Search tips
Search criteria

Results 1-25 (938630)

Clipboard (0)

Related Articles

1.  Ordered subset linkage analysis supports a susceptibility locus for age-related macular degeneration on chromosome 16p12 
BMC Genetics  2004;5:18.
Age-related macular degeneration (AMD) is a complex disorder that is responsible for the majority of central vision loss in older adults living in developed countries. Phenotypic and genetic heterogeneity complicate the analysis of genome-wide scans for AMD susceptibility loci. The ordered subset analysis (OSA) method is an approach for reducing heterogeneity, increasing statistical power for detecting linkage, and helping to define the most informative data set for follow-up analysis. OSA assesses the linkage evidence in subsets of potentially more homogeneous families by rank-ordering family-specific lod scores with respect to trait-associated covariates or phenotypic features. Here, we present results of incorporating five continuous covariates into our genome-wide linkage analysis of 389 microsatellite markers in 62 multiplex families: Body mass index (BMI), systolic (SBP) and diastolic (DBP) blood pressure, intraocular pressure (IOP), and pack-years of cigarette smoking. Chromosome-wide significance of increases in nonparametric multipoint lod scores in covariate-defined subsets relative to the overall sample was assessed by permutation.
Using a correction for testing multiple covariates, statistically significant lod score increases were observed for two chromosomal regions: 14q13 with a lod score of 3.2 in 28 families with average IOP ≤ 15.5 (p = 0.002), and 6q14 with a lod score of 1.6 in eight families with average BMI ≥ 30.1 (p = 0.0004). On chromosome 16p12, nominally significant lod score increases (p ≤ 0.05), up to a lod score of 2.9 in 32 families, were observed with several covariate orderings. While less significant, this was the only region where linkage evidence was associated with multiple clinically meaningful covariates and the only nominally significant finding when analysis was restricted to advanced forms of AMD. Families with linkage to 16p12 had higher averages of SBP, IOP and BMI and were primarily affected with neovascular AMD. For all three regions, linkage signals at or very near the peak marker have previously been reported.
Our results suggest that a susceptibility gene on chromosome 16p12 may predispose to AMD, particularly to the neovascular form, and that further research into the previously suggested association of neovascular AMD and systemic hypertension is warranted.
PMCID: PMC481059  PMID: 15238159
2.  A Genome-Wide Association Study of Hypertension and Blood Pressure in African Americans 
PLoS Genetics  2009;5(7):e1000564.
The evidence for the existence of genetic susceptibility variants for the common form of hypertension (“essential hypertension”) remains weak and inconsistent. We sought genetic variants underlying blood pressure (BP) by conducting a genome-wide association study (GWAS) among African Americans, a population group in the United States that is disproportionately affected by hypertension and associated complications, including stroke and kidney diseases. Using a dense panel of over 800,000 SNPs in a discovery sample of 1,017 African Americans from the Washington, D.C., metropolitan region, we identified multiple SNPs reaching genome-wide significance for systolic BP in or near the genes: PMS1, SLC24A4, YWHA7, IPO7, and CACANA1H. Two of these genes, SLC24A4 (a sodium/potassium/calcium exchanger) and CACNA1H (a voltage-dependent calcium channel), are potential candidate genes for BP regulation and the latter is a drug target for a class of calcium channel blockers. No variant reached genome wide significance for association with diastolic BP (top scoring SNP rs1867226, p = 5.8×10−7) or with hypertension as a binary trait (top scoring SNP rs9791170, p = 5.1×10−7). We replicated some of the significant SNPs in a sample of West Africans. Pathway analysis revealed that genes harboring top-scoring variants cluster in pathways and networks of biologic relevance to hypertension and BP regulation. This is the first GWAS for hypertension and BP in an African American population. The findings suggests that, in addition to or in lieu of relying solely on replicated variants of moderate-to-large effect reaching genome-wide significance, pathway and network approaches may be useful in identifying and prioritizing candidate genes/loci for further experiments.
Author Summary
Despite intense research, the genetic risk factors for essential hypertension and blood pressure (BP) regulation have not been identified with consistency. We conducted a genome wide association scan using over 800,000 genetic markers in an African American sample of 1,017 adults in the Washington, D.C., area of the United States. We found evidence to suggest that genetic variants in several genes, including PMS1, SLC24A4, YWHA7, IPO7, and CACANA1H, are significantly associated with systolic BP levels. From our previous knowledge of human physiology, two of these genes have potential roles to play in BP regulation. The evidence for genetic variants influencing diastolic BP levels and hypertension status was weaker and inconclusive. To our knowledge, this is the first study that has used a genome-wide association approach to study hypertension and BP in an African American population, a minority group that experiences hypertension more frequently and more severely than other population groups in the United States. The findings will be useful to other researchers seeking to advance our understanding of the genetic factors that influence BP with the hope that these insights will eventually translate to new and better treatment options for hypertension in African Americans and other global populations.
PMCID: PMC2702100  PMID: 19609347
3.  Genetically Hypertensive Brown Norway Congenic Rat Strains Suggest Intermediate Traits Underlying Genetic Hypertension 
Croatian Medical Journal  2008;49(5):586-599.
To determine the independent and combined effects of three quantitative trait loci (QTL) for blood pressure in the Genetically Hypertensive (GH/Omr) rat by generating and characterizing single and combined congenic strains that have QTL on rat chromosomes (RNO) 2, 6, and 18 from the GH rat introduced into a hypertension resistant Brown Norway (BN) background.
Linkage analysis and QTL identification (genome wide QTL scan) were performed with MapMaker/EXP to build the genetic maps and MapMaker/QTL for linking the phenotypes to the genetic map. The congenic strains were derived using marker-assisted selection strategy from a single male F1 offspring of an intercross between the male GH/Omr and female BN/Elh, followed by 10 generations of selective backcrossing to the female BN progenitor strain. Single congenic strains generated were BN.GH-(D2Rat22-D2Mgh11)/Mcwi (BN.GH2); BN.GH-(D6Mit12-D6Rat15)/Mcwi (BN.GH6); and BN.GH-(D18Rat41-D18Mgh4)/Mcwi (BN.GH18). Blood pressure measurements were obtained either via a catheter placed in the femoral artery or by radiotelemetry in the single and combined congenics. Responses to angiotensin II (ANGII), norepinephrine (NE), and baroreceptor sensitivity were measured in the single congenics.
Transferring one or more QTL from the hypertensive GH into normotensive BN strain was not sufficient to cause hypertension in any of the developed congenic strains. There were no differences between the parental and congenic strains in their response to NE. However, BN.GH18 rats demonstrated significantly lower baroreceptor sensitivity (β = -1.25 ± 0.17), whereas BN.GH2 (β = 0.66 ± 0.09) and BN.GH18 (β = 0.71 ± 0.07) had significantly decreased responses to ANGII from those observed in the BN (β = 0.88 ± 0.08).
The failure to alter blood pressure levels by introducing the hypertensive QTL from the GH into the hypertension resistant BN background suggests that the QTL effects are genome background-dependent in the GH rat. BN.GH2 and BN.GH18 rats reveal significant differences in response to ANGII and impaired baroreflex sensitivity, suggesting that we may have captured a locus responsible for the genetic control of baroreceptor sensitivity, which would be considered an intermediate phenotype of blood pressure.
PMCID: PMC2582351  PMID: 18925692
4.  Identification of IGF1, SLC4A4, WWOX, and SFMBT1 as Hypertension Susceptibility Genes in Han Chinese with a Genome-Wide Gene-Based Association Study 
PLoS ONE  2012;7(3):e32907.
Hypertension is a complex disorder with high prevalence rates all over the world. We conducted the first genome-wide gene-based association scan for hypertension in a Han Chinese population. By analyzing genome-wide single-nucleotide-polymorphism data of 400 matched pairs of young-onset hypertensive patients and normotensive controls genotyped with the Illumina HumanHap550-Duo BeadChip, 100 susceptibility genes for hypertension were identified and also validated with permutation tests. Seventeen of the 100 genes exhibited differential allelic and expression distributions between patient and control groups. These genes provided a good molecular signature for classifying hypertensive patients and normotensive controls. Among the 17 genes, IGF1, SLC4A4, WWOX, and SFMBT1 were not only identified by our gene-based association scan and gene expression analysis but were also replicated by a gene-based association analysis of the Hong Kong Hypertension Study. Moreover, cis-acting expression quantitative trait loci associated with the differentially expressed genes were found and linked to hypertension. IGF1, which encodes insulin-like growth factor 1, is associated with cardiovascular disorders, metabolic syndrome, decreased body weight/size, and changes of insulin levels in mice. SLC4A4, which encodes the electrogenic sodium bicarbonate cotransporter 1, is associated with decreased body weight/size and abnormal ion homeostasis in mice. WWOX, which encodes the WW domain-containing protein, is related to hypoglycemia and hyperphosphatemia. SFMBT1, which encodes the scm-like with four MBT domains protein 1, is a novel hypertension gene. GRB14, TMEM56 and KIAA1797 exhibited highly significant differential allelic and expressed distributions between hypertensive patients and normotensive controls. GRB14 was also found relevant to blood pressure in a previous genetic association study in East Asian populations. TMEM56 and KIAA1797 may be specific to Taiwanese populations, because they were not validated by the two replication studies. Identification of these genes enriches the collection of hypertension susceptibility genes, thereby shedding light on the etiology of hypertension in Han Chinese populations.
PMCID: PMC3315540  PMID: 22479346
5.  Identifying the genetic determinants of transcription factor activity 
Genome-wide messenger RNA expression levels are highly heritable. However, the molecular mechanisms underlying this heritability are poorly understood.The influence of trans-acting polymorphisms is often mediated by changes in the regulatory activity of one or more sequence-specific transcription factors (TFs). We use a method that exploits prior information about the DNA-binding specificity of each TF to estimate its genotype-specific regulatory activity. To this end, we perform linear regression of genotype-specific differential mRNA expression on TF-specific promoter-binding affinity.Treating inferred TF activity as a quantitative trait and mapping it across a panel of segregants from an experimental genetic cross allows us to identify trans-acting loci (‘aQTLs') whose allelic variation modulates the TF. A few of these aQTL regions contain the gene encoding the TF itself; several others contain a gene whose protein product is known to interact with the TF.Our method is strictly causal, as it only uses sequence-based features as predictors. Application to budding yeast demonstrates a dramatic increase in statistical power, compared with existing methods, to detect locus-TF associations and trans-acting loci. Our aQTL mapping strategy also succeeds in mouse.
Genetic sequence variation naturally perturbs mRNA expression levels in the cell. In recent years, analysis of parallel genotyping and expression profiling data for segregants from genetic crosses between parental strains has revealed that mRNA expression levels are highly heritable. Expression quantitative trait loci (eQTLs), whose allelic variation regulates the expression level of individual genes, have successfully been identified (Brem et al, 2002; Schadt et al, 2003). The molecular mechanisms underlying the heritability of mRNA expression are poorly understood. However, they are likely to involve mediation by transcription factors (TFs). We present a new transcription-factor-centric method that greatly increases our ability to understand what drives the genetic variation in mRNA expression (Figure 1). Our method identifies genomic loci (‘aQTLs') whose allelic variation modulates the protein-level activity of specific TFs. To map aQTLs, we integrate genotyping and expression profiling data with quantitative prior information about DNA-binding specificity of transcription factors in the form of position-specific affinity matrices (Bussemaker et al, 2007). We applied our method in two different organisms: budding yeast and mouse.
In our approach, the inferred TF activity is explicitly treated as a quantitative trait, and genetically mapped. The decrease of ‘phenotype space' from that of all genes (in the eQTL approach) to that of all TFs (in our aQTL approach) increases the statistical power to detect trans-acting loci in two distinct ways. First, as each inferred TF activity is derived from a large number of genes, it is far less noisy than mRNA levels of individual genes. Second, the number of trait/marker combinations that needs to be tested for statistical significance in parallel is roughly two orders of magnitude smaller than for eQTLs. We identified a total of 103 locus-TF associations, a more than six-fold improvement over the 17 locus-TF associations identified by several existing methods (Brem et al, 2002; Yvert et al, 2003; Lee et al, 2006; Smith and Kruglyak, 2008; Zhu et al, 2008). The total number of distinct genomic loci identified as an aQTL equals 31, which includes 11 of the 13 previously identified eQTL hotspots (Smith and Kruglyak, 2008).
To better understand the mechanisms underlying the identified genetic linkages, we examined the genes within each aQTL region. First, we found four ‘local' aQTLs, which encompass the gene encoding the TF itself. This includes the known polymorphism in the HAP1 gene (Brem et al, 2002), but also novel predictions of trans-acting polymorphisms in RFX1, STB5, and HAP4. Second, using high-throughput protein–protein interaction data, we identified putative causal genes for several aQTLs. For example, we predict that a polymorphism in the cyclin-dependent kinase CDC28 antagonistically modulates the functionally distinct cell cycle regulators Fkh1 and Fkh2. In this and other cases, our approach naturally accounts for post-translational modulation of TF activity at the protein level.
We validated our ability to predict locus-TF associations in yeast using gene expression profiles of allele replacement strains from a previous study (Smith and Kruglyak, 2008). Chromosome 15 contains an aQTL whose allelic status influences the activity of no fewer than 30 distinct TFs. This locus includes IRA2, which controls intracellular cAMP levels. We used the gene expression profile of IRA2 replacement strains to confirm that the polymorphism within IRA2 indeed modulates a subset of the TFs whose activity was predicted to link to this locus, and no other TFs.
Application of our approach to mouse data identified an aQTL modulating the activity of a specific TF in liver cells. We identified an aQTL on mouse chromosome 7 for Zscan4, a transcription factor containing four zinc finger domains and a SCAN domain. Even though we could not detect a candidate causal gene for Zscan4p because of lack of information about the mouse genome, our result demonstrates that our method also works in higher eukaryotes.
In summary, aQTL mapping has a greatly improved sensitivity to detect molecular mechanisms underlying the heritability of gene expression. The successful application of our approach to yeast and mouse data underscores the value of explicitly treating the inferred TF activity as a quantitative trait for increasing statistical power of detecting trans-acting loci. Furthermore, our method is computationally efficient, and easily applicable to any other organism whenever prior information about the DNA-binding specificity of TFs is available.
Analysis of parallel genotyping and expression profiling data has shown that mRNA expression levels are highly heritable. Currently, only a tiny fraction of this genetic variance can be mechanistically accounted for. The influence of trans-acting polymorphisms on gene expression traits is often mediated by transcription factors (TFs). We present a method that exploits prior knowledge about the in vitro DNA-binding specificity of a TF in order to map the loci (‘aQTLs') whose inheritance modulates its protein-level regulatory activity. Genome-wide regression of differential mRNA expression on predicted promoter affinity is used to estimate segregant-specific TF activity, which is subsequently mapped as a quantitative phenotype. In budding yeast, our method identifies six times as many locus-TF associations and more than twice as many trans-acting loci as all existing methods combined. Application to mouse data from an F2 intercross identified an aQTL on chromosome VII modulating the activity of Zscan4 in liver cells. Our method has greatly improved statistical power over existing methods, is mechanism based, strictly causal, computationally efficient, and generally applicable.
PMCID: PMC2964119  PMID: 20865005
gene expression; gene regulatory networks; genetic variation; quantitative trait loci; transcription factors
6.  Targeting 160 Candidate Genes for Blood Pressure Regulation with a Genome-Wide Genotyping Array 
PLoS ONE  2009;4(6):e6034.
The outcome of Genome-Wide Association Studies (GWAS) has challenged the field of blood pressure (BP) genetics as previous candidate genes have not been among the top loci in these scans. We used Affymetrix 500K genotyping data of KORA S3 cohort (n = 1,644; Southern-Germany) to address (i) SNP coverage in 160 BP candidate genes; (ii) the evidence for associations with BP traits in genome-wide and replication data, and haplotype analysis. In total, 160 gene regions (genic region±10 kb) covered 2,411 SNPs across 11.4 Mb. Marker densities in genes varied from 0 (n = 11) to 0.6 SNPs/kb. On average 52.5% of the HAPMAP SNPs per gene were captured. No evidence for association with BP was obtained for 1,449 tested SNPs. Considerable associations (P<10−3) were detected for the genes, where >50% of HAPMAP SNPs were tagged. In general, genes with higher marker density (>0.2 SNPs/kb) revealed a better chance to reach close to significance associations. Although, none of the detected P-values remained significant after Bonferroni correction (P<0.05/2319, P<2.15×10−5), the strength of some detected associations was close to this level: rs10889553 (LEPR) and systolic BP (SBP) (P = 4.5×10−5) as well as rs10954174 (LEP) and diastolic BP (DBP) (P = 5.20×10−5). In total, 12 markers in 7 genes (ADRA2A, LEP, LEPR, PTGER3, SLC2A1, SLC4A2, SLC8A1) revealed considerable association (P<10−3) either with SBP, DBP, and/or hypertension (HYP). None of these were confirmed in replication samples (KORA S4, HYPEST, BRIGHT). However, supportive evidence for the association of rs10889553 (LEPR) and rs11195419 (ADRA2A) with BP was obtained in meta-analysis across samples stratified either by body mass index, smoking or alcohol consumption. Haplotype analysis highlighted LEPR and PTGER3. In conclusion, the lack of associations in BP candidate genes may be attributed to inadequate marker coverage on the genome-wide arrays, small phenotypic effects of the loci and/or complex interaction with life-style and metabolic parameters.
PMCID: PMC2699027  PMID: 19562039
7.  Genetics of hypertension: From experimental animals to humans 
Biochimica et Biophysica Acta  2010;1802(12):1299-1308.
Essential hypertension affects 20 to 30% of the population worldwide and contributes significantly to cardiovascular mortality and morbidity. Heridability of blood pressure is around 15 to 40% but there are also substantial environmental factors affecting blood pressure variability. It is assumed that blood pressure is under the control of a large number of genes each of which has only relatively mild effects. It has therefore been difficult to discover the genes that contribute to blood pressure variation using traditional approaches including candidate gene studies and linkage studies. Animal models of hypertension, particularly in the rat, have led to the discovery of quantitative trait loci harbouring one or several hypertension related genes, but translation of these findings into human essential hypertension remains challenging. Recent development of genotyping technology made large scale genome-wide association studies possible. This approach and the study of monogenic forms of hypertension has led to the discovery of novel and robust candidate genes for human essential hypertension, many of which require functional analysis in experimental models.
PMCID: PMC2977068  PMID: 20035862
GWAS, Genome-wide association study; QTL, Quantitative trait locus; SHR, Spontaneously hypertensive rat; SHRSP, Stroke-prone spontaneously hypertensive rat; SNP, Single nucleotide polymorphism; WTCCC, Wellcome Trust Case Control Consortium; Hypertension; Genetics; Rodents; Human
8.  Recent Findings in the Genetics of Blood Pressure and Hypertension Traits 
American journal of hypertension  2010;24(4):392-400.
We provide an overview of ongoing discovery efforts in the genetics of blood pressure (BP) and hypertension (HTN) traits. Two large genome-wide association meta-analyses of individuals of European descent were recently published, revealing ~13 new loci for BP traits. Only two of these loci harbor genes in a pathway known to affect BP (CYP17A1 and NPPA/NPPB). Functional variants in these loci are still unknown. Few genome-wide association studies (GWAS) of complex diseases have been published from non-European populations. The study of populations with different evolutionary history and linkage disequilibrium (LD) structure, such as individuals of African ancestry, may provide an opportunity to further narrow these regions to identify the causal gene(s). Several collaborative efforts toward discovery of low-frequency variants and copy number variation for BP traits are currently underway. As evidence for new loci for complex diseases accumulates the assessment of the epidemiologic architecture of these variants in populations assumes higher priority. The impact of public health–relevant contexts such as diet, physical activity, psychosocial factors, and aging has not been examined for most common variants associated with BP.
PMCID: PMC3110743  PMID: 20948529
blood pressure; genes; genome-wide association; hypertension
9.  Regional Heritability Mapping to identify loci underlying genetic variation of complex traits 
BMC Proceedings  2014;8(Suppl 5):S3.
Genome-wide association studies can have limited power to identify QTL, partly due to the stringent correction for multiple testing and low linkage-disequilibrium between SNPs and QTL. Regional Heritability Mapping (RHM) has been advanced as an alternative approach to capture underlying genetic effects. In this study, RHM was used to identify loci underlying variation in the 16th QTLMAS workshop simulated traits.
The method was implemented by fitting a mixed model where a genomic region and the overall genetic background were added as random effects. Heritabilities for the genetic regional effects were estimated, and the presence of a QTL in the region was tested using a likelihood ratio test (LRT). Several region sizes were considered (100, 50 and 20 adjacent SNPs). Bonferroni correction was used to calculate the LRT thresholds for genome-wide (p < 0.05) and suggestive (i.e., one false positive per genome scan) significance.
Genomic heritabilities (0.31, 0.32 and 0.48, respectively) and genetic correlations (0.80, -0.42 and 0.19, between trait-pairs 1&2, 1&3 and 2&3) were similar to the simulated ones. RHM identified 7 QTL (4 at genome-wide and 3 at suggestive level) for Trait1; 4 (2 genome-wide and 2 suggestive) for Trait2; and 7 (6 genome-wide and 1 suggestive) for Trait3. Only one of the identified suggestive QTL was a false-positive. The position of these QTL tended to coincide with the position where the largest QTL (or several of them) were simulated. Several signals were detected for the simulated QTL with smaller effect. A combined analysis including all significant regions showed that they explain more than half of the total genetic variance of the traits. However, this might be overestimated, due to Beavis effect. All QTL affecting traits 1&2 and 2&3 had positive correlations, following the trend of the overall correlation of both trait-pairs. All but one QTL affecting traits 1&3 were negatively correlated, in agreement with the simulated situation. Moreover, RHM identified extra loci that were not found by association and linkage analysis, highlighting the improved power of this approach.
RHM identified the largest QTL among the simulated ones, with some signals for the ones with small effect. Moreover, RHM performed better than association and linkage analysis, in terms of both power and resolution.
PMCID: PMC4195407  PMID: 25519517
10.  Suggestive linkage detected for blood pressure related traits on 2q and 22q in the population on the Samoan islands 
BMC Medical Genetics  2009;10:107.
High blood pressure or hypertension is a major risk factor involved in the development of cardiovascular diseases. We conducted genome-wide variance component linkage analyses to search for loci influencing five blood pressure related traits including the quantitative traits systolic blood pressure (SBP), diastolic blood pressure (DBP) and pulse pressure (PP), the dichotomous trait hypertension (HT) and the bivariate quantitative trait SBP-DBP in families residing in American Samoa and Samoa, as well as in the combined sample from the two polities. We adjusted the traits for a number of environmental covariates such as smoking, alcohol consumption, physical activity and material life style.
We found suggestive univariate linkage for SBP on chromosome 2q35-q37 (LOD 2.4) and for PP on chromosome 22q13 (LOD 2.2), two chromosomal regions that recently have been associated with SBP and PP, respectively.
We have detected additional evidence for a recently reported locus associated with SBP on chromosome 2q and a susceptibility locus for PP on chromosome 22q. However, differences observed between the results from our three partly overlapping genetically homogenous study samples from the Samoan islands suggest that additional studies should be performed in order to verify these results.
PMCID: PMC2770055  PMID: 19852796
11.  Mapping Genetic Variants Associated with Beta-Adrenergic Responses in Inbred Mice 
PLoS ONE  2012;7(7):e41032.
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β1-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10−8). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10−6). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.
PMCID: PMC3409184  PMID: 22859963
12.  Whole Brain and Regional Hyperintense White Matter Volume and Blood Pressure: Overlap of Genetic Loci produced by Bivariate, Whole-Genome Linkage Analyses 
Background and Purpose
The volume of T2-hyperintense white matter (HWM) is an important neuroimaging marker of cerebral integrity, with a demonstrated high heritability. Pathophysiology studies have shown that the regional, ependymal and subcortical, HWM lesions are associated with elevated arterial pulse pressure (PP) and arterial blood pressure (BP), respectively. We performed bivariate, whole-genome linkage analyses for HWM volumes and BP-measurements to identify chromosomal regions that contribute jointly to both traits in a population of healthy Mexican Americans. Our aims were to localize novel quantitative trait loci (QTLs) acting pleiotropically upon these phenotypes and to replicate previous genetic findings on WB-HWM volume and BP measurements.
BP measurements and volumes of whole-brain (WB), subcortical and ependymal HWM lesions, measured from high-resolution (1mm3) 3D-FLAIR images, served as focal quantitative phenotypes. Data were collected from 357 (218 females; mean age=47.9±13.2years) members of large extended families who participated in the San Antonio Family Heart Study.
Bivariate genome-wide linkage analyses localized a significant QTL influencing WB-and regional (ependymal) HWM volumes and PP and systolic BP, to chromosomal location 1q24 between markers D1S196–D1S1619. Several other chromosomal regions (1q42, 10q24–q26 and 15q26) exhibited suggestive linkages. The results of the post-hoc analyses that excluded 55 subjects taking anti-hypertensive medication showed no substantive differences from the results obtained in the full cohort.
This study confirms several previously observed QTLs influencing BP and cerebral integrity and identifies a novel significant QTL at chromosome 1q24. The genetic results strongly support a role for pleiotropically-acting genes jointly influencing BP and cerebral WM integrity.
PMCID: PMC3084627  PMID: 20724716
13.  A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study 
BMC Medical Genetics  2007;8(Suppl 1):S17.
Blood lipid levels including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) are highly heritable. Genome-wide association is a promising approach to map genetic loci related to these heritable phenotypes.
In 1087 Framingham Heart Study Offspring cohort participants (mean age 47 years, 52% women), we conducted genome-wide analyses (Affymetrix 100K GeneChip) for fasting blood lipid traits. Total cholesterol, HDL-C, and TG were measured by standard enzymatic methods and LDL-C was calculated using the Friedewald formula. The long-term averages of up to seven measurements of LDL-C, HDL-C, and TG over a ~30 year span were the primary phenotypes. We used generalized estimating equations (GEE), family-based association tests (FBAT) and variance components linkage to investigate the relationships between SNPs (on autosomes, with minor allele frequency ≥10%, genotypic call rate ≥80%, and Hardy-Weinberg equilibrium p ≥ 0.001) and multivariable-adjusted residuals. We pursued a three-stage replication strategy of the GEE association results with 287 SNPs (P < 0.001 in Stage I) tested in Stage II (n ~1450 individuals) and 40 SNPs (P < 0.001 in joint analysis of Stages I and II) tested in Stage III (n~6650 individuals).
Long-term averages of LDL-C, HDL-C, and TG were highly heritable (h2 = 0.66, 0.69, 0.58, respectively; each P < 0.0001). Of 70,987 tests for each of the phenotypes, two SNPs had p < 10-5 in GEE results for LDL-C, four for HDL-C, and one for TG. For each multivariable-adjusted phenotype, the number of SNPs with association p < 10-4 ranged from 13 to 18 and with p < 10-3, from 94 to 149. Some results confirmed previously reported associations with candidate genes including variation in the lipoprotein lipase gene (LPL) and HDL-C and TG (rs7007797; P = 0.0005 for HDL-C and 0.002 for TG). The full set of GEE, FBAT and linkage results are posted at the database of Genotype and Phenotype (dbGaP). After three stages of replication, there was no convincing statistical evidence for association (i.e., combined P < 10-5 across all three stages) between any of the tested SNPs and lipid phenotypes.
Using a 100K genome-wide scan, we have generated a set of putative associations for common sequence variants and lipid phenotypes. Validation of selected hypotheses in additional samples did not identify any new loci underlying variability in blood lipids. Lack of replication may be due to inadequate statistical power to detect modest quantitative trait locus effects (i.e., <1% of trait variance explained) or reduced genomic coverage of the 100K array. GWAS in FHS using a denser genome-wide genotyping platform and a better-powered replication strategy may identify novel loci underlying blood lipids.
PMCID: PMC1995614  PMID: 17903299
14.  Microsatellites and SNPs linkage analysis in a Sardinian genetic isolate confirms several essential hypertension loci previously identified in different populations 
BMC Medical Genetics  2009;10:81.
A multiplicity of study designs such as gene candidate analysis, genome wide search (GWS) and, recently, whole genome association studies have been employed for the identification of the genetic components of essential hypertension (EH). Several genome-wide linkage studies of EH and blood pressure-related phenotypes demonstrate that there is no single locus with a major effect while several genomic regions likely to contain EH-susceptibility loci were validated by multiple studies.
We carried out the clinical assessment of the entire adult population in a Sardinian village (Talana) and we analyzed 16 selected families with 62 hypertensive subjects out of 267 individuals. We carried out a double GWS using a set of 902 uniformly spaced microsatellites and a high-density SNPs map on the same group of families.
Three loci were identified by both microsatellites and SNP scans and the obtained linkage results showed a remarkable degree of similarity. These loci were identified on chromosome 2q24, 11q23.1–25 and 13q14.11–21.33. Further support to these findings is their broad description present in literature associated to EH or related phenotypes. Bioinformatic investigation of these loci shows several potential EH candidate genes, several of whom already associated to blood pressure regulation pathways.
Our search for major susceptibility EH genetic factors evidences that EH in the genetic isolate of Talana is due to the contribution of several genes contained in loci identified and replicated by earlier findings in different human populations.
PMCID: PMC2741446  PMID: 19715579
15.  Evidence for a gene influencing heart rate on chromosome 5p13-14 in a meta-analysis of genome-wide scans from the NHLBI Family Blood Pressure Program 
BMC Medical Genetics  2006;7:17.
Elevated resting heart rate has been shown in multiple studies to be a strong predictor of cardiovascular disease. Previous family studies have shown a significant heritable component to heart rate with several groups conducting genomic linkage scans to identify quantitative trait loci.
We performed a genome-wide linkage scan to identify quantitative trait loci influencing resting heart rate among 3,282 Caucasians and 3,989 African-Americans in three independent networks comprising the Family Blood Pressure Program (FBPP) using 368 microsatellite markers. Mean heart rate measurements were used in a regression model including covariates for age, body mass index, pack-years, currently drinking alcohol (yes/no), hypertension status and medication usage to create a standardized residual for each gender/ethnic group within each study network. This residual was used in a nonparametric variance component model to generate a LOD score and a corresponding P value for each ethnic group within each study network. P values from each ethnic group and study network were merged using an adjusted Fisher's combining P values method and the resulting P values were converted to LOD scores. The entire analysis was redone after individuals currently taking beta-blocker medication were removed.
We identified significant evidence of linkage (LOD = 4.62) to chromosome 10 near 142.78 cM in the Caucasian group of HyperGEN. Between race and network groups we identified a LOD score of 1.86 on chromosome 5 (between 39.99 and 45.34 cM) in African-Americans in the GENOA network and the same region produced a LOD score of 1.12 among Caucasians within a different network (HyperGEN). Combining all network and race groups we identified a LOD score of 1.92 (P = 0.0013) on chromosome 5p13-14. We assessed heterogeneity for this locus between networks and ethnic groups and found significant evidence for low heterogeneity (P ≤ 0.05).
We found replication (LOD > 1) between ethnic groups and between study networks with low heterogeneity on chromosome 5p13-14 suggesting that a gene in this region influences resting heart rate.
PMCID: PMC1413518  PMID: 16509988
16.  Genome-Wide Association Study SNPs in the Human Genome Diversity Project Populations: Does Selection Affect Unlinked SNPs with Shared Trait Associations? 
PLoS Genetics  2011;7(1):e1001266.
Genome-wide association studies (GWAS) have identified more than 2,000 trait-SNP associations, and the number continues to increase. GWAS have focused on traits with potential consequences for human fitness, including many immunological, metabolic, cardiovascular, and behavioral phenotypes. Given the polygenic nature of complex traits, selection may exert its influence on them by altering allele frequencies at many associated loci, a possibility which has yet to be explored empirically. Here we use 38 different measures of allele frequency variation and 8 iHS scores to characterize over 1,300 GWAS SNPs in 53 globally distributed human populations. We apply these same techniques to evaluate SNPs grouped by trait association. We find that groups of SNPs associated with pigmentation, blood pressure, infectious disease, and autoimmune disease traits exhibit unusual allele frequency patterns and elevated iHS scores in certain geographical locations. We also find that GWAS SNPs have generally elevated scores for measures of allele frequency variation and for iHS in Eurasia and East Asia. Overall, we believe that our results provide evidence for selection on several complex traits that has caused changes in allele frequencies and/or elevated iHS scores at a number of associated loci. Since GWAS SNPs collectively exhibit elevated allele frequency measures and iHS scores, selection on complex traits may be quite widespread. Our findings are most consistent with this selection being either positive or negative, although the relative contributions of the two are difficult to discern. Our results also suggest that trait-SNP associations identified in Eurasian samples may not be present in Africa, Oceania, and the Americas, possibly due to differences in linkage disequilibrium patterns. This observation suggests that non-Eurasian and non-East Asian sample populations should be included in future GWAS.
Author Summary
Natural selection exerts its influence by changing allele frequencies at genomic polymorphisms. Alleles associated with harmful traits decrease in frequency while those associated with beneficial traits become more common. In a simple case, selection acts on a trait controlled by a single polymorphism; a large change in allele frequency at this polymorphism can eliminate a deleterious phenotype from a population or fix a beneficial one. However, many phenotypes, including diseases like Type 2 Diabetes, Crohn's disease, and prostate cancer, and physiological traits like height, weight, and hair color, are controlled by multiple genomic loci. Selection may act on such traits by influencing allele frequencies at a single associated polymorphism or by altering allele frequencies at many associated polymorphisms. To search for cases of the latter, we assembled groups of genomic polymorphisms sharing a common trait association and examined their allele frequencies across 53 globally distributed populations looking for commonalities in allelic behavior across geographical space. We find that variants associated with blood pressure tend to correlate with latitude, while those associated with HIV/AIDS progression correlate well with longitude. We also find evidence that selection may be acting worldwide to increase the frequencies of alleles that elevate autoimmune disease risk.
PMCID: PMC3017115  PMID: 21253569
17.  Genome-Wide Linkage Scan to Identify Loci Associated with Type 2 Diabetes and Blood Lipid Phenotypes in the Sikh Diabetes Study 
PLoS ONE  2011;6(6):e21188.
In this investigation, we have carried out an autosomal genome-wide linkage analysis to map genes associated with type 2 diabetes (T2D) and five quantitative traits of blood lipids including total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, and triglycerides in a unique family-based cohort from the Sikh Diabetes Study (SDS). A total of 870 individuals (526 male/344 female) from 321 families were successfully genotyped using 398 polymorphic microsatellite markers with an average spacing of 9.26 cM on the autosomes. Results of non-parametric multipoint linkage analysis using Sall statistics (implemented in Merlin) did not reveal any chromosomal region to be significantly associated with T2D in this Sikh cohort. However, linkage analysis for lipid traits using QTL-ALL analysis revealed promising linkage signals with p≤0.005 for total cholesterol, LDL cholesterol, and HDL cholesterol at chromosomes 5p15, 9q21, 10p11, 10q21, and 22q13. The most significant signal (p = 0.0011) occurred at 10q21.2 for HDL cholesterol. We also observed linkage signals for total cholesterol at 22q13.32 (p = 0.0016) and 5p15.33 (p = 0.0031) and for LDL cholesterol at 10p11.23 (p = 0.0045). Interestingly, some of linkage regions identified in this Sikh population coincide with plausible candidate genes reported in recent genome-wide association and meta-analysis studies for lipid traits. Our study provides the first evidence of linkage for loci associated with quantitative lipid traits at four chromosomal regions in this Asian Indian population from Punjab. More detailed examination of these regions with more informative genotyping, sequencing, and functional studies should lead to rapid detection of novel targets of therapeutic importance.
PMCID: PMC3116872  PMID: 21698157
18.  Properties of Local Interactions and Their Potential Value in Complementing Genome-Wide Association Studies 
PLoS ONE  2013;8(8):e71203.
Local interactions between neighbouring SNPs are hypothesized to be able to capture variants missing from genome-wide association studies (GWAS) via haplotype effects but have not been thoroughly explored. We have used a new high-throughput analysis tool to probe this underexplored area through full pair-wise genome scans and conventional GWAS in diastolic and systolic blood pressure and six metabolic traits in the Northern Finland Birth Cohort 1966 (NFBC1966) and the Atherosclerosis Risk in Communities study cohort (ARIC). Genome-wide significant interactions were detected in ARIC for systolic blood pressure between PLEKHA7 (a known GWAS locus for blood pressure) and GPR180 (which plays a role in vascular remodelling), and also for triglycerides as local interactions within the 11q23.3 region (replicated significantly in NFBC1966), which notably harbours several loci (BUD13, ZNF259 and APOA5) contributing to triglyceride levels. Tests of the local interactions within the 11q23.3 region conditional on the top GWAS signal suggested the presence of two independent functional variants, each with supportive evidence for their roles in gene regulation. Local interactions captured 9 additional GWAS loci identified in this study (3 significantly replicated) and 73 from previous GWAS (24 in the eight traits and 49 in related traits). We conclude that the detection of local interactions requires adequate SNP coverage of the genome and that such interactions are only likely to be detectable between SNPs in low linkage disequilibrium. Analysing local interactions is a potentially valuable complement to GWAS and can provide new insights into the biology underlying variation in complex traits.
PMCID: PMC3733963  PMID: 23940718
19.  A Genome-Wide Search for Linkage of Estimated Glomerular Filtration Rate (eGFR) in the Family Investigation of Nephropathy and Diabetes (FIND) 
PLoS ONE  2013;8(12):e81888.
Estimated glomerular filtration rate (eGFR), a measure of kidney function, is heritable, suggesting that genes influence renal function. Genes that influence eGFR have been identified through genome-wide association studies. However, family-based linkage approaches may identify loci that explain a larger proportion of the heritability. This study used genome-wide linkage and association scans to identify quantitative trait loci (QTL) that influence eGFR.
Genome-wide linkage and sparse association scans of eGFR were performed in families ascertained by probands with advanced diabetic nephropathy (DN) from the multi-ethnic Family Investigation of Nephropathy and Diabetes (FIND) study. This study included 954 African Americans (AA), 781 American Indians (AI), 614 European Americans (EA) and 1,611 Mexican Americans (MA). A total of 3,960 FIND participants were genotyped for 6,000 single nucleotide polymorphisms (SNPs) using the Illumina Linkage IVb panel. GFR was estimated by the Modification of Diet in Renal Disease (MDRD) formula.
The non-parametric linkage analysis, accounting for the effects of diabetes duration and BMI, identified the strongest evidence for linkage of eGFR on chromosome 20q11 (log of the odds [LOD] = 3.34; P = 4.4×10−5) in MA and chromosome 15q12 (LOD = 2.84; P = 1.5×10−4) in EA. In all subjects, the strongest linkage signal for eGFR was detected on chromosome 10p12 (P = 5.5×10−4) at 44 cM near marker rs1339048. A subsequent association scan in both ancestry-specific groups and the entire population identified several SNPs significantly associated with eGFR across the genome.
The present study describes the localization of QTL influencing eGFR on 20q11 in MA, 15q21 in EA and 10p12 in the combined ethnic groups participating in the FIND study. Identification of causal genes/variants influencing eGFR, within these linkage and association loci, will open new avenues for functional analyses and development of novel diagnostic markers for DN.
PMCID: PMC3866106  PMID: 24358131
20.  Differential Genetic Basis for Pre-Menopausal and Post-Menopausal Salt-Sensitive Hypertension 
PLoS ONE  2012;7(8):e43160.
Essential hypertension affects 75% of post-menopausal women in the United States causing greater cardiovascular complications compared with age-matched men and pre-menopausal women. Hormone replacement and current anti-hypertensive therapies do not correct this post-menopausal increased risk suggesting a distinct pathogenic framework. We investigated the hypothesis that distinct genetic determinants might underlie susceptibility to salt sensitive hypertension in pre-menopausal and post-menopausal states. To determine whether distinct genetic loci contribute to post-menopausal salt-sensitive hypertension, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting blood pressure (BP) in 16-month old post-menopausal F2 (Dahl S×R)-intercross female rats characterized for blood pressure by radiotelemetry. Given identical environments and high salt challenge, post-menopausal BP levels were significantly higher than observed in pre-menopausal (post-menopausal versus pre-menopausal SBP, P<0.0001) and ovariectomized (post-menopausal versus ovariectomized SBP, P<0.001) F2-intercross female rats. We detected four significant to highly significant BP-QTLs (BP-pm1 on chromosome 13, LOD 3.78; BP-pm2 on chromosome 11, LOD 2.76; BP-pm3 on chromosome 2, LOD 2.61; BP-pm4 on chromosome 4, LOD 2.50) and two suggestive BP-QTLs (BP-pm5 on chromosome 15, LOD 2.37; BP-f1 on chromosome 5, LOD 1.65), four of which (BP-pm2, BP-pm3, BP-pm4, BP-pm5) were unique to this post-menopausal cohort. These data demonstrate distinct polygenic susceptibility underlying post-menopausal salt-sensitive hypertension providing a pathway towards the identification of mechanism-based therapy for post-menopausal hypertension and ensuing target-organ complications.
PMCID: PMC3422252  PMID: 22912817
21.  Mapping of a blood pressure QTL on chromosome 17 in American Indians of the strong heart family study 
Blood pressure (BP) is a complex trait, with a heritability of 30 to 40%. Several genome wide associated BP loci explain only a small fraction of the phenotypic variation. Family studies can provide an important tool for gene discovery by utilizing trait and genetic transmission information among relative-pairs. We have previously described a quantitative trait locus at chromosome 17q25.3 influencing systolic BP in American Indians of the Strong Heart Family Study (SHFS). This locus has been reported to associate with variation in BP traits in family studies of Europeans, African Americans and Hispanics.
To follow-up persuasive linkage findings at this locus, we performed comprehensive genotyping in the 1-LOD unit support interval region surrounding this QTL using a multi-step strategy. We first genotyped 1,334 single nucleotide polymorphisms (SNPs) in 928 individuals from families that showed evidence of linkage for BP. We then genotyped a second panel of 306 SNPs in all SHFS participants (N = 3,807) for genes that displayed the strongest evidence of association in the region, and, in a third step, included additional genotyping to better cover the genes of interest and to interrogate plausible candidate genes in the region.
Three genes had multiple SNPs marginally associated with systolic BP (TBC1D16, HRNBP3 and AZI1). In BQTN analysis, used to estimate the posterior probability that any variant in each gene had an effect on the phenotype, AZI1 showed the most prominent findings (posterior probability of 0.66). Importantly, upon correction for multiple testing, none of our study findings could be distinguished from chance.
Our findings demonstrate the difficulty of follow-up studies of linkage studies for complex traits, particularly in the context of low powered studies and rare variants underlying linkage peaks.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2261-14-158) contains supplementary material, which is available to authorized users.
PMCID: PMC4246441  PMID: 25387527
22.  Mining Gold Dust under the Genome Wide Significance Level: A Two-Stage Approach to Analysis of GWAS 
Genetic epidemiology  2010;35(2):111-118.
We propose a two-stage approach to analyze genome-wide association (GWA) data in order to identify a set of promising single-nucleotide polymorphisms (SNPs). In stage one, we select a list of top signals from single SNP analyses by controlling false discovery rate (FDR). In stage two, we use the least absolute shrinkage and selection operator (LASSO) regression to reduce false positives. The proposed approach was evaluated using simulated quantitative traits based on genome-wide SNP data on 8,861 Caucasian individuals from the Atherosclerosis Risk in Communities (ARIC) Study. Our first stage, targeted at controlling false negatives, yields better power than using Bonferroni corrected significance level. The LASSO regression reduces the number of significant SNPs in stage two: it reduces false positive SNPs and it reduces true positive SNPs also at simulated causal loci due to linkage disequilibrium. Interestingly, the LASSO regression preserves the power from stage one, i.e., the number of causal loci detected from the LASSO regression in stage two is almost the same as in stage one, while reducing false positives further. Real data on systolic blood pressure in the ARIC study was analyzed using our two-stage approach which identified two significant SNPs, one of which was reported to be genome-significant in a meta-analysis containing a much larger sample size. On the other hand, a single SNP association scan did not yield any significant results.
PMCID: PMC3624896  PMID: 21254218
LASSO; FDR; multi-marker; association; power
23.  Novel genomic approaches unravel genetic architecture of complex traits in apple 
BMC Genomics  2013;14:393.
Understanding the genetic architecture of quantitative traits is important for developing genome-based crop improvement methods. Genome-wide association study (GWAS) is a powerful technique for mining novel functional variants. Using a family-based design involving 1,200 apple (Malus × domestica Borkh.) seedlings genotyped for an 8K SNP array, we report the first systematic evaluation of the relative contributions of different genomic regions to various traits related to eating quality and susceptibility to some physiological disorders. Single-SNP analyses models that accounted for population structure, or not, were compared with models fitting all markers simultaneously. The patterns of linkage disequilibrium (LD) were also investigated.
A high degree of LD even at longer distances between markers was observed, and the patterns of LD decay were similar across successive generations. Genomic regions were identified, some of which coincided with known candidate genes, with significant effects on various traits. Phenotypic variation explained by the loci identified through a whole-genome scan ranged from 3% to 25% across different traits, while fitting all markers simultaneously generally provided heritability estimates close to those from pedigree-based analysis. Results from ‘Q+K’ and ‘K’ models were very similar, suggesting that the SNP-based kinship matrix captures most of the underlying population structure. Correlations between allele substitution effects obtained from single-marker and all-marker analyses were about 0.90 for all traits. Use of SNP-derived realized relationships in linear mixed models provided a better goodness-of-fit than pedigree-based expected relationships. Genomic regions with probable pleiotropic effects were supported by the corresponding higher linkage group (LG) level estimated genetic correlations.
The accuracy of artificial selection in plants species can be increased by using more precise marker-derived estimates of realized coefficients of relationships. All-marker analyses that indirectly account for population- and pedigree structure will be a credible alternative to single-SNP analyses in GWAS. This study revealed large differences in the genetic architecture of apple fruit traits, and the marker-trait associations identified here will help develop genome-based breeding methods for apple cultivar development.
PMCID: PMC3686700  PMID: 23758946
GWAS; Linkage disequilibrium; Genetic architecture; Allele substitution effect; Pleiotropy; Malus × domestica
24.  A genome scan for Plasmodium falciparum malaria identifies quantitative trait loci on chromosomes 5q31, 6p21.3, 17p12, and 19p13 
Malaria Journal  2014;13:198.
Genome-wide studies have mapped several loci controlling Plasmodium falciparum mild malaria and parasitaemia, only two of them being significant at the genome level. The objective of the present study was to identify malaria resistance loci in individuals living in Burkina Faso.
A genome scan that involved 314 individuals belonging to 63 families was performed. Markers located within chromosomes 6p21.3 and 17p12 were genotyped in 247 additional individuals belonging to 55 families. The linkage and the association of markers with parasitaemia and mild malaria were assessed by using the maximum-likelihood binomial method extended to quantitative trait linkage and the quantitative trait disequilibrium test, respectively.
Multipoint linkage analysis showed a significant linkage of mild malaria to chromosome 6p21.3 (LOD score 3.73, P = 1.7 10−5), a suggestive linkage of mild malaria to chromosome 19p13.12 (LOD score 2.50, P = 3.5 10−4), and a suggestive linkage of asymptomatic parasitaemia to chromosomes 6p21.3 (LOD score 2.36, P = 4.9 10−4) and 17p12 (LOD score 2.87, P = 1.4 10−4). Genome-wide family-based association analysis revealed a significant association between three chromosome 5q31 markers and asymptomatic parasitaemia, whereas there was no association with mild malaria. When taking into account 247 additional individuals, a significant linkage of asymptomatic parasitaemia to chromosome 17p12 (LOD score 3.6, P = 2 10−5) was detected.
A new genome-wide significant malaria locus on chromosome 17p12 and a new suggestive locus on chromosome 19p13.12 are reported. Moreover, there was evidence that confirmed the influence of chromosomes 5q31 and 6p21.3 as loci controlling mild malaria or asymptomatic parasitaemia.
PMCID: PMC4057593  PMID: 24884991
Plasmodium falciparum; Mild malaria; Parasitemia; Genome wide scan; Microsatellite markers; Linkage; Genetic association
25.  A High-Density Admixture Scan in 1,670 African Americans with Hypertension 
PLoS Genetics  2007;3(11):e196.
Hypertension (HTN) is a devastating disease with a higher incidence in African Americans than European Americans, inspiring searches for genetic variants that contribute to this difference. We report the results of a large-scale admixture scan for genes contributing HTN risk, in which we screened 1,670 African Americans with HTN and 387 control individuals for regions of the genome with elevated proportion of African or European ancestry. No loci were identified that were significantly associated with HTN. We also searched for evidence of an admixture signal at 40 candidate genes and eight previously reported linkage peaks, but none appears to contribute substantially to the differential HTN risk between African and European Americans. Finally, we observed nominal association at one of the loci detected in the admixture scan of Zhu et al. 2005 (p = 0.016 at 6q24.3 correcting for four hypotheses tested), although we caution that the significance is marginal and the estimated odds ratio of 1.19 per African allele is less than what would be expected from the original report; thus, further work is needed to follow up this locus.
Author Summary
High blood pressure is more frequent and severe among African Americans than European Americans. To explore whether there are genetic underpinnings to this pattern, we screened the genomes of 1,670 African Americans, searching for loci at which people with hypertension (HTN) have more than the average proportion of African ancestry (eighty percent). We do not detect any region of clearly significant association. In a previous, smaller admixture scan for HTN genes, Zhu and colleagues (2005) reported two regions of association, which we would have expected to replicate if they were as strong as they initially appeared. While we detect marginal evidence of association at one, the signal is very weak, and much weaker than would have been expected from the previous report, so further work is necessary to understand this region. Our results are consistent with there being no common variants with a strong effect accounting for differences in HTN prevalence between African and European Americans. This increases the weight of evidence that non-genetic causes explain most of the difference in rates across populations.
PMCID: PMC2077893  PMID: 18020707

Results 1-25 (938630)