PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (684726)

Clipboard (0)
None

Related Articles

1.  PH-dependent Activities and Structural Stability of Loop-2-anchoring Helix of RadA Recombinase from Methanococcus voltae 
Protein and Peptide Letters  2014;21(7):679-687.
RadA is an archaeal orthologue of human recombinase Rad51. This superfamily of recombinases, which also includes eukaryal meiosis-specific DMC1 and remotely related bacterial RecA, form filaments on single-stranded DNA in the presence of ATP and promote a strand exchange reaction between the single-stranded DNA and a homologous double-stranded DNA. Due to its feasibility of getting crystals and similarity (> 40% sequence identity) to eukaryal homologues, we have studied RadA from Methanococcus voltae (MvRadA) as a structural model for understanding the molecular mechanism of homologous strand exchange. Here we show this protein’s ATPase and strand exchange activities are minimal at pH 6.0. Interestingly, MvRadA’s pH dependence is similar to the properties of human Rad51 but dissimilar to that of the well-studied E. coli RecA. A structure subsequently determined at pH 6.0 reveals features indicative of an ATPase-inactive form with a disordered L2 loop. Comparison with a previously determined ATPase-active form at pH 7.5 implies that the stability of the ATPase-active conformation is reduced at the acidic pH. We interpret these results as further suggesting an ordered disposition of the DNA-binding L2 region, similar to what has been observed in the previously observed ATPase-active conformation, is required for promoting hydrolysis of ATP and strand exchange between single- and double-stranded DNA. His-276 in the mobile L2 region was observed to be partially responsible for the pH-dependent activities of MvRadA.
doi:10.2174/0929866521666140320103512
PMCID: PMC4150490  PMID: 24654848
ATPase; conformational change; DNA strand exchange; DMC1; homologous recombination; RadA; Rad51; RecA.
2.  RadA protein from Archaeoglobus fulgidus forms rings, nucleoprotein filaments and catalyses homologous recombination 
Nucleic Acids Research  2001;29(22):4509-4517.
Proteins that catalyse homologous recombination have been identified in all living organisms and are essential for the repair of damaged DNA as well as for the generation of genetic diversity. In bacteria homologous recombination is performed by the RecA protein, whereas in the eukarya a related protein called Rad51 is required to catalyse recombination and repair. More recently, archaeal homologues of RecA/Rad51 (RadA) have been identified and isolated. In this work we have cloned and purified the RadA protein from the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus and characterised its in vitro activities. We show that (i) RadA protein forms ring structures in solution and binds single- but not double-stranded DNA to form nucleoprotein filaments, (ii) RadA is a single-stranded DNA-dependent ATPase at elevated temperatures, and (iii) RadA catalyses efficient D-loop formation and strand exchange at temperatures of 60–70°C. Finally, we have used electron microscopy to visualise RadA-mediated joint molecules, the intermediates of homologous recombination. Intriguingly, RadA shares properties of both the bacterial RecA and eukaryotic Rad51 recombinases.
PMCID: PMC92570  PMID: 11713300
3.  Conservation of a conformational switch in RadA recombinase from Methanococcus maripaludis  
Structural conservation in the ATPase centers of RadA, Rad51 and RecA recombinases suggests conformational switching between high and low-affinity states for DNA in concert with cycles ATP hydrolysis. Such iteration would be advantageous for DNA strand exchange by optimizing the pairing between single-stranded and double-stranded DNA substrates.
Archaeal RadAs are close homologues of eukaryal Rad51s (∼40% sequence identity). These recombinases promote ATP hydrolysis and a hallmark strand-exchange reaction between homologous single-stranded and double-stranded DNA sub­strates. Pairing of the 3′-overhangs located at the damaged DNA with a homologous double-stranded DNA enables the re-synthesis of the damaged region using the homologous DNA as the template. In recent studies, conformational changes in the DNA-interacting regions of Methanococcus voltae RadA have been correlated with the presence of activity-stimulating potassium or calcium ions in the ATPase centre. The series of crystal structures of M. maripaludis RadA presented here further suggest the conservation of an allosteric switch in the ATPase centre which controls the conformational status of DNA-interacting loops. Structural comparison with the distant Escherichia coli RecA homologue supports the notion that the conserved Lys248 and Lys250 residues in RecA play a role similar to that of cations in RadA. The conservation of a cationic bridge between the DNA-interacting L2 region and the terminal phosphate of ATP, together with the apparent stability of the nucleoprotein filament, suggests a gap-displacement model which may explain the advantage of ATP hydrolysis for DNA-strand exchange.
doi:10.1107/S0907444909011871
PMCID: PMC2685736  PMID: 19465774
RadA; Rad51; RecA; recombinases; homologous recombination; DNA strand exchange; ATPases
4.  Three New Structures of Left-Handed RadA Helical Filaments: Structural Flexibility of N-Terminal Domain Is Critical for Recombinase Activity 
PLoS ONE  2009;4(3):e4890.
RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA), by as-yet unknown mechanisms. We recently reported a structure of RadA left-handed helical filament, and here present three new structures of RadA left-handed helical filaments. Comparative structural analysis between different RadA/Rad51 helical filaments reveals that the N-terminal domain (NTD) of RadA/Rad51, implicated in dsDNA binding, is highly flexible. We identify a hinge region between NTD and polymerization motif as responsible for rigid body movement of NTD. Mutant analysis further confirms that structural flexibility of NTD is essential for RadA's recombinase activity. These results support our previous hypothesis that ATP-dependent axial rotation of RadA nucleoprotein helical filament promotes homologous recombination.
doi:10.1371/journal.pone.0004890
PMCID: PMC2654063  PMID: 19295907
5.  Conformational flexibility revealed by the crystal structure of a crenarchaeal RadA 
Nucleic Acids Research  2005;33(5):1465-1473.
Homologous recombinational repair is an essential mechanism for repair of double-strand breaks in DNA. Recombinases of the RecA-fold family play a crucial role in this process, forming filaments that utilize ATP to mediate their interactions with single- and double-stranded DNA. The recombinase molecules present in the archaea (RadA) and eukaryota (Rad51) are more closely related to each other than to their bacterial counterpart (RecA) and, as a result, RadA makes a suitable model for the eukaryotic system. The crystal structure of Sulfolobus solfataricus RadA has been solved to a resolution of 3.2 Å in the absence of nucleotide analogues or DNA, revealing a narrow filamentous assembly with three molecules per helical turn. As observed in other RecA-family recombinases, each RadA molecule in the filament is linked to its neighbour via interactions of a short β-strand with the neighbouring ATPase domain. However, despite apparent flexibility between domains, comparison with other structures indicates conservation of a number of key interactions that introduce rigidity to the system, allowing allosteric control of the filament by interaction with ATP. Additional analysis reveals that the interaction specificity of the five human Rad51 paralogues can be predicted using a simple model based on the RadA structure.
doi:10.1093/nar/gki288
PMCID: PMC1062875  PMID: 15755748
6.  Structure of the hDmc1-ssDNA Filament Reveals the Principles of Its Architecture 
PLoS ONE  2010;5(1):e8586.
In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination.
doi:10.1371/journal.pone.0008586
PMCID: PMC2797393  PMID: 20062530
7.  The Recombinases Rad51 and Dmc1 Play Distinct Roles in DNA Break Repair and Recombination Partner Choice in the Meiosis of Tetrahymena 
PLoS Genetics  2011;7(3):e1001359.
Repair of programmed DNA double-strand breaks (DSBs) by meiotic recombination relies on the generation of flanking 3′ single-stranded DNA overhangs and their interaction with a homologous double-stranded DNA template. In various common model organisms, the ubiquitous strand exchange protein Rad51 and its meiosis-specific homologue Dmc1 have been implicated in the joint promotion of DNA–strand exchange at meiotic recombination sites. However, the division of labor between these two recombinases is still a puzzle. Using RNAi and gene-disruption experiments, we have studied their roles in meiotic recombination and chromosome pairing in the ciliated protist Tetrahymena as an evolutionarily distant meiotic model. Cytological and electrophoresis-based assays for DSBs revealed that, without Rad51p, DSBs were not repaired. However, in the absence of Dmc1p, efficient Rad51p-dependent repair took place, but crossing over was suppressed. Immunostaining and protein tagging demonstrated that only Dmc1p formed strong DSB–dependent foci on meiotic chromatin, whereas the distribution of Rad51p was diffuse within nuclei. This suggests that meiotic nucleoprotein filaments consist primarily of Dmc1p. Moreover, a proximity ligation assay confirmed that little if any Rad51p forms mixed nucleoprotein filaments with Dmc1p. Dmc1p focus formation was independent of the presence of Rad51p. The absence of Dmc1p did not result in compensatory assembly of Rad51p repair foci, and even artificial DNA damage by UV failed to induce Rad51p foci in meiotic nuclei, while it did so in somatic nuclei within one and the same cell. The observed interhomologue repair deficit in dmc1Δ meiosis is consistent with a requirement for Dmc1p in promoting the homologue as the preferred recombination partner. We propose that relatively short and/or transient Rad51p nucleoprotein filaments are sufficient for intrachromosomal recombination, whereas long nucleoprotein filaments consisting primarily of Dmc1p are required for interhomolog recombination.
Author Summary
Sexual reproduction relies on meiosis, the specialized cell division that allows diploid organisms to halve their chromosome content, resulting in the production of gametes containing one copy of each chromosome. In humans, defects in meiosis cause infertility, stillbirths, and congenital diseases. Homologous recombination is a key step in the meiotic program and is essential for maintaining the fidelity of segregation and for creating genetic diversity. Meiotic recombination begins with self-inflicted DNA breaks that are repaired using the homologous chromosome as a template, in a process that depends upon the universal repair protein Rad51 and its meiosis-specific homologue, Dmc1. The relative contributions of Rad51 and Dmc1 to homologous recombination differ among yeasts, plants, and mammals. We have undertaken a study of these proteins in the evolutionarily distant model organism Tetrahymena thermophila with the hope of clarifying the specialization of these recombinases throughout eukaryotic evolution. We show that, while Rad51 is required for DNA repair, only Dmc1 localizes prominently to meiotic DNA break sites. Also, repair via the homologous chromosome depends on Dmc1. These results suggest that nucleoprotein filaments consisting of primarily Dmc1p allow efficient interhomologue repair, while shorter Rad51 filaments may suffice for repair via the sister chromatid.
doi:10.1371/journal.pgen.1001359
PMCID: PMC3069121  PMID: 21483758
8.  Structural and functional characterisation of a conserved archaeal RadA paralog with antirecombinase activity 
Journal of molecular biology  2009;389(4):661-673.
Summary
DNA recombinases (RecA in bacteria, Rad51 in eukarya and RadA in archaea) catalyse strand-exchange between homologous DNA molecules, the central reaction of homologous recombination, and are among the most conserved DNA repair proteins known. In bacteria, RecA is the sole protein responsible for this reaction, whereas, in eukaryotes, there are several RAD51 paralogs that cooperate to catalyse strand exchange. All archaea have at least one (and as many as four) RadA paralogs, but their function remains unclear. Here we show the three RadA paralogs encoded by the Sulfolobus solfataricus genome are expressed under normal growth conditions, and are not UV-inducible. We demonstrate that one of these proteins, Sso2452, which is representative of the large aRadC sub-family of archaeal RadA paralogs, functions as an ATPase that binds tightly to ssDNA. However, Sso2452 is not an active recombinase in vitro, and inhibits D-loop formation by RadA. We present the high-resolution crystal structure of Sso2452, which reveals key structural differences from the canonical RecA family recombinases that may explain its functional properties. The possible roles of the archaeal RadA paralogs in vivo are discussed.
doi:10.1016/j.jmb.2009.04.060
PMCID: PMC3387904  PMID: 19414020
Archaea; Recombinase; RadA; Homologous Recombination; Strand Exchange
9.  Role for radA/sms in Recombination Intermediate Processing in Escherichia coli 
Journal of Bacteriology  2002;184(24):6836-6844.
RadA/Sms is a highly conserved eubacterial protein that shares sequence similarity with both RecA strand transferase and Lon protease. We examined mutations in the radA/sms gene of Escherichia coli for effects on conjugational recombination and sensitivity to DNA-damaging agents, including UV irradiation, methyl methanesulfonate (MMS), mitomycin C, phleomycin, hydrogen peroxide, and hydroxyurea (HU). Null mutants of radA were modestly sensitive to the DNA-methylating agent MMS and to the DNA strand breakage agent phleomycin, with conjugational recombination decreased two- to threefold. We combined a radA mutation with other mutations in recombination genes, including recA, recB, recG, recJ, recQ, ruvA, and ruvC. A radA mutation was strongly synergistic with the recG Holliday junction helicase mutation, producing profound sensitivity to all DNA-damaging agents tested. Lesser synergy was noted between a mutation in radA and recJ, recQ, ruvA, ruvC, and recA for sensitivity to various genotoxins. For survival after peroxide and HU exposure, a radA mutation surprisingly suppressed the sensitivity of recA and recB mutants, suggesting that RadA may convert some forms of damage into lethal intermediates in the absence of these functions. Loss of radA enhanced the conjugational recombination deficiency conferred by mutations in Holliday junction-processing function genes, recG, ruvA, and ruvC. A radA recG ruv triple mutant had severe recombinational defects, to the low level exhibited by recA mutants. These results establish a role for RadA/Sms in recombination and recombinational repair, most likely involving the stabilization or processing of branched DNA molecules or blocked replication forks because of its genetic redundancy with RecG and RuvABC.
doi:10.1128/JB.184.24.6836-6844.2002
PMCID: PMC135464  PMID: 12446634
10.  Biochemical analysis of the N-terminal domain of human RAD54B 
Nucleic Acids Research  2008;36(17):5441-5450.
The human RAD54B protein is a paralog of the RAD54 protein, which plays important roles in homologous recombination. RAD54B contains an N-terminal region outside the SWI2/SNF2 domain that shares less conservation with the corresponding region in RAD54. The biochemical roles of this region of RAD54B are not known, although the corresponding region in RAD54 is known to physically interact with RAD51. In the present study, we have biochemically characterized an N-terminal fragment of RAD54B, consisting of amino acid residues 26–225 (RAD54B26–225). This fragment formed a stable dimer in solution and bound to branched DNA structures. RAD54B26–225 also interacted with DMC1 in both the presence and absence of DNA. Ten DMC1 segments spanning the entire region of the DMC1 sequence were prepared, and two segments, containing amino acid residues 153–214 and 296–340, were found to directly bind to the N-terminal domain of RAD54B. A structural alignment of DMC1 with the Methanococcus voltae RadA protein, a homolog of DMC1 in the helical filament form, indicated that these RAD54B-binding sites are located near the ATP-binding site at the monomer–monomer interface in the DMC1 helical filament. Thus, RAD54B binding may affect the quaternary structure of DMC1. These observations suggest that the N-terminal domain of RAD54B plays multiple roles of in homologous recombination.
doi:10.1093/nar/gkn516
PMCID: PMC2553597  PMID: 18718930
11.  Fission Yeast Rad51 and Dmc1, Two Efficient DNA Recombinases Forming Helical Nucleoprotein Filaments 
Molecular and Cellular Biology  2005;25(11):4377-4387.
Homologous recombination is important for the repair of double-strand breaks during meiosis. Eukaryotic cells require two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, for meiotic recombination. To date, it is not clear, at the biochemical level, why two homologs of RecA are necessary during meiosis. To gain insight into this, we purified Schizosaccharomyces pombe Rad51 and Dmc1 to homogeneity. Purified Rad51 and Dmc1 form homo-oligomers, bind single-stranded DNA preferentially, and exhibit DNA-stimulated ATPase activity. Both Rad51 and Dmc1 promote the renaturation of complementary single-stranded DNA. Importantly, Rad51 and Dmc1 proteins catalyze ATP-dependent strand exchange reactions with homologous duplex DNA. Electron microscopy reveals that both S. pombe Rad51 and Dmc1 form nucleoprotein filaments. Rad51 formed helical nucleoprotein filaments on single-stranded DNA, whereas Dmc1 was found in two forms, as helical filaments and also as stacked rings. These results demonstrate that Rad51 and Dmc1 are both efficient recombinases in lower eukaryotes and reveal closer functional and structural similarities between the meiotic recombinase Dmc1 and Rad51. The DNA strand exchange activity of both Rad51 and Dmc1 is most likely critical for proper meiotic DNA double-strand break repair in lower eukaryotes.
doi:10.1128/MCB.25.11.4377-4387.2005
PMCID: PMC1140613  PMID: 15899844
12.  The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius 
Background
The ubiquitous Rad50 and Mre11 proteins play a key role in many processes involved in the maintenance of genome integrity in Bacteria and Eucarya, but their function in the Archaea is presently unknown. We showed previously that in most hyperthermophilic archaea, rad50-mre11 genes are linked to nurA encoding both a single-strand endonuclease and a 5' to 3' exonuclease, and herA, encoding a bipolar DNA helicase which suggests the involvement of the four proteins in common molecular pathway(s). Since genetic tools for hyperthermophilic archaea are just emerging, we utilized immuno-detection approaches to get the first in vivo data on the role(s) of these proteins in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius.
Results
We first showed that S. acidocaldarius can repair DNA damage induced by high doses of gamma rays, and we performed a time course analysis of the total levels and sub-cellular partitioning of Rad50, Mre11, HerA and NurA along with the RadA recombinase in both control and irradiated cells. We found that during the exponential phase, all proteins are synthesized and display constant levels, but that all of them exhibit a different sub-cellular partitioning. Following gamma irradiation, both Mre11 and RadA are immediately recruited to DNA and remain DNA-bound in the course of DNA repair. Furthermore, we show by immuno-precipitation assays that Rad50, Mre11 and the HerA helicase interact altogether.
Conclusion
Our analyses strongly support that in Sulfolobus acidocaldarius, the Mre11 protein and the RadA recombinase might play an active role in the repair of DNA damage introduced by gamma rays and/or may act as DNA damage sensors. Moreover, our results demonstrate the functional interaction between Mre11, Rad50 and the HerA helicase and suggest that each protein play different roles when acting on its own or in association with its partners. This report provides the first in vivo evidence supporting the implication of the Mre11 protein in DNA repair processes in the Archaea and showing its interaction with both Rad50 and the HerA bipolar helicase. Further studies on the functional interactions between these proteins, the NurA nuclease and the RadA recombinase, will allow us to define their roles and mechanism of action.
doi:10.1186/1471-2199-9-25
PMCID: PMC2288612  PMID: 18294364
13.  Rad51 paralogs Rad55-Rad57 balance the anti-recombinase Srs2 in Rad51 filament formation 
Nature  2011;479(7372):245-248.
Homologous recombination is a high-fidelity DNA repair pathway. Besides a critical role in accurate chromosome segregation during meiosis, recombination functions in DNA repair and in the recovery of stalled or broken replication forks to ensure genomic stability. In contrast, inappropriate recombination contributes to genomic instability, leading to loss of heterozygosity, chromosome rearrangements, and cell death. The RecA/UvsX/RadA/Rad51 family of proteins catalyzes the signature reactions of recombination, homology search and DNA strand invasion 1,2. Eukaryotes also possess Rad51 paralogs, whose exact role in recombination remains to be defined 3. Here we show that the budding yeast Rad51 paralogs, the Rad55-Rad57 heterodimer, counteract the anti-recombination activity of the Srs2 helicase. Rad55-Rad57 associate with the Rad51-ssDNA filament, rendering it more stable than a nucleoprotein filament containing Rad51 alone. The Rad51/Rad55-Rad57 co-filament resists disruption by the Srs2 anti-recombinase by blocking Srs2 translocation involving a direct protein interaction between Rad55-Rad57 and Srs2. Our results demonstrate an unexpected role of the Rad51 paralogs in stabilizing the Rad51 filament against a biologically important antagonist, the Srs2 anti-recombination helicase. The biological significance of this mechanism is indicated by a complete suppression of the ionizing radiation sensitivity of rad55 or rad57 mutants by concomitant deletion of SRS2, as expected for biological antagonists. We propose that the Rad51 presynaptic filament is a meta-stable reversible intermediate, whose assembly and disassembly is governed by the balance between Rad55-Rad57 and Srs2, providing a key regulatory mechanism controlling the initiation of homologous recombination. These data provide a paradigm for the potential function of the human RAD51 paralogs, which are known to be involved in cancer predisposition and human disease.
doi:10.1038/nature10522
PMCID: PMC3213327  PMID: 22020281
14.  Thermodynamic Properties of Water Molecules at a Protein–Protein Interaction Surface 
Protein–protein interactions (PPIs) have been identified as a vital regulator of cellular pathways and networks. However, the determinants that control binding affinity and specificity at protein surfaces are incompletely characterized and thus unable to be exploited for the purpose of developing PPI inhibitors to control cellular pathways in disease states. One of the key factors in intermolecular interactions that remains poorly understood is the role of water molecules and in particular the importance of solvent entropy. This factor is expected to be particularly important at protein surfaces, and the release of water molecules from hydrophobic regions is one of the most important drivers of PPIs. In this work, we have studied the protein surface of a mutant of the protein RadA to quantify the thermodynamics of surface water molecules. RadA and its human homologue RAD51 function as recombinases in the process of homologous recombination. RadA binds to itself to form oligomeric structures and thus contains a well-characterized protein–protein binding surface. Similarly, RAD51 binds either to itself to form oligomers or to the protein BRCA2 to form filaments. X-ray crystallography has determined that the same interface functions in both interactions. Work in our group has generated a partially humanized mutant of RadA, termed MAYM, which has been crystallized in the apo form. We studied this apo form of MAYM using a combination of molecular dynamics (MD) simulations and inhomogeneous fluid solvation theory (IFST). The method locates a number of the hydration sites observed in the crystal structure and locates hydrophobic sites where hydrophobic species are known to bind experimentally. The simulations also highlight the importance of the restraints placed on the protein in determining the results. Finally, the results identify a correlation between the predicted entropy of water molecules at a given site and the solvent-accessible surface area and suggest that correlations between water molecules only need to be considered for water molecules separated by less than 3.2 Å. The combination of MD and IFST has been used previously to study PPIs and represents one of the few existing methods to quantify solvent thermodynamics. This is a vital aspect of molecular recognition and one which we believe must be developed.
doi:10.1021/ct200465z
PMCID: PMC3924879  PMID: 24554921
15.  Helical filaments of human Dmc1 protein on single-stranded DNA: a cautionary tale 
Journal of molecular biology  2010;401(3):544-551.
Proteins in the RecA/Rad51/RadA family form nucleoprotein filaments on DNA that catalyze a strand exchange reaction as part of homologous genetic recombination. Because of the centrality of this system to many aspects of DNA repair, the generation of genetic diversity, and cancer when this system fails or is not properly regulated, these filaments have been the object of many biochemical and biophysical studies. A recent paper has argued that the human Dmc1 protein, a meiotic homolog of bacterial RecA and human Rad51, forms filaments on single stranded DNA with ∼ 9 subunits per turn in contrast to the filaments formed on double stranded DNA with ∼ 6.4 subunits per turn, and that the stoichiometry of DNA binding is different between these two filaments. We show using scanning transmission electron microscopy (STEM) that the Dmc1 filament formed on single stranded DNA has a mass per unit length expected from ∼ 6.5 subunits per turn. More generally, we show how ambiguities in helical symmetry determination can generate incorrect solutions, and why one sometimes must use other techniques, such as biochemistry, metal shadowing, or STEM to resolve these ambiguities. While three-dimensional reconstruction of helical filaments from EM images is a powerful tool, the intrinsic ambiguities that may be present with limited resolution are not sufficiently appreciated.
doi:10.1016/j.jmb.2010.06.049
PMCID: PMC2917623  PMID: 20600108
16.  The P. furiosus Mre11/Rad50 complex promotes 5’ strand resection at a DNA double-strand break 
Cell  2008;135(2):250-260.
Summary
The Mre11/Rad50 complex has been implicated in the early steps of DNA double-strand break (DSB) repair through homologous recombination in several organisms. However, the enzymatic properties of this complex are incompatible with the generation of 3’ single-stranded DNA for recombinase loading and strand exchange. In thermophilic archaea, the Mre11 and Rad50 genes cluster in an operon with genes encoding a helicase, HerA, and a 5’ to 3’ exonuclease, NurA, suggesting a common function. Here we show that purified Mre11 and Rad50 from Pyrococcus furiosus act cooperatively with HerA and NurA to resect the 5’ strand at a DNA end under physiological conditions in vitro. The 3’ single-stranded DNA generated by these enzymes can be utilized by the archaeal RecA homolog RadA to catalyze strand exchange. This work elucidates how the conserved Mre11/Rad50 complex promotes DNA end resection in archaea, and may serve as a model for DSB processing in eukaryotes.
doi:10.1016/j.cell.2008.09.054
PMCID: PMC2581932  PMID: 18957200
17.  recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae. 
Nucleic Acids Research  1996;24(11):2125-2132.
The process of homologous recombination has been documented in bacterial and eucaryotic organisms. The Escherichia coli RecA and Saccharomyces cerevisiae Rad51 proteins are the archetypal members of two related families of proteins that play a central role in this process. Using the PCR process primed by degenerate oligonucleotides designed to encode regions of the proteins showing the greatest degree of identity, we examined DNA from three organisms of a third phylogenetically divergent group, Archaea, for sequences encoding proteins similar to RecA and Rad51. The archaeans examined were a hyperthermophilic acidophile, Sulfolobus sofataricus (Sso); a halophile, Haloferax volcanii (Hvo); and a hyperthermophilic piezophilic methanogen, Methanococcus jannaschii (Mja). The PCR generated DNA was used to clone a larger genomic DNA fragment containing an open reading frame (orf), that we refer to as the radA gene, for each of the three archaeans. As shown by amino acid sequence alignments, percent amino acid identities and phylogenetic analysis, the putative proteins encoded by all three are related to each other and to both the RecA and Rad51 families of proteins. The putative RadA proteins are more similar to the Rad51 family (approximately 40% identity at the amino acid level) than to the RecA family (approximately 20%). Conserved sequence motifs, putative tertiary structures and phylogenetic analysis implied by the alignment are discussed. The 5' ends of mRNA transcripts to the Sso radA were mapped. The levels of radA mRNA do not increase after treatment with UV irradiation as do recA and RAD51 transcripts in E.coli and S.cerevisiae. Hence it is likely that radA in this organism is a constitutively expressed gene and we discuss possible implications of the lack of UV-inducibility.
PMCID: PMC145903  PMID: 8668545
18.  RAD51B plays an essential role during somatic and meiotic recombination in Physcomitrella 
Nucleic Acids Research  2014;42(19):11965-11978.
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified in yeast (Rad55, Rad57 and Dmc1), plants and vertebrates (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1). RAD51 and DMC1 are the strand-exchange proteins forming a nucleofilament for strand invasion, however, the function of the paralogues in the process of homologous recombination is less clear. In yeast the two Rad51 paralogues, Rad55 and Rad57, have been shown to be involved in somatic and meiotic HR and they are essential to the formation of the Rad51/DNA nucleofilament counterbalancing the anti-recombinase activity of the SRS2 helicase. Here, we examined the role of RAD51B in the model bryophyte Physcomitrella patens. Mutant analysis shows that RAD51B is essential for the maintenance of genome integrity, for resistance to DNA damaging agents and for gene targeting. Furthermore, we set up methods to investigate meiosis in Physcomitrella and we demonstrate that the RAD51B protein is essential for meiotic homologous recombination. Finally, we show that all these functions are independent of the SRS2 anti-recombinase protein, which is in striking contrast to what is found in budding yeast where the RAD51 paralogues are fully dependent on the SRS2 anti-recombinase function.
doi:10.1093/nar/gku890
PMCID: PMC4231755  PMID: 25260587
19.  Rad51 Protein from the Thermotolerant Yeast Pichia angusta as a Typical but Thermodependent Member of the Rad51 Family 
Eukaryotic Cell  2004;3(6):1567-1573.
The Rad51 protein from the methylotrophic yeast Pichia angusta (Rad51Pa) of the taxonomic complex Hansenula polymorpha is a homolog of the RecA-RadA-Rad51 protein superfamily, which promotes homologous recombination and recombination repair in prokaryotes and eukaryotes. We cloned the RAD51 gene from the cDNA library of the thermotolerant P. angusta strain BKM Y1397. Induction of this gene in a rad51-deficient Saccharomyces cerevisiae strain partially complemented the survival rate after ionizing radiation. Purified Rad51Pa protein exhibited properties typical of the superfamily, including the stoichiometry of binding to single-stranded DNA (ssDNA) (one protomer of Rad51Pa per 3 nucleotides) and DNA specificity for ssDNA-dependent ATP hydrolysis [poly(dC) > poly(dT) > φX174 ssDNA > poly(dA) > double-stranded M13 DNA]. An inefficient ATPase and very low cooperativity for ATP interaction position Rad51Pa closer to Rad51 than to RecA. Judging by thermoinactivation, Rad51Pa alone was 20-fold more thermostable at 37°C than its S. cerevisiae homolog (Rad51Sc). Moreover, it maintained ssDNA-dependent ATPase and DNA transferase activities up to 52 to 54°C, whereas Rad51Sc was completely inactive at 47°C. A quick nucleation and an efficient final-product formation in the strand exchange reaction promoted by Rad51Pa occurred only at temperatures above 42°C. These reaction characteristics suggest that Rad51Pa is dependent on high temperatures for activity.
doi:10.1128/EC.3.6.1567-1573.2004
PMCID: PMC539020  PMID: 15590830
20.  Mre11-Rad50 Promotes Rapid Repair of DNA Damage in the Polyploid Archaeon Haloferax volcanii by Restraining Homologous Recombination 
PLoS Genetics  2009;5(7):e1000552.
Polyploidy is frequent in nature and is a hallmark of cancer cells, but little is known about the strategy of DNA repair in polyploid organisms. We have studied DNA repair in the polyploid archaeon Haloferax volcanii, which contains up to 20 genome copies. We have focused on the role of Mre11 and Rad50 proteins, which are found in all domains of life and which form a complex that binds to and coordinates the repair of DNA double-strand breaks (DSBs). Surprisingly, mre11 rad50 mutants are more resistant to DNA damage than the wild-type. However, wild-type cells recover faster from DNA damage, and pulsed-field gel electrophoresis shows that DNA double-strand breaks are repaired more slowly in mre11 rad50 mutants. Using a plasmid repair assay, we show that wild-type and mre11 rad50 cells use different strategies of DSB repair. In the wild-type, Mre11-Rad50 appears to prevent the repair of DSBs by homologous recombination (HR), allowing microhomology-mediated end-joining to act as the primary repair pathway. However, genetic analysis of recombination-defective radA mutants suggests that DNA repair in wild-type cells ultimately requires HR, therefore Mre11-Rad50 merely delays this mode of repair. In polyploid organisms, DSB repair by HR is potentially hazardous, since each DNA end will have multiple partners. We show that in the polyploid archaeon H. volcanii the repair of DSBs by HR is restrained by Mre11-Rad50. The unrestrained use of HR in mre11 rad50 mutants enhances cell survival but leads to slow recovery from DNA damage, presumably due to difficulties in the resolution of DNA repair intermediates. Our results suggest that recombination might be similarly repressed in other polyploid organisms and at repetitive sequences in haploid and diploid species.
Author Summary
Most organisms contain only one or two copies of their genome, but in some species multiple copies are found. The presence of multiple genome copies (polyploidy) has profound implications for DNA repair and is frequently seen in cancer cells. We have studied DNA repair in the archaeon Haloferax volcanii, which contains up to 20 genome copies. Archaea are a third form of life distinct from bacteria and eukaryotes. We have focused on the DNA repair proteins Mre11 and Rad50, which are found in virtually all organisms and which in humans act to prevent cancer. Surprisingly, we have found that H. volcanii cells deficient in Mre11-Rad50 are more resistant to DNA damage than wild-type cells. The DNA damage resistance of mre11 rad50 mutant cells appears to be due to the exclusive use of homologous recombination, a DNA repair mechanism that is accurate but has the potential to generate genome rearrangements that require time to resolve. Correspondingly, we have found repair of DNA damage in mre11 rad50 mutants takes longer than in wild-type cells. Our results suggest that polyploid organisms employ a program of DNA repair that minimizes their reliance on homologous recombination.
doi:10.1371/journal.pgen.1000552
PMCID: PMC2700283  PMID: 19593371
21.  Diversity of radA Genes from Cultured and Uncultured Archaea: Comparative Analysis of Putative RadA Proteins and Their Use as a Phylogenetic Marker 
Journal of Bacteriology  1999;181(3):907-915.
Archaea-specific radA primers were used with PCR to amplify fragments of radA genes from 11 cultivated archaeal species and one marine sponge tissue sample that contained essentially an archaeal monoculture. The amino acid sequences encoded by the PCR fragments, three RadA protein sequences previously published (21), and two new complete RadA sequences were aligned with representative bacterial RecA proteins and eucaryal Rad51 and Dmc1 proteins. The alignment supported the existence of four insertions and one deletion in the archaeal and eucaryal sequences relative to the bacterial sequences. The sizes of three of the insertions were found to have taxonomic and phylogenetic significance. Comparative analysis of the RadA sequences, omitting amino acids in the insertions and deletions, shows a cladal distribution of species which mimics to a large extent that obtained by a similar analysis of archaeal 16S rRNA sequences. The PCR technique also was used to amplify fragments of 15 radA genes from uncultured natural sources. Phylogenetic analysis of the amino acid sequences encoded by these fragments reveals several clades with affinity, sometimes only distant, to the putative RadA proteins of several species of Crenarcheota. The two most deeply branching archaeal radA genes found had some amino acid deletion and insertion patterns characteristic of bacterial recA genes. Possible explanations are discussed. Finally, signature codons are presented to distinguish among RecA protein family members.
PMCID: PMC93458  PMID: 9922255
22.  The Mycobacteriophage D29 Gene 65 Encodes an Early-Expressed Protein That Functions as a Structure-Specific Nuclease▿  
Journal of Bacteriology  2008;191(3):959-967.
The genomes of mycobacteriophages of the L5 family, which includes the lytic phage D29, contain several genes putatively linked to DNA synthesis. One such gene is 65, which encodes a protein belonging to the RecA/DnaB helicase superfamily. In this study a recombinant version of the mycobacteriophage D29 gp65 was functionally characterized. The results indicated that it is not a helicase as predicted but an exonuclease that removes 3′ arms from forked structures in an ATP-dependent manner. The gp65 exonuclease acts progressively from the 3′ end, until the fork junction is reached. As it goes past, its progress is stalled over a stretch of seven to eight nucleotides immediately downstream of the junction. It efficiently acts on forked structures with single stranded arms. It also acts upon 5′ and 3′ flaps, though with somewhat relaxed specificity, but not on double-stranded forks. Sequence comparison revealed the presence of a KNRXG motif in the C-terminal half of the protein. This is a conserved element found in the RadA/Sms family of DNA repair proteins. A mutation (R203G) in this motif led to complete loss of nuclease activity. This indicated that KNRXG plays an important role in the nuclease function of not only gp65, but possibly other RadA/Sms family proteins as well. This is the first characterization of a bacteriophage-derived RadA/Sms class protein. Given its mode of action, it is very likely that gp65 is involved in processing branched replication intermediates formed during the replication of phage DNA.
doi:10.1128/JB.00960-08
PMCID: PMC2632071  PMID: 19028888
23.  Structural and Functional Analyses of Five Conserved Positively Charged Residues in the L1 and N-Terminal DNA Binding Motifs of Archaeal RadA Protein 
PLoS ONE  2007;2(9):e858.
RecA family proteins engage in an ATP-dependent DNA strand exchange reaction that includes a ssDNA nucleoprotein helical filament and a homologous dsDNA sequence. In spite of more than 20 years of efforts, the molecular mechanism of homology pairing and strand exchange is still not fully understood. Here we report a crystal structure of Sulfolobus solfataricus RadA overwound right-handed filament with three monomers per helical pitch. This structure reveals conformational details of the first ssDNA binding disordered loop (denoted L1 motif) and the dsDNA binding N-terminal domain (NTD). L1 and NTD together form an outwardly open palm structure on the outer surface of the helical filament. Inside this palm structure, five conserved basic amino acid residues (K27, K60, R117, R223 and R229) surround a 25 Å pocket that is wide enough to accommodate anionic ssDNA, dsDNA or both. Biochemical analyses demonstrate that these five positively charged residues are essential for DNA binding and for RadA-catalyzed D-loop formation. We suggest that the overwound right-handed RadA filament represents a functional conformation in the homology search and pairing reaction. A new structural model is proposed for the homologous interactions between a RadA-ssDNA nucleoprotein filament and its dsDNA target.
doi:10.1371/journal.pone.0000858
PMCID: PMC1964548  PMID: 17848989
24.  Down-Regulation of Rad51 Activity during Meiosis in Yeast Prevents Competition with Dmc1 for Repair of Double-Strand Breaks 
PLoS Genetics  2014;10(1):e1004005.
Interhomolog recombination plays a critical role in promoting proper meiotic chromosome segregation but a mechanistic understanding of this process is far from complete. In vegetative cells, Rad51 is a highly conserved recombinase that exhibits a preference for repairing double strand breaks (DSBs) using sister chromatids, in contrast to the conserved, meiosis-specific recombinase, Dmc1, which preferentially repairs programmed DSBs using homologs. Despite the different preferences for repair templates, both Rad51 and Dmc1 are required for interhomolog recombination during meiosis. This paradox has recently been explained by the finding that Rad51 protein, but not its strand exchange activity, promotes Dmc1 function in budding yeast. Rad51 activity is inhibited in dmc1Δ mutants, where the failure to repair meiotic DSBs triggers the meiotic recombination checkpoint, resulting in prophase arrest. The question remains whether inhibition of Rad51 activity is important during wild-type meiosis, or whether inactivation of Rad51 occurs only as a result of the absence of DMC1 or checkpoint activation. This work shows that strains in which mechanisms that down-regulate Rad51 activity are removed exhibit reduced numbers of interhomolog crossovers and noncrossovers. A hypomorphic mutant, dmc1-T159A, makes less stable presynaptic filaments but is still able to mediate strand exchange and interact with accessory factors. Combining dmc1-T159A with up-regulated Rad51 activity reduces interhomolog recombination and spore viability, while increasing intersister joint molecule formation. These results support the idea that down-regulation of Rad51 activity is important during meiosis to prevent Rad51 from competing with Dmc1 for repair of meiotic DSBs.
Author Summary
Sexual reproduction involves the generation of chromosomally balanced gametes through the specialized cell division of meiosis. A critical component of meiosis is the physical connection of homologous chromosomes through a combination of recombination and sister chromatid cohesion that is necessary for proper chromosome segregation at the first meiotic division. Meiotic recombination is initiated by the introduction of programmed double strand breaks (DSBs) that are processed and bound by RecA-like proteins called recombinases. In vegetative cells, the Rad51 recombinase preferentially mediates strand invasion of sister chromatids, while in meiotic cells, the meiosis-specific Dmc1 recombinase preferentially invades homologs. How Rad51 and Dmc1 activities are coordinated to generate interhomolog recombinants is a key question in meiosis. This work demonstrates that down-regulation of Rad51 activity is important when interhomolog recombination is occurring to prevent Rad51 from competing with Dmc1 for repair of meiotic DSBs. Premature activation of Rad51 results in increased intersister recombination and chromosome missegregation, producing inviable gametes. The evolutionary conservation of both Rad51 and Dmc1 suggests that down-regulation of Rad51 during meiosis may be important in metazoans as well as yeast.
doi:10.1371/journal.pgen.1004005
PMCID: PMC3900393  PMID: 24465215
25.  Meiotic Recombination in Arabidopsis Is Catalysed by DMC1, with RAD51 Playing a Supporting Role 
PLoS Genetics  2013;9(9):e1003787.
Recombination establishes the chiasmata that physically link pairs of homologous chromosomes in meiosis, ensuring their balanced segregation at the first meiotic division and generating genetic variation. The visible manifestation of genetic crossing-overs, chiasmata are the result of an intricate and tightly regulated process involving induction of DNA double-strand breaks and their repair through invasion of a homologous template DNA duplex, catalysed by RAD51 and DMC1 in most eukaryotes. We describe here a RAD51-GFP fusion protein that retains the ability to assemble at DNA breaks but has lost its DNA break repair capacity. This protein fully complements the meiotic chromosomal fragmentation and sterility of Arabidopsis rad51, but not rad51 dmc1 mutants. Even though DMC1 is the only active meiotic strand transfer protein in the absence of RAD51 catalytic activity, no effect on genetic map distance was observed in complemented rad51 plants. The presence of inactive RAD51 nucleofilaments is thus able to fully support meiotic DSB repair and normal levels of crossing-over by DMC1. Our data demonstrate that RAD51 plays a supporting role for DMC1 in meiotic recombination in the flowering plant, Arabidopsis.
Author Summary
Recombination ensures coordinated disjunction of pairs of homologous chromosomes and generates genetic exchanges in meiosis and, with some exceptions, involves the co-operation of the RAD51 and DMC1 strand-exchange proteins. We describe here a RAD51-GFP fusion protein that has lost its DNA break repair capacity but retains the ability to assemble at DNA breaks in the plant, Arabidopsis - fully complementing the meiotic chromosomal fragmentation and sterility of rad51 mutants, and this depends upon DMC1. No effect on genetic map distance was observed in complemented rad51 plants even though DMC1 is the only active strand transfer protein. The inactive RAD51 nucleofilaments are thus able to fully support meiotic DSB repair and normal levels of crossing-over by DMC1 in Arabidopsis. The RAD51-GFP protein confers a dominant-negative inhibition of RAD51-dependent mitotic recombination, while remaining fully fertile - a novel and valuable tool for research in this domain. These phenotypes are equivalent to those of the recently reported yeast rad51-II3A mutant, (Cloud et al. 2012), carrying the implication of their probable generality in other eukaryotes and extending them to a species with a very different relation between numbers of meiotic DNA double-strand breaks and crossing-overs (∼2 DSB/CO in yeast; ∼25–30 DSB/CO in Arabidopsis; ∼15 DSB/CO in mice).
doi:10.1371/journal.pgen.1003787
PMCID: PMC3784562  PMID: 24086145

Results 1-25 (684726)