Search tips
Search criteria

Results 1-25 (506784)

Clipboard (0)

Related Articles

1.  Hierarchical and non-hierarchical mineralisation of collagen 
Biomaterials  2010;32(5):1291-1300.
Biomineralisation of collagen involves functional motifs incorporated in extracellular matrix protein molecules to accomplish the objectives of stabilising amorphous calcium phosphate into nanoprecursors and directing the nucleation and growth of apatite within collagen fibrils. Here we report the use of small inorganic polyphosphate molecules to template hierarchical intrafibrillar apatite assembly in reconstituted collagen in the presence of polyacrylic acid to sequester calcium and phosphate into transient amorphous nanophases. The use of polyphosphate without a sequestration analogue resulted only in randomly-oriented extrafibrillar precipitations along the fibrillar surface. Conversely, the use of polyacrylic acid without a templating analogue resulted only in non-hierarchical intrafibrillar mineralisation with continuous apatite strands instead of discrete crystallites. The ability of using simple non-protein molecules to recapitulate different levels of structural hierarchy in mineralised collagen signifies the ultimate simplicity in Nature’s biomineralisation design principles and challenges the need for using more complex recombinant matrix proteins in bioengineering applications.
PMCID: PMC3003335  PMID: 21040969
2.  Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions 
Biomaterials  2010;31(25):6618-6627.
The complex morphologies of mineralised collagen fibrils are regulated through interactions between the collagen matrix and non-collagenous extracellular proteins. In the present study, polyvinylphosphonic acid, a biomimetic analogue of matrix phosphoproteins, was synthesised and confirmed with FTIR and NMR. Biomimetic mineralisation of reconstituted collagen fibrils devoid of natural non-collagenous proteins was demonstrated with TEM using a Portland cement-containing resin composite and a phosphate-containing fluid in the presence of polyacrylic acid as sequestration, and polyvinylphosphonic acid as templating matrix protein analogues. In the presence of these dual biomimetic analogues in the mineralisation medium, intrafibrillar and extrafibrillar mineralisation via bottom-up nanoparticle assembly based on the nonclassical crystallisation pathway could be identified. Conversely, only large mineral spheres with no preferred association with collagen fibrils were observed in the absence of biomimetic analogues in the medium. Mineral phases were evident within the collagen fibrils as early as 4 hours after the initially-formed amorphous calcium phosphate nanoprecursors were transformed into apatite nanocrystals. Selected area electron diffraction patterns of highly mineralised collagen fibrils were nearly identical to those of natural bone, with apatite crystallites preferentially aligned along the collagen fibril axes.
PMCID: PMC2904357  PMID: 20621767
extrafibrillar mineralisation; intrafibrillar mineralisation; matrix protein analogues; reconstituted collagen fibrils; tissue engineering materials
3.  Inorganic pyrophosphatase induces type I collagen in osteoblasts 
Bone  2009;46(1):81.
The physiologic selectivity of calcification in bone tissue reflects selective co-expression by osteoblasts of fibrillar collagen I and of tissue nonspecific alkaline phosphatase (TNAP), which hydrolyzes the calcification inhibitor pyrophosphate (PPi) and generates phosphate (Pi). Humans and mice deficient in the PPi-generating ecto-enzyme NPP1 demonstrate soft tissue calcification, occurring at sites of extracellular matrix expansion. Significantly, the function in osteoblasts of cytosolic inorganic pyrophosphatase (abbreviated iPPiase), which generates Pi via PPi hydrolysis with neutral pH optimum, remains unknown. We assessed iPPiase in Enpp1−/− and wild type (WT) mouse osteoblasts and we tested the hypothesis that iPPiase regulates collagen I expression.
We treated mouse calvarial osteoblasts with ascorbate and β-glycerol phosphate to promote calcification, and we assessed cytosolic Pi and PPi levels, sodium-dependent Pi uptake, Pit-1 Pi co-transporter expression, and iPPiase and TNAP activity and expression. We also assessed the function of transfected Ppa1 in osteoblasts.
Inorganic pyrophosphatase but not TNAP was elevated in Enpp1−/− calvariae in situ. Cultured primary Enpp1−/− calvarial osteoblasts demonstrated increased calcification despite flat TNAP activity rather than physiologic TNAP up-regulation seen in WT osteoblasts. Despite decreased cytosolic PPi in early culture, Enpp1−/− osteoblasts maintained cytosolic Pi levels comparable to WT osteoblasts, in association with increased iPPiase, enhanced sodium-dependent Pi uptake and expression of Pit-1, and markedly increased collagen I synthesis. Suppression of collagen synthesis in Enpp1−/− osteoblasts using 3,4-dehydroproline markedly suppressed calcification. Last, transfection of Ppa1 in WT osteoblasts increased cytosolic Pi and decreased cytosolic but not extracellular PPi, and induced both collagen I synthesis and calcification.
Increased iPPiase is associated with “Pi hunger” and increased calcification by NPP1-deficient osteoblasts. Furthermore, iPPiase induces collagen I at the levels of mRNA expression and synthesis and, unlike TNAP, stimulates calcification by osteoblasts without reducing the extracellular concentration of the hydroxyapatite crystal inhibitor PPi.
PMCID: PMC2818162  PMID: 19733704
PPi; Pi; Tissue-Nonspecific Alkaline Phosphatase; Calcification; Enpp1
4.  Extracellular ATP Released by Osteoblasts Is A Key Local Inhibitor of Bone Mineralisation 
PLoS ONE  2013;8(7):e69057.
Previous studies have shown that exogenous ATP (>1µM) prevents bone formation in vitro by blocking mineralisation of the collagenous matrix. This effect is thought to be mediated via both P2 receptor-dependent pathways and a receptor-independent mechanism (hydrolysis of ATP to produce the mineralisation inhibitor pyrophosphate, PPi). Osteoblasts are also known to release ATP constitutively. To determine whether this endogenous ATP might exert significant biological effects, bone-forming primary rat osteoblasts were cultured with 0.5-2.5U/ml apyrase (which sequentially hydrolyses ATP to ADP to AMP + 2Pi). Addition of 0.5U/ml apyrase to osteoblast culture medium degraded extracellular ATP to <1% of control levels within 2 minutes; continuous exposure to apyrase maintained this inhibition for up to 14 days. Apyrase treatment for the first 72 hours of culture caused small decreases (≤25%) in osteoblast number, suggesting a role for endogenous ATP in stimulating cell proliferation. Continuous apyrase treatment for 14 days (≥0.5U/ml) increased mineralisation of bone nodules by up to 3-fold. Increases in bone mineralisation were also seen when osteoblasts were cultured with the ATP release inhibitors, NEM and brefeldin A, as well as with P2X1 and P2X7 receptor antagonists. Apyrase decreased alkaline phosphatase (TNAP) activity by up to 60%, whilst increasing the activity of the PPi-generating ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs) up to 2.7-fold. Both collagen production and adipocyte formation were unaffected. These data suggest that nucleotides released by osteoblasts in bone could act locally, via multiple mechanisms, to limit mineralisation.
PMCID: PMC3706437  PMID: 23874866
5.  Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation 
British Journal of Cancer  2012;106(3):525-537.
Mammographic microcalcifications represent one of the most reliable features of nonpalpable breast cancer yet remain largely unexplored and poorly understood.
We report a novel model to investigate the in vitro mineralisation potential of a panel of mammary cell lines. Primary mammary tumours were produced by implanting tumourigenic cells into the mammary fat pads of female BALB/c mice.
Hydroxyapatite (HA) was deposited only by the tumourigenic cell lines, indicating mineralisation potential may be associated with cell phenotype in this in vitro model. We propose a mechanism for mammary mineralisation, which suggests that the balance between enhancers and inhibitors of physiological mineralisation are disrupted. Inhibition of alkaline phosphatase and phosphate transport prevented mineralisation, demonstrating that mineralisation is an active cell-mediated process. Hydroxyapatite was found to enhance in vitro tumour cell migration, while calcium oxalate had no effect, highlighting potential consequences of calcium deposition. In addition, HA was also deposited in primary mammary tumours produced by implanting the tumourigenic cells into the mammary fat pads of female BALB/c mice.
This work indicates that formation of mammary HA is a cell-specific regulated process, which creates an osteomimetic niche potentially enhancing breast tumour progression. Our findings point to the cells mineralisation potential and the microenvironment regulating it, as a significant feature of breast tumour development.
PMCID: PMC3273345  PMID: 22233923
microcalcifications; breast cancer; mineralisation; calcifications; hydroxyapatite; mammography
6.  Effects of pH on the Production of Phosphate and Pyrophosphate by Matrix Vesicles' Biomimetics 
Calcified tissue international  2013;93(3):222-232.
During endochondral bone formation, chondrocytes and osteoblasts synthesize and mineralize the extracellular matrix through a process that initiates within matrix vesicles (MVs) and ends with bone mineral propagation onto the collagenous scaffold. pH gradients have been identified in the growth plate of long bones, but how pH changes affect the initiation of skeletal mineralization is not known. Tissue-nonspecific alkaline phosphatase (TNAP) degrades extracellular inorganic pyrophosphate (ePPi), a mineralization inhibitor produced by ectonucleotide pyrophosphatase/ phosphodiesterase-1 (NPP1), while contributing Pi from ATP to initiate mineralization. TNAP and NPP1, alone or combined, were reconstituted in dipalmitoylphosphatidylcholine (DPPC) liposomes to mimic the microenvironment of MVs. The hydrolysis of ATP, ADP, AMP and PPi was studied at pH 8 and 9 and compared to the data determined at pH 7.4. While catalytic efficiencies in general were higher at alkaline pH, PPi hydrolysis was maximal at pH 8 and indicated a preferential utilization of PPi over ATP, at pH 8 versus 9. In addition, all proteoliposomes induced mineral formation when incubated in a synthetic cartilage lymph (SCL) containing 1 mM ATP as substrate and amorphous calcium phosphate (ACP) or calciumphosphate- phosphatidylserine complexes (PS-CPLX) as nucleators. Propagation of mineralization was significantly more efficient at pHs 7.5 and 8 than at pH 9. Since a slight pH elevation from 7.4 to 8 promotes considerably more hydrolysis of ATP, ADP and AMP primarily by TNAP, this small pH change facilitates mineralization, especially via upregulated PPi hydrolysis by both NPP1 and TNAP, further elevating the Pi/PPi ratio, thus enhancing bone mineralization.
PMCID: PMC3752608  PMID: 23942722
biomineralization; alkaline pH; microenvironment; proteoliposomes; pyrophosphate; ATP
7.  Loss of Skeletal Mineralization by the Simultaneous Ablation of PHOSPHO1 and Alkaline Phosphatase Function: A Unified Model of the Mechanisms of Initiation of Skeletal Calcification 
Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Alkaline phosphatase (TNAP) plays a crucial role promoting mineralization of the extracellular matrix by restricting the concentration of the calcification inhibitor inorganic pyrophosphate (PPi). Mutations in the TNAP gene cause hypophosphatasia, a heritable form of rickets and osteomalacia. Here we show that PHOSPHO1, a phosphatase with specificity for phosphoethanolamine and phosphocholine, plays a functional role in the initiation of calcification and that ablation of PHOSPHO1 and TNAP function prevents skeletal mineralization. Phospho1−/− mice display growth plate abnormalities, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis in early life. Primary cultures of Phospho1−/− tibial growth plate chondrocytes and chondrocyte-derived matrix vesicles (MVs) show reduced mineralizing ability, and plasma samples from Phospho1−/− mice show reduced levels of TNAP and elevated plasma PPi concentrations. However, transgenic overexpression of TNAP does not correct the bone phenotype in Phospho1−/− mice despite normalization of their plasma PPi levels. In contrast, double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality. We conclude that PHOSPHO1 has a nonredundant functional role during endochondral ossification, and based on these data and a review of the current literature, we propose an inclusive model of skeletal calcification that involves intravesicular PHOSPHO1 function and Pi influx into MVs in the initiation of mineralization and the functions of TNAP, nucleotide pyrophosphatase phosphodiesterase-1, and collagen in the extravesicular progression of mineralization. © 2011 American Society for Bone and Mineral Research.
PMCID: PMC3179344  PMID: 20684022
8.  Proteomic analysis of mineralising osteoblasts identifies novel genes related to bone matrix mineralisation 
International Orthopaedics  2010;35(3):447-451.
Bone matrix mineralisation plays a critical role in the determination of the overall biomechanical competence of bone. However, the molecular mechanisms of bone matrix mineralisation have not been fully elucidated. We used a proteomic approach to identify proteins and genes that may play a role in osteoblast matrix mineralisation. Proteomic differential display revealed a protein band that appeared only in mineralising mouse 7F2 osteoblasts. In-gel protein digestion and mass spectrometry proteomic analysis of this protein band identified 16 proteins. Furthermore, their corresponding transcripts were upregulated. This identification of proteins that may be associated with bone matrix mineralisation presents important new information toward a better understanding of the precise mechanisms of this process.
PMCID: PMC3047647  PMID: 20556378
9.  An Overview of Bone Cells and their Regulating Factors of Differentiation 
Bone is a specialised connective tissue and together with cartilage forms the strong and rigid endoskeleton. These tissues serve three main functions: scaffold for muscle attachment for locomotion, protection for vital organs and soft tissues and reservoir of ions for the entire organism especially calcium and phosphate. One of the most unique and important properties of bone is its ability to constantly undergo remodelling even after growth and modelling of the skeleton have been completed. Remodelling processes enable the bone to respond and adapt to changing functional situations. Bone is composed of various types of cells and collagenous extracellular organic matrix, which is predominantly type I collagen (85–95%) called osteoid that becomes mineralised by the deposition of calcium hydroxyapatite. The non-collagenous constituents are composed of proteins and proteoglycans, which are specific to bone and the dental hard connective tissues. Maintenance of appropriate bone mass depends upon the precise balance of bone formation and bone resorption which is facilitated by the ability of osteoblastic cells to regulate the rate of both differentiation and activity of osteoclasts as well as to form new bone. An overview of genetics and molecular mechanisms that involved in the differentiation of osteoblast and osteoclast is discussed.
PMCID: PMC3341892  PMID: 22589609
Bone cells; osteoblasts; osteoclasts; regulations
10.  Central Role of Pyrophosphate in Acellular Cementum Formation 
PLoS ONE  2012;7(6):e38393.
Inorganic pyrophosphate (PPi) is a physiologic inhibitor of hydroxyapatite mineral precipitation involved in regulating mineralized tissue development and pathologic calcification. Local levels of PPi are controlled by antagonistic functions of factors that decrease PPi and promote mineralization (tissue-nonspecific alkaline phosphatase, Alpl/TNAP), and those that increase local PPi and restrict mineralization (progressive ankylosis protein, ANK; ectonucleotide pyrophosphatase phosphodiesterase-1, NPP1). The cementum enveloping the tooth root is essential for tooth function by providing attachment to the surrounding bone via the nonmineralized periodontal ligament. At present, the developmental regulation of cementum remains poorly understood, hampering efforts for regeneration. To elucidate the role of PPi in cementum formation, we analyzed root development in knock-out (−/−) mice featuring PPi dysregulation.
Excess PPi in the Alpl−/− mouse inhibited cementum formation, causing root detachment consistent with premature tooth loss in the human condition hypophosphatasia, though cementoblast phenotype was unperturbed. Deficient PPi in both Ank and Enpp1−/− mice significantly increased cementum apposition and overall thickness more than 12-fold vs. controls, while dentin and cellular cementum were unaltered. Though PPi regulators are widely expressed, cementoblasts selectively expressed greater ANK and NPP1 along the root surface, and dramatically increased ANK or NPP1 in models of reduced PPi output, in compensatory fashion. In vitro mechanistic studies confirmed that under low PPi mineralizing conditions, cementoblasts increased Ank (5-fold) and Enpp1 (20-fold), while increasing PPi inhibited mineralization and associated increases in Ank and Enpp1 mRNA.
Results from these studies demonstrate a novel developmental regulation of acellular cementum, wherein cementoblasts tune cementogenesis by modulating local levels of PPi, directing and regulating mineral apposition. These findings underscore developmental differences in acellular versus cellular cementum, and suggest new approaches for cementum regeneration.
PMCID: PMC3366957  PMID: 22675556
11.  Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach 
Extracellular bone material can be characterised as a nanocomposite where, in a liquid environment, nanometre-sized hydroxyapatite crystals precipitate within as well as between long fibre-like collagen fibrils (with diameters in the 100 nm range), as evidenced from neutron diffraction and transmission electron microscopy. Accordingly, these crystals are referred to as ‘interfibrillar mineral’ and ‘extrafibrillar mineral’, respectively. From a topological viewpoint, it is probable that the mineralisations start on the surfaces of the collagen fibrils (‘mineral-encrusted fibrils’), from where the crystals grow both into the fibril and into the extrafibrillar space. Since the mineral concentration depends on the pore spaces within the fibrils and between the fibrils (there is more space between them), the majority of the crystals (but clearly not all of them) typically lie in the extrafibrillar space. There, larger crystal agglomerations or clusters, spanning tens to hundreds of nanometers, develop in the course of mineralisation, and the micromechanics community has identified the pivotal role, which this extrafibrillar mineral plays for tissue elasticity. In such extrafibrillar crystal agglomerates, single crystals are stuck together, their surfaces being covered with very thin water layers. Recently, the latter have caught our interest regarding strength properties (Fritsch et al. 2009 J Theor Biol. 260(2): 230–252) – we have identified these water layers as weak interfaces in the extrafibrillar mineral of bone. Rate-independent gliding effects of crystals along the aforementioned interfaces, once an elastic threshold is surpassed, can be related to overall elastoplastic material behaviour of the hierarchical material ‘bone’. Extending this idea, the present paper is devoted to viscous gliding along these interfaces, expressing itself, at the macroscale, in the well-known experimentally evidenced phenomenon of bone viscoelasticity. In this context, a multiscale homogenisation scheme is extended to viscoelasticity, mineral-cluster-specific creep parameters are identified from three-point bending tests on hydrated bone samples, and the model is validated by statistically and physically independent experiments on partially dried samples. We expect this model to be relevant when it comes to prediction of time-dependent phenomena, e.g. in the context of bone remodelling.
PMCID: PMC3877913  PMID: 22563708
viscoelasticity; bone; multiscale; creep; relaxation; gliding event
12.  Purine Receptors Modulate Chondrocyte Extracellular Inorganic Pyrophosphate Production 
Extracellular inorganic pyrophosphate (ePPi) plays a key role in the regulation of normal and pathologic mineralization. The purpose of this work was to evaluate the role of P1 and P2 purine receptors in modulating ePPi production by articular chondrocytes.
Porcine cartilage explants and chondrocyte monolayers were cultured in the presence of P1 agonists, or a P2 agonist or antagonist and inhibitors of P2 signaling. Ambient media ePPi concentrations were measured after 48 to 96 hours.
The P1 agonists NECA and CGS 21680 significantly decreased ePPi concentrations surrounding chondrocytes and cartilage explants. The P2 agonist, ADP, increased ePPi levels, and the P2 antagonist, suramin, decreased ePPi concentrations. Thapsigargin and BAPTA, which dampen Ca2+-related P2 signaling, suppressed the response to ADP.
Purine receptors are important regulators of ePPi production by chondrocytes. P1 receptor stimulation diminishes and P2 receptor stimulation enhances ePPi production. Alterations in receptor signaling or aberrations of extracellular purine nucleotide metabolism resulting in abnormal quantities or proportions of P1 and P2 receptor ligands could foster changes in ePPi production that in turn affect mineralization. We propose a homeostatic role for extracellular purine nucleotides and purine receptors in stabilizing ePPi concentrations.
PMCID: PMC2975862  PMID: 20709180
ATP; articular cartilage; chondrocytes; biomineralization; purine receptors
13.  Peripheral chondrosarcoma progression is associated with increased type X collagen and vascularisation 
Virchows Archiv  2011;460(1):95-102.
Endochondral bone formation requires a cartilage template, known as the growth plate, and vascular invasion, bringing osteoblasts and osteoclasts. Endochondral chondrocytes undergo sequences of cell division, matrix secretion, cell hypertrophy, apoptosis, and matrix calcification/mineralisation. In this study, two critical steps of endochondral bone formation, the deposition of collagen X-rich matrix and blood vessel attraction/invasion, were investigated by immunohistochemistry. Fourteen multiple osteochondromas and six secondary peripheral chondrosarcomas occurring in patients with multiple osteochondromas were studied and compared to epiphyseal growth plate samples. Mutation analysis showed all studied patients (expect one) to harbour a germ-line mutations in either EXT1 or EXT2. Here, we described that homozygous mutations in EXT1/EXT2, which are causative for osteochondroma formation, are likely to affect terminal chondrocyte differentiation and vascularisation in the osteocartilaginous interface. Contrastingly, terminal chondrocyte differentiation and vascularisation seem to be unaffected in secondary peripheral chondrosarcoma. In addition, osteochondromas with high vascular density displayed a higher proliferation rate. A similar apoptotic rate was observed in osteochondromas and secondary peripheral chondrosarcomas. Recently, it has been shown that cells with functional EXT1 and EXT2 are outnumbering EXT1/EXT2 mutated cells in secondary peripheral chondrosarcomas. This might explain the increased type X collagen production and blood vessel attraction in these malignant tumours.
PMCID: PMC3267032  PMID: 22116208
Growth plate; Osteochondroma; Peripheral chondrosarcoma; Type X collagen; Angiogenesis; Bone tumour
14.  Subtleties of biomineralisation revealed by manipulation of the eggshell membrane 
Biomaterials  2011;32(34):8743-8752.
Biocalcification of collagen matrices with calcium phosphate and biosilicification of diatom frustules with amorphous silica are two discrete processes that have intrigued biologists and materials scientists for decades. Recent advancements in the understanding of the mechanisms involved in these two biomineralisation processes have resulted in the use of biomimetic strategies to replicate these processes separately using polyanionic, polycationic or zwitterionic analogues of extracellular matrix proteins to stabilise amorphous mineral precursor phases. To date, there is a lack of a universal model that enables the subtleties of these two apparently dissimilar biomineralisation processes to be studied together. Here, we utilise the eggshell membrane as a universal model for differential biomimetic calcification and silicification. By manipulating the eggshell membrane to render it permeable to stabilised mineral precursors, it is possible to introduce nanostructured calcium phosphate or silica into eggshell membrane fibre cores or mantles. We provide a model for infiltrating the two compartmental niches of a biopolymer membrane with different intrafibre minerals to obtain materials with potentially improved structure-property relationships.
PMCID: PMC3183170  PMID: 21864897
apatite; biomineralisation; silica; membrane
15.  Chondrogenic ATDC5 cells: An optimised model for rapid and physiological matrix mineralisation 
The development of chondrogenic cell lines has led to major advances in the understanding of how chondrocyte differentiation is regulated, and has uncovered many signalling pathways and gene regulatory mechanisms required to maintain normal function. ATDC5 cells are a well established in vitro model of endochondral ossification; however, current methods are limited for mineralisation studies. In this study we demonstrate that culturing cells in the presence of ascorbic acid and 10 mM β-glycerophosphate (βGP) significantly increases the rate of extracellular matrix (ECM) synthesis and reduces the time required for mineral deposition to occur to 15 days of culture. Furthermore, the specific expression patterns of Col2a1 and Col10a1 are indicative of ATDC5 chondrogenic differentiation. Fourier transform-infrared spectroscopy analysis and transmission electron microscopy (TEM) showed that the mineral formed by ATDC5 cultures is similar to physiological hydroxyapatite. Additionally, we demonstrated that in cultures with βGP, the presence of alkaline phosphatase (ALP) is required for this mineralisation to occur, further indicating that chondrogenic differentiation is required for ECM mineralisation. Together, these results demonstrate that when cultured in the presence of ascorbic acid and 10 mM βGP, ATDC5 cells undergo chondrogenic differentiation and produce a physiological mineralised ECM from Day 15 of culture onwards. The rapid and novel method for ATDC5 culture described in this study is a major improvement compared with currently published methods and this will prove vital in the pursuit of underpinning the molecular mechanisms responsible for poor linear bone growth observed in a number of chronic diseases such as cystic fibrosis, chronic kidney disease, rheumatological conditions and inflammatory bowel disease.
PMCID: PMC3573767  PMID: 22941229
ATDC5; chondrocyte; mineralisation; β-glycerophosphate; endochondral ossification; growth plate
16.  Kinetic Analysis of Substrate Utilization by Native and TNAP-, NPP1-, or PHOSPHO1-Deficient Matrix Vesicles 
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix by promoting the formation of hydroxyapatite seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Here, we have studied phosphosubstrate catalysis by osteoblast-derived MVs at physiologic pH, analyzing the hydrolysis of ATP, ADP, and PPi by isolated wild-type (WT) as well as TNAP-, NPP1- and PHOSPHO1-deficient MVs. Comparison of the catalytic efficiencies identified ATP as the main substrate hydrolyzed by WT MVs. The lack of TNAP had the most pronounced effect on the hydrolysis of all physiologic substrates. The lack of PHOSPHO1 affected ATP hydrolysis via a secondary reduction in the levels of TNAP in PHOSPHO1-deficient MVs. The lack of NPP1 did not significantly affect the kinetic parameters of hydrolysis when compared with WT MVs for any of the substrates. We conclude that TNAP is the enzyme that hydrolyzes both ATP and PPi in the MV compartment. NPP1 does not have a major role in PPi generation from ATP at the level of MVs, in contrast to its accepted role on the surface of the osteoblasts and chondrocytes, but rather acts as a phosphatase in the absence of TNAP. © 2010 American Society for Bone and Mineral Research.
PMCID: PMC3153326  PMID: 19874193
biomineralization; knockout mice; calcification; pyrophosphatases; atpases
17.  P20 - Retrospective Study of Biphosphonate-Induced Maxillary Osteonecrosis (2004–2009) 
Biphosphonate-induced osteonecrosis of the jaws (ONJ) was first described in the literature in 2003. Biphosphonates, which are structural analogues of inorganic pyrophosphate, inhibit the formation, aggregation and dissolution of calcium phosphate crystals; they have a high affinity for the mineralised bone matrix and can inhibit osteoclast-mediated osseous resorption. They are divided into non-aminobiphosphonates (etidronate, clodronate, tiludronate) and aminobiphosphonates (alendronate, ibandronate, neridronate, risedronate, pamidronate, zoledronate), which have a more powerful inhibitory effect on osteoclast-mediated osseous resorption. In 2009 the AAOMS estimated the incidence of i.v. biphosphonate-induced ONJ to be 0.8–12%, and that of ONJ induced by oral biphosphonates to be 0.01–0.1%. In recent years, preventive measures have been introduced, to be adopted in all patients about to begin biphosphonate treatment, as well as behavioural measures to be adopted in patients under bisphosphonate therapy requiring dental treatment to prevent ONJ.
To establish the incidence of the disease over the years, and whether this incidence fell in 2009; to investigate correlations between ONJ and gender, age, underlying disease, type of biphosphonate taken and duration of biphosphonate treatment; to investigate treatments instituted.
Materials and methods:
We collected data on all cases of ONJ diagnosed at the Careggi Hospital in Florence up to December 2009: the sample was made up of 59 patients (24 men, 35 women). We performed a statistical analysis of the data in our possession. No patient was excluded from the study.
The incidence of the disease was higher in the women (59.32% versus 40.68%) and this difference was statistically significant. The mean age at diagnosis was 66 years, 8 months, with a difference emerging between the women (67 yrs 6 mths) and the men (65 yrs 3 mths). The drug responsible for the highest number of cases of ONJ was zoledronate (86.44%), followed by alendronate and pamidronate (both 5.08%), and risendronate (3.40%). The most frequent of the underlying diseases requiring the use of biphosphonates was multiple myeloma (32.20%), followed by breast cancer (25.42%) and osteoporosis (10.17%). These were followed, in order of frequency, by prostate cancer, lung cancer, lymphomas and leukaemia. The oldest diagnoses dated back to 2004. The year with the smallest number of diagnosed cases was 2009, in which 4 cases of ONJ were detected (6.78% of the total). Of these, 3 patients had taken alendronate (in 2 cases for osteoporosis) and 1 zometa. The duration of treatment varied, ranging from 3 months to 11 years (mean 30.4 months).
The appearance of the lesions was due to: tooth extractions (77.97%), trauma caused by dental prostheses (15.25%), endodontics (1.69%), implantology (1.69%), no dental intervention (1.69%). In most cases the lesions were mandibular (57.6%), in 27.1% maxillary and in 15.2% of cases present at both levels.
At diagnosis, 56 patients were at stage 2 (95%) and 3 at stage 3 (5%) of the AAOMS staging system. The stage 3 patients were treated with surgical mandibular resection and vascularised graft, while the stage 2 patients received pharmacological therapy, in some cases associated with minor surgery and hyperbaric oxygen therapy (HBOT).
From the data gathered in recent years on patients diagnosed with ONJ at our service, we can conclude that zoledronate caused most of the cases of ONJ. It was thus confirmed as the drug with the greatest potency and affinity, as has been shown by the literature. It can be noted that osteoporosis was found to be the third most frequent underlying disease and that the incidence of ONJ fell in 2009, presumably due to increased understanding of the condition, but that, contrary to the overall mean, in 2009 half of the cases were osteoporosis patients who had taken alendronate.
PMCID: PMC3213780
18.  Inorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes 
ANK is a multipass transmembrane protein transporter thought to play a role in the export of intracellular inorganic pyrophosphate and so to contribute to the pathophysiology of chondrocalcinosis. As transforming growth factor-beta-1 (TGF-β1) was shown to favor calcium pyrophosphate dihydrate deposition, we investigated the contribution of ANK to the production of extracellular inorganic pyrophosphate (ePPi) by chondrocytes and the signaling pathways involved in the regulation of Ank expression by TGF-β1. Chondrocytes were exposed to 10 ng/mL of TGF-β1, and Ank expression was measured by quantitative polymerase chain reaction and Western blot. ePPi was quantified in cell supernatants. RNA silencing was used to define the respective roles of Ank and PC-1 in TGF-β1-induced ePPi generation. Finally, selective kinase inhibitors and dominant-negative/overexpression plasmid strategies were used to explore the contribution of several signaling pathways to Ank induction by TGF-β1. TGF-β1 strongly increased Ank expression at the mRNA and protein levels, as well as ePPi production. Using small interfering RNA technology, we showed that Ank contributed approximately 60% and PC-1 nearly 20% to TGF-β1-induced ePPi generation. Induction of Ank by TGF-β1 required activation of the extracellular signal-regulated kinase (ERK) pathway but not of p38-mitogen-activated protein kinase or of protein kinase A. In line with the general protein kinase C (PKC) inhibitor calphostin C, Gö6976 (a Ca2+-dependent PKC inhibitor) diminished TGF-β1-induced Ank expression by 60%, whereas a 10% inhibition was observed with rottlerin (a PKCδ inhibitor). These data suggest a regulatory role for calcium in TGF-β1-induced Ank expression. Finally, we demonstrated that the stimulatory effect of TGF-β1 on Ank expression was inhibited by the suppression of the Ras/Raf-1 pathway, while being enhanced by their constitutive activation. Transient overexpression of Smad 7, an inhibitory Smad, failed to affect the inducing effect of TGF-β1 on Ank mRNA level. These data show that TGF-β1 increases ePPi levels, mainly by the induction of the Ank gene, which requires activation of Ras, Raf-1, ERK, and Ca2+-dependent PKC pathways in chondrocytes.
PMCID: PMC2246241  PMID: 18034874
19.  Altered Bone Development and an Increase in FGF-23 Expression in Enpp1−/− Mice 
PLoS ONE  2012;7(2):e32177.
Nucleotide pyrophosphatase phosphodiesterase 1 (NPP1) is required for the conversion of extracellular ATP into inorganic pyrophosphate (PPi), a recognised inhibitor of hydroxyapatite (HA) crystal formation. A detailed phenotypic assessment of a mouse model lacking NPP1 (Enpp1−/−) was completed to determine the role of NPP1 in skeletal and soft tissue mineralization in juvenile and adult mice. Histopathological assessment of Enpp1−/− mice at 22 weeks of age revealed calcification in the aorta and kidney and ectopic cartilage formation in the joints and spine. Radiographic assessment of the hind-limb showed hyper-mineralization in the talocrural joint and hypo-mineralization in the femur and tibia. MicroCT analysis of the tibia and femur disclosed altered trabecular architecture and bone geometry at 6 and 22 weeks of age in Enpp1−/− mice. Trabecular number, trabecular bone volume, structure model index, trabecular and cortical thickness were all significantly reduced in tibiae and femurs from Enpp1−/− mice (P<0.05). Bone stiffness as determined by 3-point bending was significantly reduced in Enpp1−/− tibiae and femurs from 22-week-old mice (P<0.05). Circulating phosphate and calcium levels were reduced (P<0.05) in the Enpp1−/− null mice. Plasma levels of osteocalcin were significantly decreased at 6 weeks of age (P<0.05) in Enpp1−/− mice, with no differences noted at 22 weeks of age. Plasma levels of CTx (Ratlaps™) and the phosphaturic hormone FGF-23 were significantly increased in the Enpp1−/− mice at 22 weeks of age (P<0.05). Fgf-23 messenger RNA expression in cavarial osteoblasts was increased 12-fold in Enpp1−/− mice compared to controls. These results indicate that Enpp1−/− mice are characterized by severe disruption to the architecture and mineralization of long-bones, dysregulation of calcium/phosphate homeostasis and changes in Fgf-23 expression. We conclude that NPP1 is essential for normal bone development and control of physiological bone mineralization.
PMCID: PMC3281127  PMID: 22359666
20.  Role of the Progressive Ankylosis Gene (ank) in Cartilage Mineralization 
Molecular and Cellular Biology  2005;25(1):312-323.
Mineralization of growth plate cartilage is a critical event during endochondral bone formation, which allows replacement of cartilage by bone. Ankylosis protein (Ank), which transports intracellular inorganic pyrophosphate (PPi) to the extracellular milieu, is expressed by hypertrophic and, especially highly, by terminally differentiated mineralizing growth plate chondrocytes. Blocking Ank transport activity or ank expression in terminally differentiated mineralizing growth plate chondrocytes led to increases of intra- and extracellular PPi concentrations, decreases of alkaline phosphatase (APase) expression and activity, and inhibition of mineralization, whereas treatment of these cells with the APase inhibitor levamisole led to an increase of extracellular PPi concentration and inhibition of mineralization. Ank-overexpressing hypertrophic nonmineralizing growth plate chondrocytes showed decreased intra- and extracellular PPi levels; increased mineralization-related gene expression of APase, type I collagen, and osteocalcin; increased APase activity; and mineralization. Treatment of Ank-expressing growth plate chondrocytes with a phosphate transport blocker (phosphonoformic acid [PFA]) inhibited uptake of inorganic phosphate (Pi) and gene expression of the type III Na+/Pi cotransporters Pit-1 and Pit-2. Furthermore, PFA or levamisole treatment of Ank-overexpressing hypertrophic chondrocytes inhibited APase expression and activity and subsequent mineralization. In conclusion, increased Ank activity results in elevated intracellular PPi transport to the extracellular milieu, initial hydrolysis of PPi to Pi, Pi-mediated upregulation of APase gene expression and activity, further hydrolysis and removal of the mineralization inhibitor PPi, and subsequent mineralization.
PMCID: PMC538760  PMID: 15601852
21.  Arterial Calcification Is Driven by RAGE in Enpp1–/– Mice 
Journal of Vascular Research  2010;48(3):227-235.
Ectopic osteochondral differentiation, driven by ENPP1-catalyzed generation of the chondrogenesis and calcification inhibitor inorganic pyrophosphate (PPi), promotes generalized arterial calcification of infancy. The multiligand receptor for advanced glycation end-products (RAGE), which promotes atherosclerosis and diabetic cardiovascular and renal complications, also mediates chondrocyte differentiation in response to RAGE ligand calgranulins such as S100A11. Here, we tested RAGE involvement in ENPP1 deficiency-associated arterial calcification.
Because ectopic artery calcification in Enpp1–/– mice is Pi-dependent and mediated by PPi deficiency, in vitro studies on effects of S100A11 and RAGE on mouse aortic explants were conducted using exogenous Pi, as well as alkaline phosphatase to hydrolyze ambient PPi.
S100A11 induced cartilage-specific collagen IX/XI expression and calcification dependent on RAGE in mouse aortic explants that was inhibited by the endogenous RAGE signaling inhibitor soluble RAGE (sRAGE). Enpp1–/– aortic explants demonstrated decreased Pi-stimulated release of sRAGE, and increased calcification and type IX/XI collagen expression that were suppressed by exogenous sRAGE and by Rage knockout. Last, Rage knockout suppressed spontaneous aortic calcification in situ in Enpp1–/– mice.
Cultured Enpp1–/– aortic explants have decreased Pi-stimulated release of sRAGE, and RAGE promotes ectopic chondrogenic differentiation and arterial calcification in Enpp1–/– mice.
PMCID: PMC2997448  PMID: 21099228
Artery calcification; Receptor for advanced glycation end-products; Calgranulin; ENPP1; Pit-1
22.  Molecular diagnosis of generalized arterial calcification of infancy (GACI) 
Generalized arterial calcification of infancy (GACI) is a life-threatening disorder in young infants. Cardiovascular symptoms are usually apparent within the first month of life. The symptoms are caused by calcification of large and medium-sized arteries, including the aorta, coronary arteries, and renal arteries. Most of the patients die by 6 months of age because of heart failure. Recently, homozygous or compound heterozygous mutations for the ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene were reported as causative for the disorder. ENPP1 regulates extracellular inorganic pyrophosphate (PPi), a major inhibitor of extracellular matrix calcification. A newborn was diagnosed with GACI. The infant died at the age of 7 weeks of cardiac failure and the parents were referred to Molecular Biology and Cytogenetic lab for further workup. Cytogenetics analysis was performed on the parents, which showed normal karyotypes and mutational analysis for the ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene was also performed. The mutational analysis showed that both father and mother of the deceased infant were heterozygous carriers of the mutation c.749C>T (p.P250L) in exon 7 of ENPP1 and it was likely, that the deceased child carried the same mutation homozygous on both alleles and died of GACI resulting from this ENPP1 mutation. The couple was counseled and monitored for the second pregnancy. Amniocentesis was performed at 15 weeks of gestation for mutational analysis of the same gene in the second pregnancy. The analysis was negative for the parental mutations. One month after the birth of a healthy infant, peripheral blood was collected from the baby and sent for reconfirmation. The results again were negative for the mutation and the baby was on 6 months follow up and no major symptoms were seen. The parents of the child benefited enormously by learning about the disease much in advance and also its risk of recurrence. The main aim of this study is to emphasize on two aspects: (i) the importance of modern molecular techniques in diagnosis such a syndrome and (2) the difficulties faced by the physician to provide appropriate diagnosis and the adequate genetic counseling to the family without molecular facilities.
PMCID: PMC3354462  PMID: 22629037
Cytogenetics; ecto-nucleotide pyrophosphatase/phosphodiesterase 1 encoding gene; prenatal diagnostic testing; pyrophosphate
23.  Structure of human farnesyl pyrophosphate synthase in complex with an aminopyridine bisphosphonate and two molecules of inorganic phosphate 
A co-crystal structure of human farnesyl pyrophosphate synthase in complex with an aminopyridine bisphosphonate, YS0470, and two molecules of inorganic phosphate has been determined. The identity of the phosphate ligands was confirmed by anomalous diffraction data.
Human farnesyl pyrophosphate synthase (hFPPS) produces farnesyl pyrophos­phate, an isoprenoid essential for a variety of cellular processes. The enzyme has been well established as the molecular target of the nitrogen-containing bisphosphonates (N-BPs), which are best known for their antiresorptive effects in bone but are also known for their anticancer properties. Crystal structures of hFPPS in ternary complexes with a novel bisphosphonate, YS0470, and the secondary ligands inorganic phosphate (Pi), inorganic pyrophosphate (PPi) and isopentenyl pyrophosphate (IPP) have recently been reported. Only the co-binding of the bisphosphonate with either PPi or IPP resulted in the full closure of the C-­terminal tail of the enzyme, a conformational change that is required for catalysis and that is also responsible for the potent in vivo efficacy of N-BPs. In the present communication, a co-crystal structure of hFPPS in complex with YS0470 and two molecules of Pi is reported. The unusually close proximity between these ligands, which was confirmed by anomalous diffraction data, suggests that they interact with one another, with their anionic charges neutralized in their bound state. The structure also showed the tail of the enzyme to be fully disordered, indicating that simultaneous binding of two Pi molecules with a bisphosphonate cannot induce the tail-closing conformational change in hFPPS. Examination of homologous FPPSs suggested that this ligand-dependent tail closure is only conserved in the mammalian proteins. The prevalence of Pi-bound hFPPS structures in the PDB raises a question regarding the in vivo relevance of Pi binding to the function of the enzyme.
PMCID: PMC3944689  PMID: 24598914
farnesyl pyrophosphate synthase; bisphosphonates; inorganic phosphate; anomalous diffraction
24.  Modulation of phosphate/pyrophosphate metabolism to regenerate the periodontium. A novel in vivo approach 
Journal of periodontology  2011;82(12):10.1902/jop.2011.110103.
The developing periodontium is sensitive to local levels of phosphate (Pi) and pyrophosphate (PPi), as demonstrated by cementum phenotypes resulting from loss of function of protein regulators of Pi/PPi homeostasis. The progressive ankylosis protein (ANK) regulates transport of PPi, and Ank knock-out (KO) mice feature rapidly forming and thick cementum. We hypothesized that, besides affecting cementum formation, decreased extracellular PPi levels in Ank KO mice would also impact cementum regeneration.
Periodontal fenestration defects (2mm/1mm/0.5mm) were created on the buccal aspects of mandibular molars in Ank KO and wild-type (WT) mice. Mandibles were harvested at 15 and 30 days post-surgery for histology, histomorphometry, evaluation of in vivo fluorochrome labeling, and immunohistochemistry(IHC) for proteins including bone sialoprotein (BSP), osteopontin (OPN), dentin matrix protein 1 (DMP1), and ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1).
A greater amount of new cementum was observed for Ank KO mice at 15 and 30 days post-surgery (p<0.05), that was confirmed by fluorochrome labeling showing a higher new cementum appositional activity in the defect areas in Ank KO vs. controls. At days 15 and 30 during healing, regenerating cementum and associated cells in Ank KO recapitulated expression patterns mapped during development, including limited BSP and positive OPN and DMP1 in the cementum matrix, as well as elevated NPP1 in cementoblasts.
Within the limits of the study, these findings suggest that reduced local levels of PPi can promote increased cementum regeneration. Therefore, local modulation of Pi/PPi may be a potential therapeutic approach for achieving improved cementum regeneration.
PMCID: PMC3884815  PMID: 21488756
cementum; periodontal regeneration; ankylosis protein; mouse; pyrophosphates; inorganic phosphates
25.  Npp1 promotes atherosclerosis in ApoE knockout mice 
Ecto-Nucleotide Pyrophosphatase/Phosphodiesterase 1 (NPP1) generates inorganic pyrophosphate (PPi), a physiologic inhibitor of hydroxyapatite deposition. In a previous study, we found NPP1 expression to be inversely correlated with the degree of atherosclerotic plaque calcification. Moreover, function-impairing mutations of ENPP1, the gene encoding for NPP1, are associated with severe, artery tunica media calcification and myointimal hyperplasia with infantile onset in humans. NPP1 and PPi have the potential to modulate atherogenesis by regulating arterial smooth muscle cell (SMC) differentiation and function, including increase of pro-atherogenic osteopontin (OPN) expression. Hence, this study tested the hypothesis that NPP1 deficiency modulates both atherogenesis and atherosclerotic intimal plaque calcification.
Methods and Results
Npp1/ApoE double deficient mice were generated by crossing mice bearing the ttw allele of Enpp1 (that encodes a truncation mutation) with ApoE null mice and fed with high fat/high cholesterol atherogenic diet. Atherosclerotic lesion area and calcification were examined at 13, 18, 23 and 28 weeks of age. The aortic SMCs isolated from both ttw/ttw ApoE−/− and ttw/+ ApoE−/− mice demonstrated decreased Opn expression. The 28 weeks old ttw/ttw ApoE−/− and ttw/+ ApoE−/− had significantly smaller atherosclerotic lesions compared with wild type congenic ApoE−/− mice. Only ttw/ttw but not ttw/+ mice developed artery media calcification. Furthermore in ttw/+ mice, there was a tendency towards increased plaque calcification compared to ApoE−/− mice without Npp1 deficiency.
We conclude that Npp1 promotes atherosclerosis, potentially mediated by Opn expression in ApoE knockout mice.
PMCID: PMC3154990  PMID: 21477221
atherosclerosis; plaque calcification; osteopontin; inorganic pyrophosphate

Results 1-25 (506784)