Search tips
Search criteria

Results 1-25 (1309630)

Clipboard (0)

Related Articles

1.  Bcl-2 Regulates HIF-1α Protein Stabilization in Hypoxic Melanoma Cells via the Molecular Chaperone HSP90 
PLoS ONE  2010;5(7):e11772.
Hypoxia-Inducible Factor 1 (HIF-1) is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1α, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF)-mediated tumour angiogenesis.
Methodology/Principal Findings
By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1α protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1α protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1α protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1α stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1α degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1α protein. We also showed that bcl-2, HIF-1α and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1α protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1α protein during hypoxia, and in particular the isoform HSP90β is the main player in this phenomenon.
We identified the stabilization of HIF-1α protein as a mechanism through which bcl-2 induces the activation of HIF-1 in hypoxic tumour cells involving the β isoform of molecular chaperone HSP90.
PMCID: PMC2910721  PMID: 20668552
2.  Identification of small molecule compounds that inhibit the HIF-1 signaling pathway 
Molecular Cancer  2009;8:117.
Hypoxia-inducible factor-1 (HIF-1) is the major hypoxia-regulated transcription factor that regulates cellular responses to low oxygen environments. HIF-1 is composed of two subunits: hypoxia-inducible HIF-1α and constitutively-expressed HIF-1β. During hypoxic conditions, HIF-1α heterodimerizes with HIF-1β and translocates to the nucleus where the HIF-1 complex binds to the hypoxia-response element (HRE) and activates expression of target genes implicated in cell growth and survival. HIF-1α protein expression is elevated in many solid tumors, including those of the cervix and brain, where cells that are the greatest distance from blood vessels, and therefore the most hypoxic, express the highest levels of HIF-1α. Therapeutic blockade of the HIF-1 signaling pathway in cancer cells therefore provides an attractive strategy for development of anticancer drugs. To identify small molecule inhibitors of the HIF-1 pathway, we have developed a cell-based reporter gene assay and screened a large compound library by using a quantitative high-throughput screening (qHTS) approach.
The assay is based upon a β-lactamase reporter under the control of a HRE. We have screened approximate 73,000 compounds by qHTS, with each compound tested over a range of seven to fifteen concentrations. After qHTS we have rapidly identified three novel structural series of HIF-1 pathway Inhibitors. Selected compounds in these series were also confirmed as inhibitors in a HRE β-lactamase reporter gene assay induced by low oxygen and in a VEGF secretion assay. Three of the four selected compounds tested showed significant inhibition of hypoxia-induced HIF-1α accumulation by western blot analysis.
The use of β-lactamase reporter gene assays, in combination with qHTS, enabled the rapid identification and prioritization of inhibitors specific to the hypoxia induced signaling pathway.
PMCID: PMC2797767  PMID: 20003191
3.  Hypoxia-inducible Factor-1α Regulates Expression of Genes in Hypoxic Hepatic Stellate Cells Important for Collagen Deposition and Angiogenesis 
Several studies have shown that regions of hypoxia develop in the liver during chronic injury. Furthermore, it has been demonstrated that hypoxia stimulates the release of mediators from hepatic stellate cells (HSCs) that may affect the progression of fibrosis. The mechanism by which hypoxia modulates gene expression in HSCs is not known. Recent studies demonstrated that the hypoxia-activated transcription factor, hypoxia-inducible factor-1α (HIF-1α), is critical for the development of fibrosis. Accordingly, the hypothesis was tested that HIF-1α is activated in HSCs and regulates expression of genes important for HSC activation and liver fibrosis.
HSCs were isolated from mice and exposed to hypoxia. HIF-1α and HIF-2α activation were measured, and gene expression analyzed by gene array analysis. To identify genes regulated by HIF-1α, HSCs were isolated from Control and HIF-1α-Deficient mice.
Exposure of primary mouse HSCs to 0.5% oxygen activated HIF-1α and HIF-2α. mRNA levels of numerous genes were increased in HSCs exposed to 0.5% oxygen, many of which are important for HSC function, angiogenesis, and collagen synthesis. Of the mRNAs increased, Ccr1, Ccr5, macrophage migration inhibitory factor, interleukin-13 receptor α1, prolyl-4-hydroxylase α2 (PHD α2) were completely HIF-1α-dependent. Upregulation of VEGF and placental growth factor were partially HIF-1α-dependent and upregulation of angiopoietin-like 4 and PHD α1 were HIF-1α-independent.
Results from these studies demonstrate that hypoxia, through activation of HIF-1α, regulates expression of genes that may alter the sensitivity of HSCs to certain activators and chemotaxins, and regulates expression of genes important for angiogenesis and collagen synthesis.
PMCID: PMC3099214  PMID: 20880076
Hypoxia-inducible factor; hepatic stellate cells; hypoxia
4.  Differential Regulation of Pulmonary Vascular Cell Growth by Hypoxia-Inducible Transcription Factor–1α and Hypoxia-Inducible Transcription Factor–2α 
Hypoxia-inducible transcription factors HIF-1α and HIF-2α can contribute to pulmonary hypertension and vascular remodeling, but their mechanisms remain unknown. This study investigated the role of HIF-1α and HIF-2α in pulmonary artery endothelial and smooth muscle cells. The exposure of human pulmonary artery endothelial cells (HPAECs) to hypoxia (10% O2 or 5% O2) increased proliferation over 48 hours, compared with cells during normoxia (21% O2). The adenovirus-mediated overexpression of HIF-2α that is transcriptionally active during normoxia (mutHIF-2α) increased HPAEC proliferation, whereas the overexpression of HIF-1α, which is transcriptionally active during normoxia (mutHIF-1α), exerted no effect. The knockdown of HIF-2α decreased proliferation during both hypoxia and normoxia. Both HIFs increased migration toward fibrinogen, used as a chemoattractant. In an angiogenesis tube formation assay, mutHIF-2α–transduced cells demonstrated increased tube formation, compared with the mutHIF-1α–transduced cells. In addition, the tubes formed in HIF-2α–transduced cells were more enduring than those in the other groups. In human pulmonary artery smooth muscle cells (HPASMCs), chronic exposure to hypoxia increased proliferation, compared with cells during normoxia. For HPASMCs transduced with adenoviral HIFs, HIF-1α increased proliferation, whereas HIF-2α exerted no such effect. Thus, HIF-1α and HIF-2α exert differential effects in isolated cells of the human pulmonary vasculature. This study demonstrates that HIF-2α plays a predominant role in the endothelial growth pertinent to the remodeling process. In contrast, HIF-1α appears to play a major role in pulmonary smooth muscle growth. The selective targeting of each HIF in specific target cells may more effectively counteract hypoxic pulmonary hypertension and vascular remodeling.
PMCID: PMC3727885  PMID: 23492195
HIF-2α; hypoxia; proliferation; endothelial; pulmonary
5.  Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response 
Cellular signalling  2013;25(9):1895-1903.
Hypoxia is a prevalent attribute of the solid tumor microenvironment that promotes the expression of genes through posttranslational modifications and stabilization of alpha subunits (HIF1α and HIF2α) of hypoxia-inducible factors (HIFs). Despite significant similarities, HIF1 (HIF1α/ARNT) and HIF2 (HIF2/ARNT) activate common as well as unique target genes and exhibit different functions in cancer biology. More surprisingly, accumulating data indicates that the HIF1- and/or HIF2-mediated hypoxia responses can be oncogenic as well as tumor suppressive. While the role of HIF in the hypoxia response is well established, recent data support the concept that HIF is necessary, but not sufficient for the hypoxic response. Other transcription factors that are activated by hypoxia are also required for the HIF-mediated hypoxia response. HIFs, other transcription factors, co-factors and RNA poll II recruited by HIF and other transcription factors form multifactoral enhanceosome complexes on the promoters of HIF target genes to activate hypoxia inducible genes. Importantly, HIF1 or HIF2 require distinct partners in activating HIF1 or HIF2 target genes. Because HIF enhanceosome formation is required for the gene activation and distinct functions of HIF1 and HIF2 in tumor biology, disruption of the HIF1 or HIF2 specific enhanceosome complex may prove to be a beneficial strategy in tumor treatment in which tumor growth is specifically dependent upon HIF1 or HIF2 activity.
PMCID: PMC3700616  PMID: 23707522
hypoxia; HIF; enhanceosome; transcription factors; tumor microenvironment; transcription
6.  CDK1 stabilizes HIF-1α via direct phosphorylation of Ser668 to promote tumor growth 
Cell Cycle  2013;12(23):3689-3701.
Hypoxia-inducible factor 1 (HIF-1) is a major mediator of tumor physiology, and its activation is correlated with tumor progression, metastasis, and therapeutic resistance. HIF-1 is activated in a broad range of solid tumors due to intratumoral hypoxia or genetic alterations that enhance its expression or inhibit its degradation. As a result, decreasing HIF-1α expression represents an attractive strategy to sensitize hypoxic tumors to anticancer therapies. Here, we show that cyclin-dependent kinase 1 (CDK1) regulates the expression of HIF-1α, independent of its known regulators. Overexpression of CDK1 and/or cyclin B1 is sufficient to stabilize HIF-1α under normoxic conditions, whereas inhibition of CDK1 enhances the proteasomal degradation of HIF-1α, reducing its half-life and steady-state levels. In vitro kinase assays reveal that CDK1 directly phosphorylates HIF-1α at a previously unidentified regulatory site, Ser668. HIF-1α is stabilized under normoxic conditions during G2/M phase via CDK1-mediated phosphorylation of Ser668. A phospho-mimetic construct of HIF-1α at Ser668 (S668E) is significantly more stable under both normoxic and hypoxic conditions, resulting in enhanced transcription of HIF-1 target genes and increased tumor cell invasion and migration. Importantly, HIF-1α (S668E) displays increased tumor angiogenesis, proliferation, and tumor growth in vivo compared with wild-type HIF-1α. Thus, we have identified a novel link between CDK1 and HIF-1α that provides a potential molecular explanation for the elevated HIF-1 activity observed in primary and metastatic tumors, independent of hypoxia, and offers a molecular rationale for the clinical translation of CDK inhibitors for use in tumors with constitutively active HIF-1.
PMCID: PMC3903720  PMID: 24189531
CDK1; HIF-1α; angiogenesis; cell cycle; hypoxia
7.  Hypoxia-inducible Factor-dependent Production of Profibrotic Mediators by Hypoxic Hepatocytes 
During the development of liver fibrosis, mediators are produced that stimulate cells in the liver to differentiate into myofibroblasts and to produce collagen. Recent studies demonstrated that the transcription factor, hypoxia-inducible factor-1α (HIF-1α), is critical for upregulation of profibrotic mediators, such as platelet-derived growth factor-A (PDGF-A), PDGF-B, and plasminogen activator inhibitor-1 (PAI-1) in the liver during the development of fibrosis. What remains unknown is the cell type-specific regulation of these genes by HIF-1α in liver cell types. Accordingly, the hypothesis was tested that HIF-1α is activated in hypoxic hepatocytes and regulates production of profibrotic mediators by these cells.
In this study, hepatocytes were isolated from the livers of control and HIF-1α or HIF-1β-Deficient mice and exposed to hypoxia.
Exposure of primary mouse hepatocytes to 1% oxygen stimulated nuclear accumulation of HIF-1α and upregulated PAI-1, vascular endothelial cell growth factor, and the vasoactive peptides adrenomedullin-1 (ADM-1) and ADM-2. In contrast, levels of PDGF-A and PDGF-B mRNAs were unaffected in these cells by hypoxia. Exposure of HIF-1α-Deficient hepatocytes to 1% oxygen only partially prevented upregulation of these genes, suggesting that other hypoxia-regulated transcription factors, such as HIF-2α, may also regulate these genes. In support of this, HIF-2α was activated in hypoxic hepatocytes, and exposure of HIF-1β-Deficient hepatocytes to 1% oxygen completely prevented upregulation PAI-1, VEGF, and ADM-1, suggesting that HIF-2α may also contribute to upregulation of these genes in hypoxic hepatocytes.
Collectively, our results suggest that HIFs may be important regulators of profibrotic and vasoactive mediators by hypoxic hepatocytes.
PMCID: PMC3111079  PMID: 19302442
Hypoxia-inducible factor; hepatocytes; liver fibrosis
8.  Cobalt stimulates HIF-1-dependent but inhibits HIF-2-dependent gene expression in liver cancer cells 
The international journal of biochemistry & cell biology  2013;45(11):10.1016/j.biocel.2013.07.025.
Hypoxia-inducible factors (HIFs) are transcriptional regulators that mediate the cellular response to low oxygen. Although HIF-1 is usually considered as the principal mediator of hypoxic adaptation, several tissues and different cell types express both HIF-1 and HIF-2 isoforms under hypoxia or when treated with hypoxia mimetic chemicals such as cobalt. However, the similarities or differences between HIF-1 and HIF-2, in terms of their tissue- and inducer-specific activation and function, are not adequately characterized. To address this issue, we investigated the effects of true hypoxia and hypoxia mimetics on HIF-1 and HIF-2 induction and specific gene transcriptional activity in two hepatic cancer cell lines, Huh7 and HepG2. Both hypoxia and cobalt caused rapid induction of both HIF-1α and HIF-2α proteins. Hypoxia induced erythropoietin (EPO) expression and secretion in a HIF-2-dependent way. Surprisingly, however, EPO expression was not induced when cells were treated with cobalt. In agreement, both HIF-1- and HIF-2-dependent promoters (of PGK and SOD2 genes, respectively) were activated by hypoxia while cobalt only activated the HIF-1-dependent PGK promoter. Unlike cobalt, other hypoxia mimetics such as DFO and DMOG activated both types of promoters. Furthermore, cobalt impaired the hypoxic stimulation of HIF-2, but not HIF-1, activity and cobalt-induced HIF-2α interacted poorly with USF-2, a HIF-2-specific co-activator. These data show that, despite similar induction of HIF-1α and HIF-2α protein expression, HIF-1 and HIF-2 specific gene activating functions respond differently to different stimuli and suggest the operation of oxygen-independent and gene- or tissue-specific regulatory mechanisms involving additional transcription factors or co-activators.
PMCID: PMC3855297  PMID: 23958427
HIF-2α; EPO; SOD2; Hypoxia; Cobalt; USF2
9.  Co-culture of Retinal and Endothelial Cells Results in the Modulation of Genes Critical to Retinal Neovascularization 
Vascular Cell  2011;3:27.
Neovascularization (angiogenesis) is a multistep process, controlled by opposing regulatory factors, which plays a crucial role in several ocular diseases. It often results in vitreous hemorrhage, retinal detachment, neovascularization glaucoma and subsequent vision loss. Hypoxia is considered to be one of the key factors to trigger angiogenesis by inducing angiogenic factors (like VEGF) and their receptors mediated by hypoxia inducible factor-1 (HIF-1α) a critical transcriptional factor. Another factor, nuclear factor kappa B (NFκB) also regulates many of the genes required for neovascularization, and can also be activated by hypoxia. The aim of this study was to elucidate the mechanism of interaction between HRPC and HUVEC that modulates a neovascularization response.
Human retinal progenitor cells (HRPC) and human umbilical vein endothelial cells (HUVEC) were cultured/co-cultured under normoxia (control) (20% O2) or hypoxia (1% O2) condition for 24 hr. Controls were monolayer cultures of each cell type maintained alone. We examined the secretion of VEGF by ELISA and influence of conditioned media on blood vessel growth (capillary-like structures) via an angiogenesis assay. Total RNA and protein were extracted from the HRPC and HUVEC (cultured and co-cultured) and analyzed for the expression of VEGF, VEGFR-2, NFκB and HIF-1α by RT-PCR and Western blotting. The cellular localization of NFκB and HIF-1α were studied by immunofluorescence and Western blotting.
We found that hypoxia increased exogenous VEGF expression 4-fold in HRPC with a further 2-fold increase when cultured with HUVEC. Additionally, we found that hypoxia induced the expression of the VEGF receptor (VEGFR-2) for HRPC co-cultured with HUVEC. Hypoxia treatment significantly enhanced (8- to 10-fold higher than normoxia controls) VEGF secretion into media whether cells were cultured alone or in a co-culture. Also, hypoxia was found to result in a 3- and 2-fold increase in NFκB and HIF-1α mRNA expression by HRPC and a 4- and 6-fold increase in NFκB and HIF-1α protein by co-cultures, whether non-contacting or contacting.
Treatment of HRPC cells with hypoxic HUVEC-CM activated and promoted the translocation of NFκB and HIF-1α to the nuclear compartment. This finding was subsequently confirmed by finding that hypoxic HUVEC-CM resulted in higher expression of NFκB and HIF-1α in the nuclear fraction of HRPC and corresponding decrease in cytoplasmic NFκB and HIF-1α. Lastly, hypoxic conditioned media induced a greater formation of capillary-like structures (angiogenic response) compared to control conditioned media. This effect was attenuated by exogenous anti-human VEGF antibody, suggesting that VEGF was the primary factor in the hypoxic conditioned media responsible for the angiogenic response.
These findings suggest that intercellular communications between HRPC and HUVEC lead to the modulation of expression of transcription factors associated with the production of pro-angiogenic factors under hypoxic conditions, which are necessary for an enhanced neovascular response. Our data suggest that the hypoxia treatment results in the up-regulation of both mRNA and protein expression for VEGF and VEGFR-2 through the translocation of NFκB and HIF-1α into the nucleus, and results in enhanced HRPC-induced neovascularization. Hence, a better understanding of the underlying mechanism for these interactions might open perspectives for future retinal neovascularization therapy.
PMCID: PMC3253041  PMID: 22112782
Neovascularization; Human retinal progenitor cells (HRPC); Human umbilical vein endothelial cells (HUVEC); Hypoxia, Vascular endothelial growth factor; Conditioned medium; Co-culture
10.  Relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival 
British Journal of Cancer  2001;85(6):881-890.
Hypoxia inducible factors HIF1α and HIF2α are important proteins involved in the regulation of the transcription of a variety of genes related to erythropoiesis, glycolysis and angiogenesis. Hypoxic stimulation results in rapid increase of the HIF1α and 2α protein levels, as a consequence of a redox-sensitive stabilization. The HIFαs enter the nucleus, heterodimerize with the HIF1β protein, and bind to DNA at the hypoxia response elements (HREs) of target genes. In this study we evaluated the immunohistochemical expression of these proteins in 108 tissue samples from non-small-cell lung cancer (NSCLC) and in normal lung tissues. Both proteins showed a mixed cytoplasmic/nuclear pattern of expression in cancer cells, tumoural vessels and tumour-infiltrating macrophages, as well as in areas of metaplasia, while normal lung components showed negative or very weak cytoplasmic staining. Positive HIF1α and HIF2α expression was noted in 68/108 (62%) and in 54/108 (50%) of cases respectively. Correlation analysis of HIF2α expression with HIF1α expression showed a significant association (P < 0.0001, r = 0.44). A strong association of the expression of both proteins with the angiogenic factors VEGF (P < 0.004), PD-ECGF (P < 0.003) and bFGF (P < 0.04) was noted. HIF1α correlated with the expression of bek-bFGF receptor expression (P = 0.01), while HIF2α was associated with intense VEGF/KDR-activated vascularization (P = 0.002). HIF2α protein was less frequently expressed in cases with a medium microvessel density (MVD); a high rate of expression was noted in cases with both low and high MVD (P = 0.006). Analysis of overall survival showed that HIF2α expression was related to poor outcome (P = 0.008), even in the group of patients with low MVD (P = 0.009). HIF1α expression was marginally associated with poor prognosis (P = 0.08). In multivariate analysis HIF2α expression was an independent prognostic indicator (P = 0.006, t-ratio 2.7). We conclude that HIF1α and HIF2α overexpression is a common event in NSCLC, which is related to the up-regulation of various angiogenic factors and with poor prognosis. Targeting the HIF pathway may prove of importance in the treatment of NSCLC. © 2001 Cancer Research Campaign
PMCID: PMC2375073  PMID: 11556841
non-small-cell lung cancer; hypoxia inducible factors; angiogenesis; prognosis
11.  Differential effects of Th1 versus Th2 cytokines in combination with hypoxia on HIFs and angiogenesis in RA 
Arthritis Research & Therapy  2012;14(4):R180.
Hypoxia and T-helper cell 1 (Th1) cytokine-driven inflammation are key features of rheumatoid arthritis (RA) and contribute to disease pathogenesis by promoting angiogenesis. The objective of our study was to characterise the angiogenic gene signature of RA fibroblast-like synoviocytes (FLS) in response to hypoxia, as well as Th1 and T-helper cell 2 (Th2) cytokines, and in particular to dissect out effects of combined hypoxia and cytokines on hypoxia inducible transcription factors (HIFs) and angiogenesis.
Human angiogenesis PCR arrays were used to screen cDNA from RA FLS exposed to hypoxia (1% oxygen) or dimethyloxalylglycine, which stabilises HIFs. The involvement of HIF isoforms in generating the angiogenic signature of RA FLS stimulated with hypoxia and/or cytokines was investigated using a DNA-binding assay and RNA interference. The angiogenic potential of conditioned media from hypoxia-treated and/or cytokine-treated RA FLS was measured using an in vitro endothelial-based assay.
Expression of 12 angiogenic genes was significantly altered in RA FLS exposed to hypoxia, and seven of these were changed by dimethyloxalylglycine, including ephrin A3 (EFNA3), vascular endothelial growth factor (VEGF), adipokines angiopoietin-like (ANGPTL)-4 and leptin. These four proangiogenic genes were dependent on HIF-1 in hypoxia to various degrees: EFNA3 >ANGPTL-4 >VEGF >leptin. The Th1 cytokines TNFα and IL-1β induced HIF-1 but not HIF-2 transcription as well as activity, and this effect was additive with hypoxia. In contrast, Th2 cytokines had no effect on HIFs. IL-1β synergised with hypoxia to upregulate EFNA3 and VEGF in a HIF-1-dependent fashion but, despite strongly inducing HIF-1, TNFα suppressed adipokine expression and had minimal effect on EFNA3. Supernatants from RA FLS subjected to hypoxia and TNFα induced fewer endothelial tubules than those from FLS subjected to TNFα or hypoxia alone, despite high VEGF protein levels. The Th2 cytokine IL-4 strongly induced ANGPTL-4 and angiogenesis by normoxic FLS and synergised with hypoxia to induce further proangiogenic activity.
The present work demonstrates that Th1 cytokines in combination with hypoxia are not sufficient to induce angiogenic activity by RA FLS despite HIF-1 activation and VEGF production. In contrast, Th2 cytokines induce angiogenic activity in normoxia and hypoxia, despite their inability to activate HIFs, highlighting the complex relationships between hypoxia, angiogenesis and inflammation in RA.
PMCID: PMC3580575  PMID: 22866899
12.  HIF-1α-Deficient Mice Have Increased Brain Injury after Neonatal Hypoxia-Ischemia 
Developmental Neuroscience  2009;31(5):452-458.
Evidence suggests that the activation of the transcription factor hypoxia-inducible factor 1α (HIF-1α) may promote cell survival in hypoxic or ischemic brain. To help understand the role of HIF-1α in neonatal hypoxic-ischemic brain injury, mice with conditional neuron-specific inactivation of HIF-1α underwent hypoxia-ischemia (HI). Mice heterozygous for Cre recombinase under the control of the calcium/calmodulin-dependent kinase II promoter were bred with homozygous ‘floxed’ HIF-1α transgenic mice. The resulting litters produced mice with a forebrain predominant neuronal deletion of HIF-1α (HIF-1αΔ/Δ), as well as littermates without the deletion. In order to verify reduction of HIF-1α at postnatal day 7, HIF-1αΔ/Δ and wild-type mice were exposed to a hypoxic stimulus (8% oxygen) or room air for 1 h, followed by immediate collection of brain cortices for determination of HIF-1α expression. Results of Western blotting of mouse cortices exposed to hypoxia stimulus or room air confirmed that HIF-1αΔ/Δ cortex expressed a minimal amount of HIF-1α protein compared to wild-type cortex with the same hypoxic stimulus. Subsequently, pups underwent the Vannucci procedure of HI at postnatal day 7: unilateral ligation of the right common carotid artery followed by 30 min of hypoxia (8% oxygen). Immunofluorescent staining of brains 24 h after HI confirmed a relative lack of HIF-1α in the HIF-1αΔ/Δ cortex compared to the wild type, and that HIF-1α in the wild type is located in neurons. HIF-1α expression was determined in mouse cortex 24 h after HI. Histological analysis for the degree of injury was performed 5 days after HI. HIF-1α protein expression 24 h after HI showed a large increase of HIF-1α in the hypoxic-ischemic cortex of the wild-type compared to the hypoxic only cortex. Histological analysis revealed that HI injury was increased in the neuronally deficient HIF-1αΔ/Δ mouse brain (p < 0.05) and was more severe in the cortex. Genetic reduction of neuronal HIF-1α results in a worsening of injury after neonatal HI, with a region-specific role for HIF-1α in the setting of neonatal brain injury.
PMCID: PMC2820335  PMID: 19672073
Brain injury; Transcription factor; Hypoxia-inducible factor 1α; Neonatal hypoxia-ischemia
13.  Decreased VEGF expression and microvascular density, but increased HIF-1 and 2α accumulation and EPO expression in chronic moderate hyperoxia in the mouse brain 
Brain research  2012;1471:46-55.
Normal brain function is dependent on continuous and controlled oxygen delivery. Chronic moderate hypoxia leads to angiogenesis, suggesting a modulatory role for oxygen in determining capillary density. The objective of this study was to determine physiologic and brain angiogenic adaptational changes during chronic moderate normobaric hyperoxia in mice. Four-month old C56BL/6J mice were kept in a normobaric chamber at 50% O2 for up to 3 weeks. Normoxic littermates were kept in the same room outside the chamber. Freshly collected or fixed brain specimens were analyzed by RT-PCR, Western blot analysis and immunohistochemistry. Results show accumulation of hypoxia inducible factors 1 and 2α (HIF-1 and 2α), and increased expression of erythropoietin (EPO), cyclooxygenase-2 (COX-2) and angiopoietin-2 (Ang-2). Conversely, vascular endothelial growth factor (VEGF), and VEGF receptor-2 (KDR/Flk-1), Peroxisome proliferator-activated receptor gamma coactivator 1-α(PGC-1α) and prolylhydroxylase-2 (PHD-2) expressions were decreased. VEGF mRNA level was diminished but there was no change in HIF-1α mRNA and von Hippel Lindau E3 ubiquitin ligase (VHL) protein expression. Microvascular density was significantly diminished by the end of the 3rd week of hyperoxia. Overall, our results are: 1) increased expression of the potent neuroprotective molecule, EPO; 2) diminished expression of the potent angiogenic factor, VEGF; and 3) decreased microvascular density. We can, therefore, conclude that brain microvascular density can be controlled by HIF-independent mechanisms, and that brain capillary density is a continuously adjusted variable with tissue oxygen availability as one of the controlling modulators.
PMCID: PMC3454487  PMID: 22820296
COX-2; Ang-2; PGC-1α; PHD-2; brain angioplasticity
14.  Lung Macrophages Contribute to House Dust Mite Driven Airway Remodeling via HIF-1α 
PLoS ONE  2013;8(7):e69246.
HIF-1α is a transcription factor that is activated during hypoxia and inflammation and is a key regulator of angiogenesis in vivo. During the development of asthma, peribronchial angiogenesis is induced in response to aeroallergens and is thought to be an important feature of sustained chronic allergic inflammation. Recently, elevated HIF-1α levels have been demonstrated in both the lung tissue and bronchoalveolar lavage of allergic patients, respectively. Therefore, we investigated the role of HIF-1α on the development of angiogenesis and inflammation following acute and chronic allergen exposure. Our data shows that intranasal exposure to house dust mite (HDM) increases the expression of HIF-1α in the lung, whilst reducing the expression of the HIF-1α negative regulators, PHD1 and PHD3. Blockade of HIF-1α in vivo, significantly decreased allergic inflammation and eosinophilia induced by allergen, due to a reduction in the levels of IL-5 and Eotaxin-2. Importantly, HIF-1α blockade significantly decreased levels of VEGF-A and CXCL1 in the lungs, which in turn led to a profound decrease in the recruitment of endothelial progenitor cells and a reduction of peribronchial angiogenesis. Furthermore, HDM or IL-4 treatment of primary lung macrophages resulted in significant production of both VEGF-A and CXCL1; inhibition of HIF-1α activity abrogated the production of these factors via an up-regulation of PHD1 and PHD3. These findings suggest that novel strategies to reduce the expression and activation of HIF-1α in lung macrophages may be used to attenuate allergen-induced airway inflammation and angiogenesis through the modulation of VEGF-A and CXCL1 expression.
Clinical Relevance
This study provides new insights into the role of HIF-1α in the development of peribronchial angiogenesis and inflammation in a murine model of allergic airway disease. These findings indicate that strategies to reduce activation of macrophage derived HIF-1α may be used as a target to improve asthma pathology.
PMCID: PMC3720585  PMID: 23935964
15.  Physical and Functional Interactions between Runx2 and HIF-1α Induce Vascular Endothelial Growth Factor Gene Expression 
Journal of cellular biochemistry  2011;112(12):3582-3593.
Angiogenesis and bone formation are intimately related processes. Hypoxia during early bone development stabilizes hypoxia-inducible factor-1α (HIF-1α) and increases angiogenic signals including vascular endothelial growth factor (VEGF). Furthermore, stabilization of HIF-1α by genetic or chemical means stimulates bone formation. On the other hand, deficiency of Runx2, a key osteogenic transcription factor, prevents vascular invasion of bone and VEGF expression. This study explores the possibility that HIF-1α and Runx2 interact to activate angiogenic signals. Runx2 over-expression in mesenchymal cells increased VEGF mRNA and protein under both normoxic and hypoxic conditions. In normoxia, Runx2 also dramatically increased HIF-1α protein. In all cases, the Runx2 response was inhibited by siRNA-mediated suppression of HIF-1α and completely blocked by the HIF-1α inhibitor, echinomycin. Similarly, treatment of preosteoblast cells with Runx2 siRNA reduced VEGF mRNA in normoxia or hypoxia. However, Runx2 is not essential for the HIF-1α response since VEGF is induced by hypoxia even in Runx2-null cells. Endogenous Runx2 and HIF-1α were colocalized to the nuclei of MC3T3-E1 preosteoblast cells. Moreover, HIF-1α and Runx2 physically interact using sites within the Runx2 RUNT domain. Chromatin immunoprecipitation also provided evidence for colocalization of Runx2 and HIF-1α on the VEGF promoter. In addition, Runx2 stimulated HIF-1α-dependent activation of an HRE-luciferase reporter gene without requiring a separate Runx2-binding enhancer. These studies indicate that Runx2 functions together with HIF-1α to stimulate angiogenic gene expression in bone cells and may in part explain the known requirement for Runx2 in bone vascularization.
PMCID: PMC3202060  PMID: 21793044
Osteoblast; vascularization; angiogenesis; transcriptional factors; hypoxia
16.  HIF-1α: a Valid Therapeutic Target for Tumor Therapy 
Hypoxia plays a major role in the induction of angiogenesis during tumor development. One mechanism by which tumor cells respond to a reduced oxygen level is via the activation of hypoxia-inducible factor-1 (HIF-1). HIF-1 is an oxygen-dependent transcriptional activator that plays crucial roles in the angiogenesis of tumors and mammalian development. HIF-1 consists of a constitutively expressed HIF-1β subunit and the highly regulated HIF-1α subunits. The stability and activity of HIF-1α are regulated by various post-translational modifications, hydroxylation, acetylation, phosphorylation and sumoyaltion. Therefore, HIF-1α interacts with several protein factors including PHD, pVHL, ARD-1, SUMO and p300/CBP. Under normoxia, the HIF-1α subunit is rapidly degraded via the von Hippel-Lindau tumor suppressor gene product (pVHL)-mediated ubiquitin/proteasome pathway. The association of pVHL and HIF-1α under normoxic conditions is triggered by the hydroxylation of prolines and the acetylation of lysine within a polypeptide segment known as the oxygen-dependent degradation (ODD) domain. On the contrary, under the hypoxia condition, the HIF-1α subunit becomes stable and interacts with coactivators such as p300/CBP to modulate its transcriptional activity. Under hypoxic conditions, HIF-1 eventually acts as a master regulator of numerous hypoxia-inducible genes. The target genes of HIF-1 are especially related to angiogenesis, cell proliferation and survival, and to glucose and iron metabolism. Moreover, it was reported that the activation of HIF-1α is closely associated with a variety of tumors and oncogenic pathways. Hence, the blocking of HIF-1α itself or the blocking of HIF-1α interacting proteins inhibits tumor growth. Based on these findings, HIF-1 can be a prime target for anticancer therapies. Therefore, this review summarizes the molecular mechanism of HIF-1α stability, the biological functions of HIF-1 and its potential applications for cancer therapies.
PMCID: PMC2843877  PMID: 20368827
ARD1; Angiogenesis; Anticancer therapy; Cell proliferation/survival; Glucose metabolism; HIF-1; Iron metabolism; PHD; SUMO; pVHL; p300/CBP; Transcription factor
Journal of cellular biochemistry  2011;112(12):3882-3890.
Hypoxia inducible factor-1α (HIF-1α) stimulates expression of genes associated with angiogenesis and is associated with poor outcomes in ovarian and other cancers. In normoxia, HIF-1α is ubiquitinated and degraded through the E3 ubiquitin ligase, von Hippel-Lindau; however, little is known about the regulation of HIF-1α in hypoxic conditions. FBW7 is an E3 ubiquitin ligase that recognizes proteins phosphorylated by glycogen synthase kinase 3β (GSK3β) and targets them for destruction. This study used an ovarian cancer cell model to test the hypothesis that HIF-1α phosphorylation by GSK3β in hypoxia leads to interaction with FBW7 and ubiquitin-dependent degradation. Expression of constitutively active GSK3β reduced HIF-1α protein and transcriptional activity and increased ubiquitination of HIF-1α in hypoxia, whereas pharmacologic inhibition of GSK3 or expression of siGSK3β promoted HIF-1α stabilization and activity. A mechanism through FBW7 was supported by the observed decrease in HIF-1α stabilization when FBW7 was overexpressed and both the elevation of HIF-1α levels and decrease in ubiquitinated HIF-1α when FBW7 was suppressed. Furthermore, HIF-1α associated with FBW7γ by co-immunoprecipitation, and the interaction was weakened by inhibition of GSK3 or mutation of GSK3β phosphorylation sites. The relevance of this pathway to angiogenic signaling was supported by the finding that endothelial cell tube maturation was increased by conditioned media from hypoxic SK-OV-3 cell lines expressing suppressed GSK3β or FBW7. These data introduce a new mechanism for regulation of HIF-1α during hypoxia that utilizes phosphorylation to target HIF-1α for ubiquitin-dependent degradation through FBW7 and may identify new targets in the regulation of angiogenesis.
PMCID: PMC3202039  PMID: 21964756
angiogenesis; AKT; ubiquitination; transcription factor; ovarian cancer; endothelial cells
18.  Hypoxia-induced angiogenesis is delayed in aging mouse brain 
Brain research  2011;1389:50-60.
Chronic moderate hypoxia results in systemic and central nervous system adaptations that allow acclimatization. Long-term responses to hypoxia involve systemic physiological changes, metabolic regulation, and vascular remodeling. To investigate whether aging affects systemic and cerebral angiogenic adaptational changes in response to prolonged hypoxia, the present study assessed the responses of 4 month old (“young”) C57BL/6 mice and 24 month old (“aged”) C57BL/6 mice to chronic hypobaric hypoxia of 0.4 ATM (290 torr). Compared to young mice, delayed body weight-loss recovery and a lag in polycythemic response were observed in aged mice. As previously shown, Hypoxia Inducible Factor-1α (HIF-1α) accumulation was attenuated and vascular endothelial growth factor (VEGF) expression was decreased in the cerebral cortex of aged mice. Conversely, Cyclooxygenase-2 (COX-2), angiopoietin-2 (Ang-2) and Peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) protein upregulation were not affected in the aged mice. Despite an initial delay in cerebral angiogenic response in aged mice in the first week of hypoxia, no significant differences were observed in microvascular density between young and aged mice in normoxia and at 2 and 3 weeks of hypoxia. Taken together, these observations indicate that even though the HIF-1 response to hypoxia is greatly attenuated, HIF-1 independent compensatory pathways are eventually able to maintain baseline and cerebral angiogenic adaptational changes to chronic hypoxia in aged mice. The delayed adaptive response, however, may result in decreased survival in the aged cohort.
PMCID: PMC3082052  PMID: 21402058
HIF-1; VEGF; Ang-2; COX-2; brain capillary density
19.  NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α 
Nature  2008;453(7196):807-811.
The hypoxic response is an ancient stress response triggered by low ambient oxygen (O2)1. It is controlled by hypoxia inducible transcription factor-1 (HIF-1), whose α subunit is rapidly degraded under normoxic conditions but stabilized when O2-dependent prolyl hydroxylases (PHDs) that target its O2-dependent degradation domain (ODD) are inhibited2–4. Thus the amount of HIF-1α, which controls many genes involved in energy metabolism and angiogenesis is regulated post-translationally. Another ancient stress response is the innate immune response, regulated by several transcription factors, among which NF-κB plays a central role5, 6. NF-κB activation is controlled by IκB kinases (IKK), mainly IKKβ, which are required for phosphorylation-induced degradation of IκB inhibitors in response to infection and inflammation6. Recently, IKKβ was found to be activated in hypoxic cell cultures when PHDs that suppress its activation are inhibited7. However, defining the relationship between NF-κB and HIF-1α has proven elusive. Using in vitro systems, it was reported that HIF-1α activates NF-κB8, that NF-κB controls HIF-1α transcription9 and that activation of HIF-1α may be concurrent to inhibition of NF-κB10. We used mice lacking IKKβ in different cell types to demonstrate that NF-κB is a critical transcriptional activator of HIF-1α in macrophages responding to bacterial infection and in liver and brain of hypoxic animals. IKKβ deficiency results in defective induction of various HIF-1α target genes including vascular endothelial growth factor (VEGF) and elevated astrogliosis in hypoxic mice. Hence, IKKβ provides an important physiological link between the hypoxic response and innate immunity/inflammation, two ancient stress response systems.
PMCID: PMC2669289  PMID: 18432192
20.  HIF–VEGF Pathways Are Critical for Chronic Otitis Media in Junbo and Jeff Mouse Mutants 
PLoS Genetics  2011;7(10):e1002336.
Otitis media with effusion (OME) is the commonest cause of hearing loss in children, yet the underlying genetic pathways and mechanisms involved are incompletely understood. Ventilation of the middle ear with tympanostomy tubes is the commonest surgical procedure in children and the best treatment for chronic OME, but the mechanism by which they work remains uncertain. As hypoxia is a common feature of inflamed microenvironments, moderation of hypoxia may be a significant contributory mechanism. We have investigated the occurrence of hypoxia and hypoxia-inducible factor (HIF) mediated responses in Junbo and Jeff mouse mutant models, which develop spontaneous chronic otitis media. We found that Jeff and Junbo mice labeled in vivo with pimonidazole showed cellular hypoxia in inflammatory cells in the bulla lumen, and in Junbo the middle ear mucosa was also hypoxic. The bulla fluid inflammatory cell numbers were greater and the upregulation of inflammatory gene networks were more pronounced in Junbo than Jeff. Hif-1α gene expression was elevated in bulla fluid inflammatory cells, and there was upregulation of its target genes including Vegfa in Junbo and Jeff. We therefore investigated the effects in Junbo of small-molecule inhibitors of VEGFR signaling (PTK787, SU-11248, and BAY 43-9006) and destabilizing HIF by inhibiting its chaperone HSP90 with 17-DMAG. We found that both classes of inhibitor significantly reduced hearing loss and the occurrence of bulla fluid and that VEGFR inhibitors moderated angiogenesis and lymphangiogenesis in the inflamed middle ear mucosa. The effectiveness of HSP90 and VEGFR signaling inhibitors in suppressing OM in the Junbo model implicates HIF–mediated VEGF as playing a pivotal role in OM pathogenesis. Our analysis of the Junbo and Jeff mutants highlights the role of hypoxia and HIF–mediated pathways, and we conclude that targeting molecules in HIF–VEGF signaling pathways has therapeutic potential in the treatment of chronic OM.
Author Summary
Otitis media with effusion (OME) is the commonest cause of hearing loss in children, and treatment using grommets remains the commonest surgical procedure in children. Chronic forms of OM are known from human population studies to have a significant genetic component, but little is known of the underlying genes or pathways involved. We have analyzed two chronic OM mouse models, the Junbo and Jeff mutants, and have found that both demonstrate hypoxia and hypoxia-inducible factor (HIF) mediated responses. There is upregulation of inflammatory pathways in the mutant middle ears and in Junbo elevation of cytokines that modulate Hif-1α. Hif-1α levels are raised in the middle ear as well as downstream targets of HIF such as Vegfa. We explored the effects of small-molecule inhibitors of HSP90 and VEGF receptor signaling in the Junbo mutant and found significant reductions in hearing loss, the occurrence of bulla fluid, and moderation of vascular changes in the inflamed middle ear mucosa with the VEGF receptor inhibitors. The study of the Junbo and Jeff mutants demonstrates the role of hypoxia and HIF mediated pathways in OM pathogenesis, and it indicates that targeting the HIF–VEGF pathway may represent a novel approach to therapeutic intervention in chronic OM.
PMCID: PMC3197687  PMID: 22028672
21.  Catabolic stress induces expression of hypoxia-inducible factor (HIF)-1α in articular chondrocytes: involvement of HIF-1α in the pathogenesis of osteoarthritis 
Arthritis Research & Therapy  2005;7(4):R904-R914.
Transcription factor hypoxia-inducible factor (HIF)-1 protein accumulates and activates the transcription of genes that are of fundamental importance for oxygen homeostasis – including genes involved in energy metabolism, angiogenesis, vasomotor control, apoptosis, proliferation, and matrix production – under hypoxic conditions. We speculated that HIF-1α may have an important role in chondrocyte viability as a cell survival factor during the progression of osteoarthritis (OA). The expression of HIF-1α mRNA in human OA cartilage samples was analyzed by real-time PCR. We analyzed whether or not the catabolic factors IL-1β and H2O2 induce the expression of HIF-1α in OA chondrocytes under normoxic and hypoxic conditions (O2 <6%). We investigated the levels of energy generation, cartilage matrix production, and apoptosis induction in HIF-1α-deficient chondrocytes under normoxic and hypoxic conditions. In articular cartilages from human OA patients, the expression of HIF-1α mRNA was higher in the degenerated regions than in the intact regions. Both IL-1β and H2O2 accelerated mRNA and protein levels of HIF-1α in cultured chondrocytes. Inhibitors for phosphatidylinositol 3-kinase and p38 kinase caused a significant decrease in catabolic-factor-induced HIF-1α expression. HIF-1α-deficient chondrocytes did not maintain energy generation and cartilage matrix production under both normoxic and hypoxic conditions. Also, HIF-1α-deficient chondrocytes showed an acceleration of catabolic stress-induced apoptosis in vitro. Our findings in human OA cartilage show that HIF-1α expression in OA cartilage is associated with the progression of articular cartilage degeneration. Catabolic-stresses, IL-1β, and oxidative stress induce the expression of HIF-1α in chondrocytes. Our results suggest an important role of stress-induced HIF-1α in the maintenance of chondrocyte viability in OA articular cartilage.
PMCID: PMC1175045  PMID: 15987493
22.  Inhibition of VEGF expression and corneal neovascularization by shRNA targeting HIF-1α in a mouse model of closed eye contact lens wear 
Molecular Vision  2012;18:864-873.
Inappropriate contact lens (CL) use and care often lead to corneal neovascularization (corneal NV). We used mouse eyes which wore CL as the animal model to assess the reason for corneal NV with CL wear. The similar and overlapping activity of vascular endothelial growth factor (VEGF) and the potent angiogenic hypoxia-inducible factor 1α (HIF-1α) called for a study of the temporal relationship in the expression of these two autocoids. We determined the time dependent expression of HIF-1α and correlated it to that of VEGF expression in the mouse model of closed eye with CL wear.
Mouse eyes were fitted with CL followed by a silk suture tarsorrhaphy. The anterior surface was analyzed at 4, 7, and 10 days after tarsorrhaphy by slit lamp and corneal NV. HIF-1α and VEGF levels were measured by reverse transcription PCR, western blotting and immunofluorescence with specific primers and antibodies. We used shRNA targeting HIF-1α to substantiate the link between HIF-1α, VEGF expression, and angiogenesis in the CL wear model.
Corneal NV scores increased in a time dependent manner in the model of closed eye CL induced hypoxic injury. Corneal epithelial HIF-1α and VEGF expression increased in a time dependent manner. The prolonged hypoxic state brought by closed eye CL wear induced a time dependent neovascular response which was significantly attenuated by HIF-1α specific shRNA but not by nonspecific shRNA. Both HIF-1α and VEGF levels were reduced significantly in corneal homogenates from eyes treated with the HIF-1α specific shRNA.
The present study documented the increased expression of HIF-1α in the corneal epithelium during CL wear. It also demonstrated the presence of VEGF in the corneal epithelium and its increased expression in this model. Altogether, the results of this study raised the possibility of interaction between HIF-1α and VEGF, in mediating the neovascularization response induced by the prolonged hypoxic state brought about by closed eye CL wear. The results strongly implicated corneal HIF-1α as a component of the inflammatory and neovascular cascade initiated by hypoxic and further suggested that HIF-1α was a proximal regulator of VEGF expression in this model.
PMCID: PMC3327437  PMID: 22511848
23.  The Regulation of Hypoxic Genes by Calcium Involves c-Jun/AP-1, Which Cooperates with Hypoxia-Inducible Factor 1 in Response to Hypoxia 
Molecular and Cellular Biology  2002;22(6):1734-1741.
Hypoxia causes the accumulation of the transcription factor hypoxia-inducible factor 1 (HIF-1), culminating in the expression of hypoxia-inducible genes such as those for vascular endothelial growth factor (VEGF) and NDRG-1/Cap43. Previously, we have demonstrated that intracellular calcium (Ca2+) is required for the expression of hypoxia-inducible genes. Here we found that, unlike with hypoxia or hypoxia-mimicking conditions, the elevation of intracellular Ca2+ neither induced the HIF-1α protein nor stimulated HIF-1-dependent transcription. Furthermore, the elevation of intracellular Ca2+ induced NDRG-1/Cap43 mRNA in HIF-1α-deficient cells. It also increased levels of c-Jun protein, causing its phosphorylation. The protein kinase inhibitor K252a abolished c-Jun induction and activator protein 1 (AP-1)-dependent reporter expression caused by Ca2+ ionophore or hypoxia. K252a also significantly decreased hypoxia-induced VEGF and NDRG-1/Cap43 gene expression in both human and mouse cells. Using a set of deletion VEGF-Luc promoter constructs, we found that both HIF-1 and two AP-1 sites contribute to hypoxia-mediated induction of transcription. In contrast, only AP-1 sites contributed to Ca2+-mediated VEGF-Luc induction. A dominant-negative AP-1 prevented Ca2+-dependent transcription and partially impaired hypoxia-mediated transcription. In addition, dominant-negative AP-1 diminished the expression of the NDRG-1/Cap43 gene following hypoxia. We conclude that during hypoxia, an increase in intracellular Ca2+ activates a HIF-1-independent signaling pathway that involves AP-1-dependent transcription. Cooperation between the HIF-1 and AP-1 pathways allows fine regulation of gene expression during hypoxia.
PMCID: PMC135615  PMID: 11865053
24.  Emerging evidence of the physiological role of hypoxia in mammary development and lactation 
Hypoxia is a physiological or pathological condition of a deficiency of oxygen supply in the body as a whole or within a tissue. During hypoxia, tissues undergo a series of physiological responses to defend themselves against a low oxygen supply, including increased angiogenesis, erythropoiesis, and glucose uptake. The effects of hypoxia are mainly mediated by hypoxia-inducible factor 1 (HIF-1), which is a heterodimeric transcription factor consisting of α and β subunits. HIF-1β is constantly expressed, whereas HIF-1α is degraded under normal oxygen conditions. Hypoxia stabilizes HIF-1α and the HIF complex, and HIF then translocates into the nucleus to initiate the expression of target genes. Hypoxia has been extensively studied for its role in promoting tumor progression, and emerging evidence also indicates that hypoxia may play important roles in physiological processes, including mammary development and lactation. The mammary gland exhibits an increasing metabolic rate from pregnancy to lactation to support mammary growth, lactogenesis, and lactation. This process requires increasing amounts of oxygen consumption and results in localized chronic hypoxia as confirmed by the binding of the hypoxia marker pimonidazole HCl in mouse mammary gland. We hypothesized that this hypoxic condition promotes mammary development and lactation, a hypothesis that is supported by the following several lines of evidence: i) Mice with an HIF-1α deletion selective for the mammary gland have impaired mammary differentiation and lipid secretion, resulting in lactation failure and striking changes in milk compositions; ii) We recently observed that hypoxia significantly induces HIF-1α-dependent glucose uptake and GLUT1 expression in mammary epithelial cells, which may be responsible for the dramatic increases in glucose uptake and GLUT1 expression in the mammary gland during the transition period from late pregnancy to early lactation; and iii) Hypoxia and HIF-1α increase the phosphorylation of signal transducers and activators of transcription 5a (STAT5a) in mammary epithelial cells, whereas STAT5 phosphorylation plays important roles in the regulation of milk protein gene expression and mammary development. Based on these observations, hypoxia effects emerge as a new frontier for studying the regulation of mammary development and lactation.
PMCID: PMC3929241  PMID: 24444333
Glucose transporter; Hypoxia; Hypoxia inducible factor; Lactation; Mammary development; Metabolism
25.  The Hypoxia-Associated Factor Switches Cells from HIF-1α– to HIF-2α–Dependent Signaling Promoting Stem Cell Characteristics, Aggressive Tumor Growth and Invasion 
Cancer Research  2011;71(11):4015-4027.
Most solid tumors and their metastases experience periods of low oxygen or hypoxia, which is of major clinical significance as it promotes both tumor progression and resistance to therapy. Critical mediators of the hypoxic response are the hypoxia-inducible factors HIF-1α and HIF-2α. The HIFs are nonredundant and regulate both overlapping and unique downstream target genes. Here, we describe a novel mechanism for the switch between HIF-1α– and HIF-2α–dependent transcription during tumor hypoxia caused by the hypoxia associated factor (HAF). HAF is overexpressed in a variety of tumors and its levels are decreased during acute hypoxia, but increased following prolonged hypoxia. We have previously identified HAF as an E3 ubiquitin ligase that binds and ubiquitinates HIF-1α by an oxygen and pVHL-independent mechanism, thus targeting HIF-1α for proteasomal degradation. Here, we show that HAF also binds to HIF-2α, but at a different site than HIF-1α, and increases HIF-2α transactivation without causing its degradation. HAF, thus, switches the hypoxic response of the cancer cell from HIF-1α–dependent to HIF-2α–dependent transcription and activates genes involved in invasion such as MMP9, PAI-1, and the stem cell factor OCT-3/4. The switch to HIF-2α–dependent gene expression caused by HAF also promotes an enriched tumor stem cell population, resulting in highly aggressive tumors in vivo. Thus, HAF, by causing a switch from a HIF-1α– to HIF-2α–dependent response to hypoxia, provides a mechanism for more aggressive growth of tumors under prolonged hypoxia.
PMCID: PMC3268651  PMID: 21512133

Results 1-25 (1309630)