.
A total of 918 patients were included: median age 49 years (IQR, 44–55); 59.4% male; 93% Caucasian. Median anthrometric characteristics were: 68 kg (IQR, 59–78); 1.7 m (IQR, 1.6–1.75); 23.5 kg/m2 (IQR, 21.4–26.2). Underweight was found in 5%, normal weight in 61%, overweight in 26% and obesity in 8% of patients. According to T-scores, 110 (11.2%) patients were osteoporotic and 502 (54.7%) had osteopenia. In the femoral neck area, the prevalence of osteoporosis was slightly lower (5.7%) than lumbar spine site (9.2%). Agreements between sites of T-scores for the diagnosis of osteoporosis were 26 and 172 and 346 for osteopenia and normal BMD values, respectively. T-scores at femoral neck or lumbar spine positively correlated with BMI (p<0.001) (Figure 1). Among predictors of osteopenia/osteoporosis, univariable analysis showed: older age (p<0.0001); lower weight (p<0.0001); increasing height (p<0.002). Patients underweight had a higher risk of osteopenia (p=0.02) as well as of osteoporosis (p=0.003). Patients with BMI above normal had a reduced risk of low BMD (osteopenia p<0.0001; osteoporosis p<0.03). Controlling for calendar year, gender, ethnicity, and age, BMI was confirmed as risk factor if below normal (AdjOR of osteopenia 2.42 [95% CI 1.16–5.07] p=0.02; AdjOR of osteoporosis 3.22 [95% CI 1.60–6.49] p=0.001).
Our findings indicate that almost 66% of HIV-infected patients have subnormal bone mass. Further, as in other patient populations, in the HIV infection also low BMI is an important risk factor for osteopenia/osteoporosis. This finding highlights the compelling need for standardized screening actions, particularly in patients weighting below normal.
PMCID: PMC4224848  PMID: 25394076
5.  Osteoporosis in ankylosing spondylitis - prevalence, risk factors and methods of assessment 
Arthritis Research & Therapy  2012;14(3):R108.
Osteoporosis can be a complication of ankylosing spondylitis (AS), but diagnosing spinal osteoporosis can be difficult since pathologic new bone formation interferes with the assessment of the bone mineral density (BMD). The aims of the current study were to investigate prevalence and risk factors for reduced BMD in a Swedish cohort of AS patients, and to examine how progressive ankylosis influences BMD with the use of dual-energy x-ray absorptiometry (DXA) of the lumbar spine in different projections.
Methods of assessment were questionnaires, back mobility tests, blood samples, lateral spine radiographs for syndesmophyte grading (mSASSS), DXA of the hip, radius and lumbar spine in anteroposterior (AP) and lateral projections with estimation of volumetric BMD (vBMD).
AS patients (modified New York criteria), 87 women and 117 men, mean age 50 ± 13 years and disease duration 15 ± 11 years were included. According to World Health Organization (WHO) criteria 21% osteoporosis and 44% osteopenia was diagnosed in patients > = 50 years. Under age 50 BMD below expected range for age was found in 5%. Interestingly lateral lumbar DXA showed significantly lower BMD and revealed significantly more cases with osteoporosis as compared with AP DXA. Lumbar vBMD was not different between sexes, but women had significantly more lumbar osteoporosis measured with AP DXA (P < 0.001). Men had significantly higher mSASSS (P < 0.001). Low BMD was associated with high age, disease duration, mSASSS, Bath Ankylosing Spondylitis Metrology Index (BASMI), inflammatory parameters and low body mass index (BMI). Increasing mSASSS correlated significantly with decreasing lateral and volumetric lumbar BMD, while AP lumbar BMD showed tendency to increase.
Osteoporosis and osteopenia is common in AS and associated with high disease burden. Lateral and volumetric lumbar DXA are more sensitive than AP DXA in detecting osteoporosis and are less affected by syndesmophyte formation.
PMCID: PMC3446485  PMID: 22569245
6.  Prevalence and correlates of osteoporosis in chronic obstructive pulmonary disease patients in India 
Chronic obstructive pulmonary disease (COPD) is a syndrome of progressive airflow limitation caused by the abnormal inflammatory reaction of the airway and lung parenchyma. Osteoporosis is one of the major extrapulmonary manifestations of COPD. The, prevalence of osteoporosis in COPD patients in Indian population is unknown.
To study the prevalence of osteoporosis in COPD and to define various risk factors associated with reduced bone mineral density (BMD) in COPD.
Materials and Methods:
The study was done in the department of Pulmonary Medicine of a tertiary care hospital. All the diagnosed cases of COPD according to the Global Initiative for Obstructive Lung Disease (GOLD) guidelines were included in this study. The present study was a prospective study in for a period of 1 year. A brief history of the patients was taken, especially regarding duration of illness, number of exacerbations in the past 3 years, smoking in pack years, and history of steroid use (both systemic and inhaled steroids) after which cumulative dose of steroids was calculated. Spirometry was done in all these patients to stage the severity of COPD according to GOLD criteria. DEXA scan of the lumbar spine was done using bone densitometer to determine osteoporosis. A world Health Organization (WHO) criterion for definition of osteoporosis was applied and patients with T-score of > –2.5 standard deviation (SD) were diagnosed to have osteoporosis, –1 SD to –2.5 SD were diagnosed to have osteopenia and < –1 SD as normal. Statistical analysis for association of COPD with osteoporosis was done using chi-square test. Risk factors for osteoporosis were identified by univariate and multivariate logistic regression analysis.
A total of 102 COPD patients were included in the study. Among these, 68 patients (66.6%) had osteoporosis and 20 patients (19.6%) had osteopenia. Majority (64.7%) of the patients who had osteoporosis had stage III and stage IV COPD disease. It was observed that as the severity grade of COPD increased, the risk of osteoporosis also increased. The bone mineral density (BMD) showed a significant difference among different stages of COPD. As the severity of the stage of COPD increased, BMD decreased. It was also observed that patients with lower body mass index (BMI) had higher prevalence of osteoporosis (37.3%) as compared to overweight patients. On univariate analysis, it was observed that risk factors for osteoporosis were female sex, higher number of exacerbations, BMI, and severity of COPD. After using multivariate logistic regression analysis, stage IV COPD (odds ratio (OR): 34.48, 95% confidence interval (CI): 1.59–1,000, P < 0.02), number of acute exacerbations >3 (OR: 30.3, 95% CI: 4.74–200, P < 0.01), and steroid cumulative dose >1,000 mg (OR: 7.35, 95% CI: 0.92–58.5, P < 0.04) were observed to be significant risk factors for osteoporosis in COPD patients.
In the present study, the prevalence of osteoporosis was 66.6% and another 19.6% had osteopenia. As the severity of COPD increased, the risk of osteoporosis increased. GOLD stage III and stage IV patient had significantly lower BMD as compared to stage I and stage II of COPD disease. Stage IV COPD disease, use of oral or parenteral glucocorticoids, and repeated number of exacerbations were found to be independent risk factors for osteoporosis in COPD patients. Thus, high clinical suspicion and early diagnosis and treatment is required in the evaluation of osteoporosis in COPD patients so that the quality of life can be improved in these patients.
PMCID: PMC4129592  PMID: 25125807
COPD; correlates; DEXA scan; osteoporosis; repeated exacerbations; risk factors
7.  Prevalence of osteopenia and osteoporosis and factors associated with decreased bone mineral density in elderly inpatients with psychiatric disorders in Huzhou, China 
Shanghai Archives of Psychiatry  2012;24(5):262-270.
Little is known about the risks of bone fractures in elderly patients with mental disorders in China.
Assess the bone mineral density (BMD) of elderly patients with mental disorders in China and identify factors that are associated with low BMD, osteopenia and osteoporosis.
One hundred and two psychiatric inpatients 60 years of age or older (including patients with schizophrenia, depression, bipolar disorder and dementia) were randomly selected from patients in the geriatric wards of the Third People's Hospital of Huzhou. Detailed demographic, clinical and biometric data were obtained and the BMD of the lumbar spine was assessed using standard dual energy X-ray absorptiometry (DXA) procedures. Based on WHO criteria, individuals with BMD 1 to 2.5 standard deviations below the mean value for healthy young adults were diagnosed as osteopenia and those with BMD values 2.5 or more standard deviations below the mean value were diagnosed as osteoporosis.
The prevalence of osteopenia was 33.3% (95% CI, 24.4%-43.2%) and the prevalence of osteoporosis was 35.3% (26.0%-45.2%) but none of these patients – even the five patients who had had non-traumatic fractures – had ever been treated for these conditions. The prevalence of osteoporosis in females was 10-fold that in males (53% versus 5%). BMD decreased with age and increased with increasing body mass index (a reflection of nutritional status). The prevalence of osteoporosis was much higher in patients with a diagnosis of depression (58%) than in those with schizophrenia (33%), Alzheimer's disease (30%) or bipolar disorder (13%). Regression analyses found that low BMD and the combined category of osteopenia and osteoporosis were both independently associated with female gender, increasing age, decreasing body mass index, and a diagnosis of depression. BMD and osteoporosis were not significantly associated with regular use of antipsychotic medication.
Osteopenia and osteoporosis are common conditions in elderly patients with mental disorders that can seriously affect their quality of life but they often go undiagnosed and untreated. Long-term prospective studies are needed to clarify the relative importance of nutritional status, activity level, medication usage, and other factors in the causal pathways that connect mental illnesses to BMD.
PMCID: PMC4198874  PMID: 25328349
8.  Low bone mineral density is related to male gender and decreased functional capacity in early spondylarthropathies 
Clinical Rheumatology  2010;30(4):497-503.
The objective of this study was to determine the prevalence and risk factors of low bone mineral density (BMD) in patients with spondylarthropathies (SpA) at an early stage of disease. In this cross-sectional study, the BMD of lumbar spine and hips was measured in 130 consecutive early SpA patients. The outcome measure BMD was defined as (1) osteoporosis, (2) osteopenia, and (3) normal bone density. Logistic regression analyses were used to investigate relations between the following variables: age, gender, disease duration, diagnosis, HLA-B27, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Metrology Index (BASMI), extra-spinal manifestations and medication, with outcome measure low BMD (osteopenia and/or osteoporosis). The SpA population had a median time since diagnosis of 6.6 months and a disease duration of 6.3 years. In total, 9% of the early SpA patients had osteoporosis, 38% osteopenia, and 53% normal BMD. On univariate analyses, male gender, diagnosis of ankylosing spondylitis, increased CRP, high BASFI, and high BASMI were significantly associated with low BMD. Factors showing a relation with low BMD in the multivariate model were male gender (OR 4.18, 95% confidence interval (CI) 1.73–10.09), high BASMI (OR 1.54, 95% CI 1.14–2.07), and high BASFI (OR 1.18, 95% CI 1.00–1.39). In early SpA patients, a high frequency (47%) of low BMD in femur as well as in lumbar spine was found. Low BMD was associated with male gender and decreased functional capacity. These findings emphasize the need for more alertness for osteoporosis and osteopenia in spondylarthropathy patients at an early stage of the disease.
PMCID: PMC3062761  PMID: 20697764
Ankylosing spondylitis; Bone mineral density; Osteoporosis; Spondylarthropathies
9.  Balloon Kyphoplasty 
Executive Summary
To review the evidence on the effectiveness and cost-effectiveness of balloon kyphoplasty for the treatment of vertebral compression fractures (VCFs).
Clinical Need
Vertebral compression fractures are one of the most common types of osteoporotic fractures. They can lead to chronic pain and spinal deformity. They are caused when the vertebral body (the thick block of bone at the front of each vertebra) is too weak to support the loads of activities of daily living. Spinal deformity due to a collapsed vertebral body can substantially affect the quality of life of elderly people, who are especially at risk for osteoporotic fractures due to decreasing bone mass with age. A population-based study across 12 European centres recently found that VCFs have a negative impact on health-related quality of life. Complications associated with VCFs are pulmonary dysfunction, eating disorders, loss of independence, and mental status change due to pain and the use of medications. Osteoporotic VCFs also are associated with a higher rate of death.
VCFs affect an estimated 25% of women over age 50 years and 40% of women over age 80 years. Only about 30% of these fractures are diagnosed in clinical practice. A Canadian multicentre osteoporosis study reported on the prevalence of vertebral deformity in Canada in people over 50 years of age. To define the limit of normality, they plotted a normal distribution, including mean and standard deviations (SDs) derived from a reference population without any deformity. They reported a prevalence rate of 23.5% in women and a rate of 21.5% in men, using 3 SDs from the mean as the limit of normality. When they used 4 SDs, the prevalence was 9.3% and 7.3%, respectively. They also found the prevalence of vertebral deformity increased with age. For people older than 80 years of age, the prevalence for women and men was 45% and 36%, respectively, using 3 SDs as the limit of normality.
About 85% of VCFs are due to primary osteoporosis. Secondary osteoporosis and neoplasms account for the remaining 15%. A VCF is operationally defined as a reduction in vertebral body height of at least 20% from the initial measurement. It is considered mild if the reduction in height is between 20% and 25%; moderate, if it is between 25% and 40%; and severs, if it is more than 40%. The most frequently fractured locations are the third-lower part of the thorax and the superior lumbar levels. The cervical vertebrae and the upper third of the thorax are rarely involved.
Traditionally, bed rest, medication, and bracing are used to treat painful VCFs. However, anti-inflammatory and narcotic medications are often poorly tolerated by the elderly and may harm the gastrointestinal tract. Bed rest and inactivity may accelerate bone loss, and bracing may restrict diaphragmatic movement. Furthermore, medical treatment does not treat the fracture in a way that ameliorates the pain and spinal deformity.
Over the past decade, the injection of bone cement through the skin into a fractured vertebral body has been used to treat VCFs. The goal of cement injection is to reduce pain by stabilizing the fracture. The secondary indication of these procedures is management of painful vertebral fractures caused by benign or malignant neoplasms (e.g., hemangioma, multiple myeloma, and metastatic cancer).
The Technology
Balloon kyphoplasty is a modified vertebroplasty technique. It is a minimally invasive procedure that aims to relieve pain, restore vertebral height, and correct kyphosis. During this procedure, an inflatable bone tamp is inserted into the collapsed vertebral body. Once inflated, the balloon elevates the end plates and thereby restores the height of the vertebral body. The balloon is deflated and removed, and the space is filled with bone cement. Creating a space in the vertebral body enables the application of more viscous cement and at a much lower pressure than is needed for vertebroplasty. This may result in less cement leakage and fewer complications. Balloons typically are inserted bilaterally, into each fractured vertebral body. Kyphoplasty usually is done under general anesthesia in about 1.5 hours. Patients typically are observed for only a few hours after the surgery, but some may require an overnight hospital stay.
Health Canada has licensed KyphX Xpander Inflatable Bone Tamp (Kyphon Inc., Sunnyvale, CA), for kyphoplasty in patients with VCFs. KyphX is the only commercially available device for percutaneous kyphoplasty. The KyphX kit uses a series of bone filler device tubes. Each bone filler device must be loaded manually with cement. The cement is injected into the cavity by pressing an inner stylet.
In the United States, the Food and Drug Administration cleared the KyphX Inflatable Bone Tamp for marketing in July 1998. CE (Conformité European) marketing was obtained in February 2000 for the reduction of fracture and/or creation of a void in cancellous bone.
Review Strategy
The aim of this literature review was to evaluate the safety and effectiveness of balloon kyphoplasty in the treatment of painful VCFs.
INAHTA, Cochrane CCTR (formerly Cochrane Controlled Trials Register), and DSR were searched for health technology assessment reports. In addition, MEDLINE, EMBASE, and MEDLINE In-Process & Other Non-Indexed Citations were searched from January 1, 2000 to September 21, 2004. The search was limited to English-language articles and human studies.
The positive end points selected for this assessment were as follows:
Reduction in pain scores
Reduction in vertebral height loss
Reduction in kyphotic (Cobb) angle
Improvement in quality of life scores
The search did not yield any health technology assessments on balloon kyphoplasty. The search yielded 152 citations, including those for review articles. No randomized controlled trials (RCTs) on balloon kyphoplasty were identified. All of the published studies were either prospective cohort studies or retrospective studies with no controls. Eleven studies (all case series) met the inclusion criteria. There was also a comparative study published in German that had been translated into English.
Summary of Findings
The results of the 1 comparative study (level 3a evidence) that was included in this review showed that, compared with conservative medical care, balloon kyphoplasty significantly improved patient outcomes.
Patients who had balloon kyphoplasty reported a significant reduction in pain that was maintained throughout follow-up (6 months), whereas pain scores did not change in the control group. Patients in the balloon kyphoplasty group did not need pain medication after 3 days. In the control group, about one-half of the patients needed more pain medication in the first 4 weeks after the procedure. After 6 weeks, 82% of the patients in the control group were still taking pain medication regularly.
Adjacent fractures were more frequent in the control group than in the balloon kyphoplasty group.
The case series reported on several important clinical outcomes.
Pain: Four studies on osteoporosis patients and 1 study on patients with multiple myeloma/primary cancers used the Visual Analogue Scale (VAS) to measure pain before and after balloon kyphoplasty. All of these studies reported that patients had significantly less pain after the procedure. This was maintained during follow-up. Two other studies on patients with osteoporosis also used the VAS to measure pain and found a significant improvement in pain scores; however, they did not provide follow-up data.
Vertebral body height: All 5 studies that assessed vertebral body height in patients with osteoporosis reported a significant improvement in vertebral body height after balloon kyphoplasty. One study had 1-year follow-up data for 26 patients. Vertebral body height was significantly better at 6 months and 1 year for both the anterior and midline measurements.
Two studies reported that vertebral body height was restored significantly after balloon kyphoplasty for patients with multiple myeloma or metastatic disease. In another study, the researchers reported complete height restoration in 9% of patients, a mean 56% height restoration in 60% of patients, and no appreciable height restoration in 31% of the patients who received balloon kyphoplasty.
Kyphosis correction: Four studies that assessed Cobb angle before and after balloon kyphoplasty in patients with osteoporosis found a significant reduction in degree of kyphosis after the procedure. In these studies, the differences between preoperative and postoperative Cobb angles were 3.4°, 7°, 8.8°, and 9.9°.
Only 1 study investigated kyphosis correction in patients with multiple myeloma or metastatic disease. The authors reported a significant improvement (5.2°) in local kyphosis.
Quality of life: Four studies used the Short Form 36 (SF-36) Health Survey Questionnaire to measure the quality of life in patients with osteoporosis after they had balloon kyphoplasty. A significant improvement in most of the domains of the SF-36 (bodily pain, social functioning, vitality, physical functioning, mental health, and role functioning) was observed in 2 studies. One study found that general health declined, although not significantly, and another found that role emotional declined.
Both studies that used the Oswestry Disability Index found that patients had a better quality of life after balloon kyphoplasty. In one study, this improvement was statistically significant. In another study, researchers found that quality of life after kyphoplasty improved significantly, as measured with the Roland-Morris Disability Questionnaire. Yet another study used a quality of life questionnaire and found that 62% of the patients that had balloon kyphoplasty had returned to normal activities, whereas 2 patients had reduced mobility.
To measure quality of life in patients with multiple myeloma or metastatic disease, one group of researchers used the SF-36 and found significantly better scores on bodily pain, physical functioning, vitality, and social functioning after kyphoplasty. However, the scores for general health, mental health, role physical, and role emotional had not improved. A study that used the Oswestry Disability Index reported that patients’ scores were better postoperatively and at 3 months follow-up.
These were the main findings on complications in patients with osteoporosis:
The bone cement leaked in 37 (6%) of 620 treated fractures.
There were no reports of neurological deficits.
There were no reports of pulmonary embolism due to cement leakage.
There were 6 cases of cardiovascular events in 362 patients:
3 (0.8%) patients had myocardial infarction.
3 (0.8%) patients had cardiac arrhythmias.
There was 1 (0.27%) case of pulmonary embolism due to deep venous thrombosis.
There were 20 (8.4%) cases of new fractures in 238 patients.
For patients with multiple myeloma or metastatic disease, these were the main findings:
The bone cement leaked in 12 (9.6%) of 125 procedures.
There were no reports of neurological deficits.
Economic Analysis
Balloon kyphoplasty requires anesthesia. Standard vertebroplasty requires sedation and an analgesic. Based on these considerations, the professional fees (Cdn) for each procedure is shown in Table 1.
Professional Fees for Standard Vertebroplasty and Balloon Kyphoplasty
Balloon kyphoplasty has a sizable device cost add-on of $3,578 (the device cost per case) that standard vertebroplasty does not have. Therefore, the up-front cost (i.e., physician’s fees and device costs) is $187 for standard vertebroplasty and $3,812 for balloon kyphoplasty. (All costs are in Canadian currency.)
There are also “downstream costs” of the procedures, based on the different adverse outcomes associated with each. This includes the risk of developing new fractures (21% for vertebroplasty vs. 8.4% for balloon kyphoplasty), neurological complications (3.9% for vertebroplasty vs. 0% for balloon kyphoplasty), pulmonary embolism (0.1% for vertebroplasty vs. 0% for balloon kyphoplasty), and cement leakage (26.5% for vertebroplasty vs. 6.0% for balloon kyphoplasty). Accounting for these risks, and the base costs to treat each of these complications, the expected downstream costs are estimated at less than $500 per case. Therefore, the expected total direct medical cost per patient is about $700 for standard vertebroplasty and $4,300 for balloon kyphoplasty.
Kyphon, the manufacturer of the inflatable bone tamps has stated that the predicted Canadian incidence of osteoporosis in 2005 is about 29,000. The predicted incidence of cancer-related vertebral fractures in 2005 is 6,731. Based on Ontario having about 38% of the Canadian population, the incidence in the province is likely to be about 11,000 for osteoporosis and 2,500 for cancer-related vertebral fractures. This means there could be as many as 13,500 procedures per year in Ontario; however, this is highly unlikely because most of the cancer-related fractures likely would be treated with medication. Given a $3,600 incremental direct medical cost associated with balloon kyphoplasty, the budget impact of adopting this technology could be as high as $48.6 million per year; however, based on data from the Provider Services Branch, about 120 standard vertebroplasties are done in Ontario annually. Given these current utilization patterns, the budget impact is likely to be in the range of $430,000 per year. This is because of the sizable device cost add-on of $3,578 (per case) for balloon kyphoplasty that standard vertebroplasty does not have.
Policy Considerations
Other treatments for osteoporotic VCFs are medical management and open surgery. In cases without neurological involvement, the medical treatment of osteoporotic VCFs comprises bed rest, orthotic management, and pain medication. However, these treatments are not free of side effects. Bed rest over time can result in more bone and muscle loss, and can speed the deterioration of the underlying condition. Medication can lead to altered mood or mental status. Surgery in these patients has been limited because of its inherent risks and invasiveness, and the poor quality of osteoporotic bones. However, it may be indicated in patients with neurological deficits.
Neither of these vertebral augmentation procedures eliminates the need for aggressive treatment of osteoporosis. Osteoporotic VCFs are often under-diagnosed and under-treated. A survey of physicians in Ontario (1) who treated elderly patients living in long-term care homes found that although these physicians were aware of the rates of osteoporosis in these patients, 45% did not routinely assess them for osteoporosis, and 26% did not routinely treat them for osteoporosis.
Management of the underlying condition that weakens the vertebral bodies should be part of the treatment plan. All patients with osteoporosis should be in a medical therapy program to treat the underlying condition, and the referring health care provider should monitor the clinical progress of the patient.
The main complication associated with vertebroplasty and balloon kyphoplasty is cement leakage (extravertebral or vascular). This may result in more patient morbidity, longer hospitalizations, the need for open surgery, and the use of pain medications, all of which have related costs. Extravertebral cement leakage can cause neurological complications, like spinal cord compression, nerve root compression, and radiculopathy. In some cases, surgery is required to remove the cement and release the nerve. The rate of cement leakage is much lower after balloon kyphoplasty than after vertebroplasty. Furthermore, the neurological complications seen with vertebroplasty have not seen in the studies of balloon kyphoplasty. Rarely, cement leakage into the venous system will cause a pulmonary embolism. Finally, compared with vertebroplasty, the rate of new fractures is lower after balloon kyphoplasty.
Diffusion – International, National, Provincial
In Canada, balloon kyphoplasty has not yet been funded in any of the provinces. The first balloon kyphoplasty performed in Canada was in July 2004 in Ontario.
In the United States, the technology is considered by some states as medically reasonable and necessary for the treatment of painful vertebral body compression fractures.
There is level 4 evidence that balloon kyphoplasty to treat pain associated with VCFs due to osteoporosis is as effective as vertebroplasty at relieving pain. Furthermore, the evidence suggests that it restores the height of the affected vertebra. It also results in lower fracture rates in other vertebrae compared with vertebroplasty, and in fewer neurological complications due to cement leakage compared with vertebroplasty. Balloon kyphoplasty is a reasonable alternative to vertebroplasty, although it must be reiterated that this conclusion is based on evidence from level 4 studies.
Balloon kyphoplasty should be restricted to facilities that have sufficient volumes to develop and maintain the expertise required to maximize good quality outcomes. Therefore, consideration should be given to limiting the number of facilities in the province that can do balloon kyphoplasty.
PMCID: PMC3387743  PMID: 23074451
10.  Relationships between endothelial nitric oxide synthase gene polymorphisms and osteoporosis in postmenopausal women*  
Objective: To investigate the relationships between endothelial nitric oxide synthases (eNOS) G894T and 27 bp-variable number tandem repeat (VNTR) gene polymorphisms and osteoporosis in the postmenopausal women of Chinese Han nationality. Methods: In the present study, 281 postmenopausal women from Xi’an urban area in West China were recruited, and divided into osteoporosis, osteopenia, and normal groups according to the diagnostic criteria of osteoporosis proposed by World Health Organization (WHO). The bone mineral density (BMD) values of lumbar vertebrae and left hips were determined by QDR-2000 dual energy X-ray absorptiometry. Blood samples were tested for plasma biochemical indicators including testosterone, estradiol, calcitonin, osteocalcin, and procollagen type I amino-terminal propeptide by enzyme-linked immunosorbent assay (ELISA), tartrate-resistant acid phosphatase by spectrophotometric method, and the content of nitric oxide by Griess method. Genome DNA was extracted from whole blood, and G894T polymorphism of eNOS gene was analyzed by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and 27 bp-VNTR polymorphism of eNOS gene was genotyped by PCR method. Then the relationships between genotypes and biochemical indicators, genotypes and osteoporosis, and haplotypes and osteoporosis were analyzed. Results: The average BMD values of the femoral neck, ward’s triangle and lumbar vertebrae 1~4 (L1~L4) in the subjects with T/T genotype in eNOS G894T locus were significantly higher than those in the subjects with G/T and G/G genotypes (P<0.05). The average BMD of the femoral neck in the subjects with a/a genotype of eNOS 27 bp-VNTR locus was evidently higher than that in the subjects with b/b genotype (P<0.05). The plasma testosterone and osteocalcin concentrations in the subjects of eNOS G894T G/T genotype were evidently higher than those in the subjects of other genotypes (P<0.05); the plasma estradiol concentration in the subjects of eNOS 27 bp-VNTR a/a genotype was obviously higher than that in the subjects of b/b genotype (P<0.01). eNOS G/G homozygous frequencies in osteoporosis women, osteopenia women, and normal women were 85.37%, 76.38%, and 83.87%, respectively (P>0.05). 0% osteoporosis woman, 0.79% osteopenia women, and 3.23% normal women were eNOS a/a homozygous (P<0.05). The frequencies of eNOS 27 bp-VNTR a allele were 5.33% in the osteoporosis group, 10.24% in the osteopenia group, and 16.13% in the normal group (P<0.05, odds ratio (OR)=0.29, 95% confidence interval (CI)=0.11~0.77), suggesting that a/a genotype and a allele might have protective effects on osteoporosis. The haplotype analysis showed that G-b was 87.7% (214/244) in the osteoporosis group (P<0.05, OR=2.48, 95% CI=1.18~5.18). G-a was 5.3% (13/244) in the osteoporosis group (P<0.05, OR=0.29, 95% CI=0.11~0.77). G-b was a risk factor for osteoporosis, and G-a a protective factor. Conclusion: eNOS G894T G/T genotype influenced the plasma testosterone and osteocalcin concentrations, and T/T genotype influenced BMD. eNOS 27 bp-VNTR a/a genotype increased plasma estradiol concentration to have a protective effect on osteoporosis.
PMCID: PMC2722703  PMID: 19650200
Postmenopausal women; Osteoporosis; Endothelial nitric oxide synthase; Gene polymorphisms; Bone mineral density
11.  Experience with alendronate treatment for four years among Japanese men with osteoporosis or osteopenia and clinical risk factors for fractures 
A retrospective study based on a conventional medical practice was performed to evaluate the outcome of alendronate treatment for four years in Japanese men with osteoporosis or osteopenia and clinical risk factors for fractures.
Twenty-nine Japanese men with osteoporosis or osteopenia and clinical risk factors for fractures (mean age at baseline 61.0 years) who had been treated with alendronate for over four years in our outpatient clinic were studied. Lumbar spine or total hip bone mineral density (BMD) was measured using dual energy x-ray absorptiometry, and urinary levels of cross-linked N-terminal telopeptides of type I collagen (NTX) and serum levels of bone-specific alkaline phosphatase were monitored during the four-year treatment period.
Urinary NTX and serum bone-specific alkaline phosphatase levels decreased (−44.4% at three months and −61.2% at four years, respectively) and lumbar spine and total hip BMD increased (+13.9% and +9.2% at four years, respectively), compared with baseline values. No serious adverse events were observed, including osteonecrosis of the jaw, femoral diaphysis atypical fractures, or atrial fibrillation.
To our knowledge, this is the first report of the outcome of alendronate treatment for four years in Japanese men with an increased risk for fractures. Alendronate suppressed bone turnover and increased lumbar spine and total hip BMD from baseline over the course of the four-year treatment period without causing any severe adverse events in Japanese men with osteoporosis or osteopenia and clinical risk factors for fractures.
PMCID: PMC3012448  PMID: 21206758
alendronate; bone mineral density; fracture risk; men; osteoporosis; osteopenia
12.  Low bone mineral density in men with chronic obstructive pulmonary disease 
Respiratory Research  2011;12(1):101.
Osteoporosis is common in patients with COPD but the likely multi-factorial causes contributing to this condition (e.g. sex, age, smoking, therapy) mask the potential contribution from elements related to COPD. In order to study osteoporosis and bone mineral density (BMD) related to COPD, we studied a well-defined group of patients and controls.
BMD, forced expiratory volume in one second (FEV1), circulating bone biomarkers and biochemistry were determined in 30 clinically stable male ex-smokers with confirmed COPD and 15 age matched "ex-smoker" male controls. None of the patients were on inhaled corticosteroids or received more than one short course of steroids.
Mean (SD) FEV1% predicted of patients was 64(6)%, the majority having Global Initiative for Chronic Obstructive Lung Disease (GOLD) II airflow obstruction. There were 5/30 patients and 1/15 controls who were osteoporotic, while a further 17 patients and 5 controls were osteopenic. The BMD at the hip was lower in patients than controls, but not at the lumbar spine. Mean values of procollagen type 1 amino-terminal propeptide and osteocalcin, both markers of bone formation, and Type 1 collagen β C-telopeptide, a marker of bone resorption, were similar between patients and controls. However, all bone biomarkers were inversely related to hip BMD in patients (r = -0.51, r = -0.67, r = -0.57, p < 0.05) but did not relate to lumbar spine BMD. 25-OH Vitamin D was lower in patients.
Men with COPD had a greater prevalence of osteoporosis and osteopenia than age matched male controls, with a marked difference in BMD at the hip. Bone biomarkers suggest increased bone turnover.
PMCID: PMC3161864  PMID: 21812978
bone biomarkers; bone mineral density; chronic obstructive pulmonary disease; osteoporosis
13.  Low bone mineral density in Greek patients with inflammatory bowel disease: prevalence and risk factors 
A high prevalence of osteopenia and osteoporosis is observed in patients with inflammatory bowel disease (IBD). Various risk factors of bone loss have been suggested in IBD. The aim of the present study was to investigate the prevalence of low bone mineral density (BMD) and to identify related risk factors in Greek patients with IBD.
One hundred and eighteen consecutive IBD patients were included. All patients underwent bone densitometry by dual energy X-ray absorptiometry at the femoral neck and lumbar spine levels. Serum levels of 25 hydroxyvitamin D (25 OH D), 1.25 dihydroxyvitamin D (1.25 OH 2D), osteocalcin, calcitonin and homocysteine were measured in all participants.
Forty (33.9%) patients were normal, 55 (46.6%) were osteopenic, and 23 (19.5%) were osteoporotic. No significant differences between IBD patients with osteopenia or osteoporosis and those with normal BMD concerning the use of steroids and the examined biochemical markers were found. Statistically significant differences among the three groups were found for body mass index (BMI), age and disease duration (P=0.002, P<0.0001 and P=0.03 respectively). Multivariate analysis revealed that the most significant factors associated with BMD were age and BMI (P<0.0001). A weak but statistically significant correlation was also found for disease duration (P=0.04).
There is a high prevalence of osteopenia and osteoporosis in Greek patients with IBD. Low BMI, age and disease duration are the most important independent risk factors for osteoporosis in Greek IBD patients.
PMCID: PMC3959460  PMID: 24714255
bone mineral density; Crohn’s disease; osteocalcin; vitamin D; ulcerative colitis
14.  Bone mineral density among elderly patients with chronic obstructive pulmonary disease patients in India 
Osteoporosis is one of the major extra-pulmonary manifestations of chronic obstructive pulmonary disease (COPD), which limits the physical activity. The present study was undertaken to study the bone mineral density (BMD) and osteoporosis in the elderly COPD patients.
Materials and Methods:
This was a cross-sectional study carried out among elderly COPD patients. After a detailed clinical history spirometry was done to stage the severity of COPD. DEXA scan of the lumbar spine was performed using bone densitometer to determine osteoporosis. Statistical analysis was based on Chi-square test. Risk factors were identified by univariate and multivariate logistic regression analysis.
A total of 70 elderly COPD patients were included. Fourty-six patients (65.7%) had osteoporosis and 13 (18.6%) had osteopenia. Majority of the osteoporosis patients had stage III or stage IV COPD disease (77.2%). As the severity grade of COPD increased, the risk of osteoporosis also increased. Also, with the increasing severity of COPD, BMD decreased. Patients with lower body mass index (BMI) had higher prevalence of osteoporosis (45.7%). Using multivariate regression analysis, stage IV COPD, number of acute exacerbations >3 and steroid cumulative dose >1000 mg were independent risk factors for osteoporosis in elderly COPD patients.
The prevalence of osteoporosis was 65.7%, and 18.6% had osteopenia. Stage III and IV patients had significantly lower BMI in elderly COPD patients. High clinical suspicion and early diagnosis and treatment are required in the evaluation of osteoporosis in elderly COPD patients.
PMCID: PMC3883226  PMID: 24403704
Bone mineral density; osteoporosis; risk factors
15.  Baseline bone mineral density and bone turnover in pre-operative hip and knee arthroplasty patients 
Bone & Joint Research  2014;3(1):14-19.
Osteoporosis and abnormal bone metabolism may prove to be significant factors influencing the outcome of arthroplasty surgery, predisposing to complications of aseptic loosening and peri-prosthetic fracture. We aimed to investigate baseline bone mineral density (BMD) and bone turnover in patients about to undergo arthroplasty of the hip and knee.
We prospectively measured bone mineral density of the hip and lumbar spine using dual-energy X-ray absorptiometry (DEXA) scans in a cohort of 194 patients awaiting hip or knee arthroplasty. We also assessed bone turnover using urinary deoxypyridinoline (DPD), a type I collagen crosslink, normalised to creatinine.
The prevalence of DEXA proven hip osteoporosis (T-score ≤ -2.5) among hip and knee arthroplasty patients was found to be low at 2.8% (4 of 143). Spinal osteoporosis prevalence was higher at 6.9% (12 of 175). Sixty patients (42% (60 of 143)) had osteopenia or osteoporosis of either the hip or spine. The mean T-score for the hip was -0.34 (sd 1.23), which is within normal limits, and the mean hip Z-score was positive at 0.87 (sd 1.17), signifying higher-than-average BMD for age. The median urinary DPD/creatinine was raised in both female patients at 8.1 (interquartile range (IQR) 6.6 to 9.9) and male patients at 6.2 (IQR 4.8 to 7.5).
Our results indicate hip and knee arthroplasty patients have higher BMD of the hip and spine compared with an age-matched general population, and a lower prevalence of osteoporosis. However, untreated osteoporotic patients are undergoing arthroplasty, which may negatively impact their outcome. Raised DPD levels suggest abnormal bone turnover, requiring further investigation.
Cite this article: Bone Joint Res 2014;3:14–19.
PMCID: PMC3904490  PMID: 24443424
Arthroplasty; Hip; Knee; Bone mineral density; BMD
16.  Relationship between VKORC1 single nucleotide polymorphism 1173C>T, bone mineral density & carotid intima-media thickness 
Background & objectives:
The effects of vitamin K-dependent proteins in bone mineralization and vascular calcification and the implication of vitamin K epoxide reductase gene (VKORC1) 1173C>T polymorphism in warfarin sensitivity are well known. The main objective of the study was to investigate the relationship between VKORC1 1173C>T polymorphism, bone mineral density (BMD), and atherosclerosis (evaluated by intima-media thickness of the carotid artery and the presence of calcified plaques) in patients suspected to have osteoporosis or osteopenia and referred for BMD determination.
VKORC1 1173C>T polymorphism was evaluated in 239 consecutive patients referred by their physicians for BMD measurement (dual energy X-ray absorptiometry at L2-L4 lumbar spine, femoral neck and total hip). Ultrasonography of the carotid arteries was performed, intima-media thickness (IMT) was measured and the presence of atherosclerotic calcified plaques was recorded.
In the patients with osteoporosis and osteopenia there was a higher frequency of TT genotype of VKORC1 1173C>T (P=0.04). The TT genotype was significantly more frequent in the osteoporotic group compared to the osteopenic group (P=0.01). The mean age and body mass index were lower in the patients with normal BMD and TT genotype (P=0.02, P=0.03). There was no correlation between the IMT and VKORC1 1173C>T genotype but the TT genotype had a significant association with the presence of calcified atherosclerotic plaques (P=0.05). This finding was not correlated with normal or pathologic BMD.
Interpretation & conclusions:
VKORC1 1173C>T polymorphism (TT genotype) was associated with osteoporosis and calcified plaques in the carotid artery in patients referred for BMD measurement. Different mechanisms are probably involved in these associations. TT genotype may serve as a potential genetic marker for the risk of OP and ATS.
PMCID: PMC3724254  PMID: 23703341
Atherosclerotic plaque; bone mineral density; carotid intima-media thickness; gene; osteoporosis; vitamin K epoxide; reductase; VKORC1
17.  Bone Metabolism Disorders in Patients with Spinal Cord Injuries 
In Italy, 60–70 thousand people are affected by spinal cord lesions, which have an incidence of 20/25 new cases per million per year and a male:female ratio of 4:1. The age group most affected is 10–40 years. In 65% of cases the origin of the lesion is traumatic. According to the ASIA (American Spinal Injury Association) Impairment Scale (AIS), the lesion is defined complete or incomplete, depending on whether or not partial conservation of sensory and/or motor functions is found below the level of the lesion in the first 24 hours following the trauma. Patients with spinal injuries show alterations of phosphocalcic metabolism, with osteoporosis, neurogenic para-osteo-arthropathy and renal calculi. Even though post-lesion osteoporosis is traditionally considered secondary to reduced loading, it has characteristics different from those of primary osteoporosis and osteoporosis caused by endocrine disorders or by simple disuse. Indeed, there is usually no significant demineralisation of the bone segments above the level of the neurological lesion and the site and entity of the bone resorption are influenced by factors such as age, sex, muscle spasticity, but above all by lesion site, lesion severity, and post-lesion period.
Osteocytes (the mechanosensors in bone tissue), via extracellular and intracellular signal transmitters, transmit mechanical load signals to the osteoblasts, stimulating bone formation and inhibiting bone resorption by the osteoclasts.
A spinal injury results in prolonged limitation of both the loading and the movement of the lower limbs; this leads to marked muscle atrophy, inhibition of the osteoblasts and activation of the osteoclasts, and an inevitable loss of bone tissue. The increase in bone resorption following a spinal injury is reflected in increased urinary excretion of hydroxyproline, pyridinoline, deoxypyridinoline and type I collagen C-telopeptide. Significantly increased expression of RANKL mRNA and protein in cultures of osteoblast-like cells from spinal injured rats has also been observed, while OPG expression is significantly reduced and osteoclastogenesis increased. Spinal lesions are also associated with supplementary production, in the bone marrow, of cytokines like IL-6, potential mediators of bone mass loss.
Recent studies suggest that bone remodelling is also influenced by nervous signals: after denervation, due to a spinal lesion, there is a marked reduction in innervation density and in neuropeptides, such as VIP, PACAP, NPY, SP, CGRP, noradrenaline, glutamate and serotonin, mainly in bone segments below the level of the lesion; this upsets the balance between bone resorption and formation. In addition to its direct role in bone metabolism, denervation can induce alterations of vascular regulation: indeed, a complete spinal injury causes alterations of the sympathetic innervation with possible opening of intraosseous venous shunts that, leading to venous and capillary stasis with increase in local pressure, could favour the formation of osteoclasts, accelerating the process of bone resorption; osteopenia is indeed predominant in the meta-epiphyseal areas of long bones, which are highly vascularised.
In the first months following the injury, the demineralisation generally affects mainly the distal femur and proximal tibia, segments rich in trabecular bone, while the femoral and tibial diaphyses, which are rich in cortical bone, are relatively spared.
Paradoxically, in the lumbar spine, in which the trabecular component is prevalent, DXA scans do not reveal significant reductions in bone mineral density, independently of the lesion level or duration. This may be because the spinal column exerts an ongoing bodyweight-supporting action during wheelchair use. Nevertheless, on DXA studies, BMD at lumbar level can sometimes erroneously appear increased on account of the presence of osteophytes due to neuropathic spondylopathy. To overcome the limits of this approach, the most recent studies have used densitometric methods such as QCT (quantitative computerised tomography) to assess the density of trabecular and cortical bone in the distal radius and tibia.
Up to a third of spinal cord injured patients are liable to sustain fragility fractures. Although they are asymptomatic, these fractures can cause complications, such as abnormal bone callus formation, bedsores and increased spasticity, all factors that can further deteriorate the patient’s already precarious state of health.
Reduction of fracture risk through an appropriate treatment of osteoporosis after spinal cord injury is particularly important for the prognosis and quality of life of these patients. In this context, the application of diagnostic protocols, both haematological and instrumental, for the monitoring and therapeutic control of bone demineralisation over time could be an effective help.
PMCID: PMC3213781
18.  High prevalence of osteoporotic vertebral fractures in patients with Crohn’s disease 
Gut  2002;51(5):654-658.
Background and aims: Osteopenia and osteoporosis are frequent in Crohn’s disease. However, there are few data on related vertebral fractures. Therefore, we evaluated prospectively the prevalence of osteoporotic vertebral fractures in these patients.
Methods: A total of 293 patients were screened with dual energy x ray absorptiometry of the lumbar spine (L1-L4) and proximal right femur. In 156 patients with lumbar osteopenia or osteoporosis (T score <−1), x ray examinations of the thoracic and lumbar spine were performed. Assessment of fractures included visual reading of x rays and quantitative morphometry of the vertebral bodies (T4-L4), analogous to the criteria of the European Vertebral Osteoporosis Study.
Results: In 34 (21.8%; 18 female) of 156 Crohn’s disease patients with reduced bone mineral density, 63 osteoporotic vertebral fractures (50 fx. (osteoporotic fracture with visible fracture line running into the vertebral body and/or change of outer shape) and 13 fxd. (osteoporotic fracture with change of outer shape but without visible fracture line)) were found, 50 fx. in 25 (16%, 15 female) patients and 13 fxd. in nine (5.8%, three female) patients. In four patients the fractures were clinically evident and associated with severe back pain. Approximately one third of patients with fractures were younger than 30 years. Lumbar bone mineral density was significantly reduced in patients with fractures compared with those without (T score −2.50 (0.88) v −2.07 (0.66); p<0.025) but not at the hip (−2.0 (1.1) v −1.81 (0.87); p=0.38). In subgroups analyses, no significant differences were observed.
Conclusions: In patients with Crohn’s disease and reduced bone mineral density, the prevalence of vertebral fractures—that is, manifest osteoporosis—was strikingly high at 22%, even in those aged less than 30 years, a problem deserving further clinical attention.
PMCID: PMC1773437  PMID: 12377802
Crohn’s disease; bone mineral density; osteoporosis; vertebral fracture
19.  Multifactorial analysis of risk factors for reduced bone mineral density among postmenopausal women 
The study aimed to determine the risk factors for reduced bone mineral density (BMD) among postmenopausal women.
Material and methods
Two hundred and fifty-three postmenopausal women were included to the study. The study group consisted of 85 women with osteoporosis (mean age: 59.9 years) and 168 with osteopenia (mean age: 57.8 years). Patients were assigned to groups according to their BMD measured in the lumbar spine, hip and femoral neck by dual X-ray absorptiometry. Bone formation was assessed by measuring serum osteocalcin and bone resorption by measuring serum C-terminal type I α-collagen chain telopeptide.
Multiple regression analysis for lumbar spine showed association of age (p = 0.001), parental history of fracture (p = 0.05), use of hormone replacement therapy (p = 0.034), bisphosphonates therapy (p < 0.001), calcium and vitamin D supplements therapy (p = 0.001), oestradiol level (p = 0.007) and body mass index (p < 0.001). Multiple regression analysis for femoral neck and hip total showed association of age (p = 0.001), parental history of fracture (p = 0.049), use of bisphosphonates (p < 0.03)) use of calcium and vitamin D supplements (p = 0.039), oestradiol level (p = 0.047). All the variables together explain 40.4% of variance in BMD for the lumbar spine and 25.6% of variance in BMD for femoral neck and hip total.
The present study demonstrated correlations between the variables and BMD, which are known and widely described in the literature. Osteoporosis and osteopenia in Polish subjects appear to be associated with several known risk factors that are well described in the literature.
PMCID: PMC3361047  PMID: 22662008
bone mineral density; postmenopausal women; osteoporosis; osteopenia; multifactorial analysis
20.  Bone health in Parkinson's disease: a systematic review and meta-analysis 
Parkinson's disease (PD) and osteoporosis are chronic diseases associated with increasing age. Single studies have reported associations between them and the major consequence, namely, increased risk of fractures. The aim of this systematic review and meta-analysis was to evaluate the relationship of PD with osteoporosis, bone mineral density (BMD) and fracture risk.
A literature search was undertaken on 4 September 2012 using multiple indexing databases and relevant search terms. Articles were screened for suitability and data extracted where studies met inclusion criteria and were of sufficient quality. Data were combined using standard meta-analysis methods.
23 studies were used in the final analysis. PD patients were at higher risk of osteoporosis (OR 2.61; 95% CI 1.69 to 4.03) compared with healthy controls. Male patients had a lower risk for osteoporosis and osteopenia than female patients (OR 0.45; 95% CI 0.29 to 0.68). PD patients had lower hip, lumbar spine and femoral neck BMD levels compared with healthy controls; mean difference, −0.08, 95% CI −0.13 to −0.02 for femoral neck; −0.09, 95% CI −0.15 to −0.03 for lumbar spine; and −0.05, 95% CI −0.07 to −0.03 for total hip. PD patients were also at increased risk of fractures (OR 2.28; 95% CI 1.83 to 2.83).
This systematic review and meta-analysis demonstrate that PD patients are at higher risk for both osteoporosis and osteopenia compared with healthy controls, and that female patients are at greater risk than male patients. Patients with PD also have lower BMD and are at increased risk of fractures.
PMCID: PMC4173751  PMID: 24620034
21.  Factors associated with treatment of women with osteoporosis or osteopenia from a national survey 
BMC Women's Health  2012;12:1.
Health outcomes could be improved if women at high risk for osteoporotic fracture were matched to effective treatment. This study determined the extent to which treatment for osteoporosis/osteopenia corresponded to the presence of specific risk factors for osteoporotic fracture.
This retrospective analysis of the United States 2007 National Health and Wellness Survey included women age ≥ 40 years who reported having a diagnosis of osteoporosis (69% of 3276) or osteopenia (31% of 3276). Patients were stratified by whether they were or were not taking prescription treatment for osteoporosis/osteopenia. Using 34 patient characteristics as covariates, logistic regression was used to determine factors associated with treatment.
Current prescription treatment was reported by 1800 of 3276 (54.9%) women with osteoporosis/osteopenia. The following factors were associated with receiving prescription treatment: patient-reported diagnosis of osteoporosis (versus osteopenia); previous bone mineral density test; ≥ 2 fractures since age 50; older age; lower body mass index; better physical functioning; postmenopausal status; family history of osteoporosis; fewer comorbidities; prescription insurance coverage; higher total prescription count; higher ratio of prescription costs to monthly income; higher income; single status; previous visit to a rheumatologist or gynecologist; and 1 or 2 outpatient visits to healthcare provider (vs. none) in the prior 6 months. Glucocorticoid, tobacco, and daily alcohol use were risk factors for fracture that were not associated with treatment.
There is a mismatch between those women who could benefit from treatment for osteoporosis and those who are actually treated. For example, self-reported use of glucocorticoids, tobacco, and alcohol were not associated with prescription treatment of osteoporosis. Other clinical and socioeconomic factors were associated with treatment (e.g. prescription drug coverage and higher income) or not (e.g. comorbid osteoarthritis and anxiety) and could be opportunities to improve care.
PMCID: PMC3295701  PMID: 22225919
22.  Prevalence of osteoporosis and osteopenia among African Americans with early rheumatoid arthritis: the impact of ethnic-specific normative data. 
PURPOSE: To examine the prevalence of osteopenia and/or osteoporosis among African Americans with early rheumatoid arthritis (RA) and to assess the effect of using race/ethnicity-specific normative data. METHODS: Bone mineral density (BMD) of the hip and spine was assessed in African Americans with early RA. To examine the impact of using different normative data on disease classification, we calculated two sets of T scores, the first using sex-matched reference data from Caucasians and the second using data from African Americans. Osteoporosis was defined as a BMD at either site > or =2.5 SD below the young adult mean. Osteopenia was defined as a BMD > or =1 SD and <2.5 SD below this mean. RESULTS: Using Caucasian referent data, 33% (n=48) of patients had osteopenia or worse (n=48, 32.9%) and 5% (n=8) were osteoporotic. With the use of African-American normative data, 55% (n=94) were osteopenic or worse, and 16% (n=27) were osteoporotic. CONCLUSION: African Americans with RA are at risk of osteopenia and/or osteoporosis. Different diagnostic classifications may occur in this population based solely on the normative data used for assessing fracture risk. These results underscore the need for a standardized approach in defining osteopenia and osteoporosis in African Americans.
PMCID: PMC1364462  PMID: 16173331
23.  Prevalence of Osteoporosis and Osteopenia among African Americans with Early Rheumatoid Arthritis: The Impact of Ethnic-Specific Normative Data 
Purpose: To examine the prevalence of osteopenia and/or osteoporosis among African Americans with early rheumatoid arthritis (RA) and to assess the effect of using race/ethnicity-specific normative data.
Methods: Bone mineral density (BMD) of the hip and spine was assessed in African Americans with early RA. To examine the impact of using different normative data on disease classification, we calculated two sets of T scores, the first using sex-matched reference data from Caucasians and the second using data from African Americans. Osteoporosis was defined as a BMD at either site ≥2.5 SD below the young adult mean. Osteopenia was defined as a BMD ≥1 SD and <2.5 SD below this mean.
Results: Using Caucasian referent data, 33% (n=48) of patients had osteopenia or worse (n=48, 32.9%) and 5% (n=8) were osteoporotic. With the use of African-American normative data, 55% (n=94) were osteopenic or worse, and 16% (n=27) were osteoporotic.
Conclusion: African Americans with RA are at risk of osteopenia and/or osteoporosis. Different diagnostic classifications may occur in this population based solely on the normative data used for assessing fracture risk. These results underscore the need for a standardized approach in defining osteopenia and osteoporosis in African Americans.
PMCID: PMC1364462  PMID: 16173331
osteoporosis; osteopenia; African Americans; DXA; rheumatoid arthritis
24.  Osteoporosis screening for men 
Canadian Family Physician  2008;54(8):1140-1141.e5.
To determine rates of screening for osteoporosis among men older than 65 years and to find out whether family physicians are following the recommendations of the Osteoporosis Society of Canada’s 2002 Clinical Practice Guidelines for the Diagnosis and Management of Osteoporosis in Canada.
Chart audit.
The Family Medicine Centre at Hotel Dieu Hospital in Kingston, Ont.
All male patients at the Family Medicine Centre older than 65 years for a total of 565 patients associated with 20 different physicians’ practices.
Rates of screening with bone mineral density (BMD) scans for osteoporosis, results of BMD testing, and associations between results of BMD testing and age.
Of the 565 patients reviewed, 108 (19.1% of the study population) had received BMD testing. Rates of screening ranged from 0% to 38% in the 20 practices. Among 105 patients tested (reports for 3 patients were not retrievable), 15 (14.3%) were found to have osteoporosis, 43 (41.0%) to have osteopenia, and 47 (44.8%) to have normal BMD results. No significant association was found between BMD results and age. Screening rates were higher among men older than 75 years than among men aged 65 to 75 and peaked among those 85 to 89 years old.
On average, only about 20% of male patients older than 65 years had been screened for osteoporosis, so most of these men were not being screened by BMD testing as recommended in the guidelines. Considering the relatively high rates of osteoporosis and osteopenia found in this study and the known morbidity and mortality associated with osteoporotic fractures in this population, higher rates of BMD screening and more widespread treatment of osteoporosis could prevent many fractures among these patients. Family physicians need to become more aware of the risk factors indicating screening, and barriers to screening and treatment of osteoporosis in men need to be identified and addressed.
PMCID: PMC2515229  PMID: 18697977
25.  Superior semicircular canal dehiscence in East Asian women with osteoporosis 
Superior semicircular canal dehiscence (SSCD) may cause Tullio phenomenon (sound-induced vertigo) or Hennebert sign (valsalva-induced vertigo) due to the absence of bone overlying the SSC. We document a case series of elderly East Asian women with atypical SSCD symptoms, radiologically confirmed dehiscence and concurrent osteoporosis.
A retrospective record review was performed on patients with dizziness, vertigo, and/or imbalance from a neurology clinic in a community health center serving the East Asian population in Boston. SSCD was confirmed by multi-detector, high-resolution CT of the temporal bone (with Pöschl and Stenvers reformations) and osteoporosis was documented by bone mineral density (BMD) scans.
Of the 496 patients seen in the neurology clinic of a community health center from 2008 to 2010, 76 (17.3%) had symptoms of dizziness, vertigo, and/or imbalance. Five (6.6%) had confirmed SSCD by multi-detector, high-resolution CT of the temporal bone with longitudinal areas of dehiscence along the long axis of SSC, ranging from 0.4 to 3.0 mm, as seen on the Pöschl view. Two of the 5 patients experienced motion-induced vertigo, two fell due to disequilibrium, and one had chronic dizziness. None had a history of head trauma, otologic surgery, or active intracerebral disease. On neurological examination, two patients had inducible vertigo on Dix-Hallpike maneuver and none experienced cerebellar deficit, Tullio phenomenon, or Hennebert sign. All had documented osteoporosis or osteopenia by BMD scans. Three of them had definite osteoporosis, with T-scores < −2.5 in the axial spine, while another had osteopenia with a T-score of −2.3 in the left femur.
We describe an unusual presentation of SSCD without Tullio phenomenon or Hennebert sign in a population of elderly, East Asian women. There may be an association of SSCD and osteoporosis in this population. Further research is needed to determine the incidence and prevalence of this disorder, as well as the relationship of age, race, osteoporosis risk, and the development of SSCD.
PMCID: PMC3503862  PMID: 22831544
Vertigo; Osteoporosis; Superior semicircular canal; Canal dehiscence; Neurotology

Results 1-25 (1122793)