Search tips
Search criteria

Results 1-25 (1231943)

Clipboard (0)

Related Articles

1.  Structural Analyses of the Slm1-PH Domain Demonstrate Ligand Binding in the Non-Canonical Site 
PLoS ONE  2012;7(5):e36526.
Pleckstrin homology (PH) domains are common membrane-targeting modules and their best characterized ligands are a set of important signaling lipids that include phosphatidylinositol phosphates (PtdInsPs). PH domains recognize PtdInsPs through two distinct mechanisms that use different binding pockets on opposite sides of the β-strands 1 and 2: i) a canonical binding site delimited by the β1-β2 and β3-β4loops and ii) a non-canonical binding site bordered by the β1-β2 and β5-β6loops. The PH domain-containing protein Slm1 from budding yeast Saccharomyces cerevisiae is required for actin cytoskeleton polarization and cell growth. We recently reported that this PH domain binds PtdInsPs and phosphorylated sphingolipids in a cooperative manner.
Principal Findings
To study the structural basis for the Slm1-PH domain (Slm1-PH) specificity, we co-crystallized this domain with different soluble compounds that have structures analogous to anionic lipid head groups of reported Slm1 ligands: inositol 4-phosphate, which mimics phosphatidylinositol-4-phosphate (PtdIns(4)P), and phosphoserine as a surrogate for dihydrosphingosine 1-phosphate (DHS1-P). We found electron densities for the ligands within the so-called non-canonical binding site. An additional positively charged surface that contacts a phosphate group was identified next to the canonical binding site.
Our results suggest that Slm1-PH utilizes a non-canonical binding site to bind PtdInsPs, similar to that described for the PH domains of β-spectrin, Tiam1 and ArhGAP9. Additionally, Slm1-PH may have retained an active canonical site. We propose that the presence of both a canonical and a non-canonical binding pocket in Slm1-PH may account for the cooperative binding to PtdInsPs and DHS-1P.
PMCID: PMC3344901  PMID: 22574179
2.  Prevalence, Specificity and Determinants of Lipid-Interacting PDZ Domains from an In-Cell Screen and In Vitro Binding Experiments 
PLoS ONE  2013;8(2):e54581.
PDZ domains are highly abundant protein-protein interaction modules involved in the wiring of protein networks. Emerging evidence indicates that some PDZ domains also interact with phosphoinositides (PtdInsPs), important regulators of cell polarization and signaling. Yet our knowledge on the prevalence, specificity, affinity, and molecular determinants of PDZ-PtdInsPs interactions and on their impact on PDZ-protein interactions is very limited.
Methodology/Principal Findings
We screened the human proteome for PtdInsPs interacting PDZ domains by a combination of in vivo cell-localization studies and in vitro dot blot and Surface Plasmon Resonance (SPR) experiments using synthetic lipids and recombinant proteins. We found that PtdInsPs interactions contribute to the cellular distribution of some PDZ domains, intriguingly also in nuclear organelles, and that a significant subgroup of PDZ domains interacts with PtdInsPs with affinities in the low-to-mid micromolar range. In vitro specificity for the head group is low, but with a trend of higher affinities for more phosphorylated PtdInsPs species. Other membrane lipids can assist PtdInsPs-interactions. PtdInsPs-interacting PDZ domains have generally high pI values and contain characteristic clusters of basic residues, hallmarks that may be used to predict additional PtdInsPs interacting PDZ domains. In tripartite binding experiments we established that peptide binding can either compete or cooperate with PtdInsPs binding depending on the combination of ligands.
Our screen substantially expands the set of PtdInsPs interacting PDZ domains, and shows that a full understanding of the biology of PDZ proteins will require a comprehensive insight into the intricate relationships between PDZ domains and their peptide and lipid ligands.
PMCID: PMC3563628  PMID: 23390500
3.  Revealing a signaling role of phytosphingosine-1-phosphate in yeast 
Perturbing metabolic systems of bioactive sphingolipids with genetic approachMultiple types of “omics” data collected from the systemSystems approach for integrating multiple “omics” informationPredicting signal transduction information flow: lipid; TF activation; gene expression
In contemporary biomedical research, gene mutation remains the most powerful and commonly used tool in molecular and systems biology for perturbation and dissection of biological systems. However, as biological systems consist of highly connected networks, for example, metabolic networks or signal transduction networks, perturbing one portion could result in widely spread effects across the network. Such ‘ripple effects' in systems pose a challenge to the paradigm of investigating the role of a metabolite through mutating enzymes required for its production. In this study, we have developed a systems biology approach that integrates different types of ‘-omics' data to identify signal transduction pathways involving spingolipids and gene expression. See Figure 1 for an overall scheme of our approaches.
Sphingolipids are a family of bioactive lipids that have important signaling functions in cells; in yeast, de novo synthesis is required to mediate the cell response to heat shock. We hypothesized that a specific sphingolipid, phyto-sphingosine-1-phosphate (PHS1P), functions as a signaling molecule in the heat stress response (HSR) because, though its mammalian counterparts are known to have important signaling roles, the function of this metabolite in yeast remains unknown. To identify a putative role of PHS1P in the HSR, we deleted the genes involved in production (LCB4 and LCB5) and degradation (DPL1) of PHS1P to perturb its levels in cells. In wild-type cells, heat shock induces a significant increase in PHS1P. Over the same course, expression of over a thousand genes was modulated.
While deleting the genes involved in PHS1P metabolism ‘clamped' the PHS1P concentration as expected, these mutations also resulted in wide spread changes in many sphingolipids in addition to PHS1P. This ‘ripple effect' prevented direct identification of signaling role of PHS1P in gene expression. We overcame this difficulty by using a set of systems approaches as follows: (1) identifying the information between levels of each individual sphingolipid species and gene expression through combining correlation analysis and clustering; (2) identifying the putative PHS1P-sensitive subset of genes by analyzing the results from step 1; (3) identifying transcription factors (TFs) that potentially regulate these PHS1P-sensitive genes thought promoter analysis; (4) modeling the activation states of the TFs by combining gene expression data and promoter sequence data; and finally, (5) modeling the relationship between sphingolipids and activation of TFs.
Our study showed that 441 genes were differentially expressed in the lcb4Δ/lcb5Δ strain in comparison to wild-type strain; however, only 77 genes among them showed a significant correlation with respect to PHS1P, with 22 genes positively correlated and 54 genes negatively correlated. The results led to a hypothesis that the genes showing significant correlation were PHS1P sensitive whereas differential expression of other genes resulted from the compounding ‘ripple effects' of the gene deletions. We tested this hypothesis by directly treating cells with PHS1P and monitoring the expression levels of the genes that were PHS1P sensitive and PHS1P insensitive, and the results showed that the expression of PHS1P-sensitive genes indeed changed in response to the treatment whereas others did not. We developed a statistical model referred to as Bayesian transcription factor state model to infer activation states of TFs in cells under a specific condition based on the genomic information and gene expression data. We then used a Bayesian logistic regression to further model the relationship between the lipid concentrations and activation states of the TFs. Combined TF enrichment analysis and TF state modeling indicated that the HAP TF complex was likely responding to the signal from PHS1P and mediating the regulation of PHS1P-sensitive genes. We tested this hypothesis by treating wild type and a strain of yeast with deletion of HAP4 gene (hap4Δ), a component of the HAP complex, with PHS1P and monitoring the expression of PHS1P-sensitive genes. Indeed, the PHS1P induced the genes in the wild-type strain but not in hap4Δ, thus indicating that induction of the PHS1P-sensitive genes required a functioning HAP complex (see Figure 5 ).
In summary, our experiments demonstrated that, though gene mutation remains one of the most powerful tools to perturb biological systems, the high connectivity of biological systems poses a challenge for using this approach to identify signaling roles of bioactive metabolites. Here, we demonstrated combining the information from multiple types of ‘-omics' data using systems approaches, it is possible to circumvent these difficulties and reveal novel signal transduction pathways.
Sphingolipids including sphingosine-1-phosphate and ceramide participate in numerous cell programs through signaling mechanisms. This class of lipids has important functions in stress responses; however, determining which sphingolipid mediates specific events has remained encumbered by the numerous metabolic interconnections of sphingolipids, such that modulating a specific lipid of interest through manipulating metabolic enzymes causes ‘ripple effects', which change levels of many other lipids. Here, we develop a method of integrative analysis for genomic, transcriptomic, and lipidomic data to address this previously intractable problem. This method revealed a specific signaling role for phytosphingosine-1-phosphate, a lipid with no previously defined specific function in yeast, in regulating genes required for mitochondrial respiration through the HAP complex transcription factor. This approach could be applied to extract meaningful biological information from a similar experimental design that produces multiple sets of high-throughput data.
PMCID: PMC2835565  PMID: 20160710
information integration; lipidomics; signal transduction; sphingolipids; transcriptomics
4.  Assessing the Nature of Lipid Raft Membranes 
PLoS Computational Biology  2007;3(2):e34.
The paradigm of biological membranes has recently gone through a major update. Instead of being fluid and homogeneous, recent studies suggest that membranes are characterized by transient domains with varying fluidity. In particular, a number of experimental studies have revealed the existence of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL). These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins. However, despite the proposed importance of these domains, their properties, and even the precise nature of the lipid phases, have remained open issues mainly because the associated short time and length scales have posed a major challenge to experiments. In this work, we employ extensive atom-scale simulations to elucidate the properties of ternary raft mixtures with CHOL, palmitoylsphingomyelin (PSM), and palmitoyloleoylphosphatidylcholine. We simulate two bilayers of 1,024 lipids for 100 ns in the liquid-ordered phase and one system of the same size in the liquid-disordered phase. The studies provide evidence that the presence of PSM and CHOL in raft-like membranes leads to strongly packed and rigid bilayers. We also find that the simulated raft bilayers are characterized by nanoscale lateral heterogeneity, though the slow lateral diffusion renders the interpretation of the observed lateral heterogeneity more difficult. The findings reveal aspects of the role of favored (specific) lipid–lipid interactions within rafts and clarify the prominent role of CHOL in altering the properties of the membrane locally in its neighborhood. Also, we show that the presence of PSM and CHOL in rafts leads to intriguing lateral pressure profiles that are distinctly different from corresponding profiles in nonraft-like membranes. The results propose that the functioning of certain classes of membrane proteins is regulated by changes in the lateral pressure profile, which can be altered by a change in lipid content.
Author Summary
Biological membranes are complex 2-D assemblies of various lipid species and membrane proteins. For long, it was thought that the main role of lipid membranes is to provide a homogeneous, liquid-like platform for membrane proteins to carry out their functions as they diffuse freely in the membrane plane. Recently, that view has changed. It has become evident that several lipid environments with different physical properties may coexist, and that the properties of the different lipid domains may play an active role in regulating the conformational state and dynamic sorting of membrane proteins. We have carried out atom-scale computer simulations for three-component lipid bilayers, so-called lipid rafts, rich in cholesterol and sphingolipids. They show that arising from the local interactions between the lipid species, the elastic and dynamic properties of the membranes depend strongly on the lipid composition. The changes in elastic properties are suggested to alter the functional states of various membrane proteins. Changes in lipid composition are also shown to alter the distribution of local pressure inside the membrane. This is likely to affect proteins that undergo large anisotropic conformational changes between the functional states, such as the ion channel MscL, used as an example here. A great number of important physiological phenomena, such as transmitting neural impulses or trafficking molecules in and out of the cell, involve activation of membrane proteins, so it is relevant to understand all factors affecting them. Our findings support the idea that general physical properties of the lipid environment are capable of regulating membrane proteins.
PMCID: PMC1808021  PMID: 17319738
5.  RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42 
A genome wide RNAi screen identifies 72 host cell genes affecting S. Typhimurium entry, including actin regulators and COPI. This study implicates COPI-dependent cholesterol and sphingolipid localization as a common mechanism of infection by bacterial and viral pathogens.
Genome-scale RNAi screen identifies 72 host genes affecting S. Typhimurium host cell invasion.Step-specific follow-up assays assign the phenotypes to specific steps of the invasion process.COPI effects on host cell binding, ruffling and invasion were traced to a key role of COPI in membrane targeting of cholesterol, sphingolipids, Rac1 and Cdc42.This new role of COPI explains why COPI is required for host cell infection by numerous bacterial and viral pathogens.
Pathogens are not only a menace to public health, but they also provide excellent tools for probing host cell function. Thus, studying infection mechanisms has fueled progress in cell biology (Ridley et al, 1992; Welch et al, 1997). In the presented study, we have performed an RNAi screen to identify host cell genes required for Salmonella host cell invasion. This screen identified proteins known to contribute to Salmonella-induced actin rearrangements (e.g., Cdc42 and the Arp2/3 complex; reviewed in Schlumberger and Hardt, 2006) and vesicular traffic (e.g., Rab7) as well as unexpected hits, such as the COPI complex. COPI is a known organizer of Golgi-to-ER vesicle transport (Bethune et al, 2006; Beck et al, 2009). Here, we show that COPI is also involved in plasma membrane targeting of cholesterol, sphingolipids and the Rho GTPases Cdc42 and Rac1, essential host cell factors required for Salmonella invasion. This explains why COPI depletion inhibits infection by S. Typhimurium and illustrates how combining bacterial pathogenesis and systems approaches can promote cell biology.
Salmonella Typhimurium is a common food-borne pathogen and worldwide a major public health problem causing severe diarrhea. The pathogen uses the host's gut mucosa as a portal of entry and gut tissue invasion is a key event leading to the disease. This explains the intense interest from medicine and basic biology in the mechanism of Salmonella host cell invasion.
Tissue culture infection models have delineated a sequence of events leading host cell invasion (Figure 1; Schlumberger and Hardt, 2006): (i) pathogen binding to the host cell surface; (ii) activation of a syringe-like apparatus (‘Type III secretion system 1', T1) of the bacterium and injection of a bacterial toxin cocktail into the host cell. These toxins include SopE, a key virulence factor triggering invasion (Hardt et al, 1998), which was analyzed in our study; (iii) toxin-triggered membrane ruffling. To a significant extent, this is facilitated by SopE-triggered activation of Cdc42 and Rac1 and subsequent actin polymerization at the site of infection; (iv) engulfment of the pathogen within a vesicular compartment (SCV) and (v) maturation of the SCV, a process driven by a second Type III secretion system (T2), which is expressed by the pathogen upon bacterial entry (Figure 1). This sequence of events mediates Salmonella invasion into the gut epithelium and illustrates that this pathogen can be used for probing mechanisms of host cell actin control, membrane biogenesis, vesicle formation and vesicular trafficking.
SopE is a key virulence factor of invasion and triggers the activation of Cdc42 and Rac1 and subsequent actin polymerization at the site of infection. We have employed a SopE-expressing S. Typhimurium strain and RNAi screening technology to identify host cell factors affecting invasion. First, we developed an automated fluorescence microscopy assay to quantify S. Typhimurium entry in a high-throughput format (Figure 1C). This assay was based on a GFP reporter expressed by the pathogen after invasion and maturation of the SCV. Using this assay, we screened a ‘druggable genome' siRNA library (6978 genes, 3 oligos each, 1 oligo per well) and identified 72 invasion hits. These included established regulators of the actin cytoskeleton (Cdc42, Arp2/3, Nap1; Schlumberger and Hardt, 2006), some of which have not been implicated so far in Salmonella entry (Pfn1, Cap1), as well as proteins not previously thought to influence infection (Atp1a1, Rbx1, COPI complex). Potentially, these hits could affect any step of the invasion process (Figure 1A).
In the second stage of the study, we have assigned each ‘invasion hit' to particular steps of the invasion process. For this purpose, we developed step-specific assays for Salmonella binding, injection, ruffling and membrane engulfment and re-screened the genes found as hits in the first screen (four siRNAs per gene). As expected, a significant number of ‘hits' affected binding to the host cell, others affected binding and ruffling (e.g., Pfn1, Itgβ5, Cap1), a few were specific for the ruffling step (e.g., Cdc42) and some affected SCV maturation, namely Rab7a, the trafficking protein Vps39 and the vacuolar proton pump Atp6ap2. Thus, our experimental strategy allowed mechanistic interpretation and linked novel hits to particular phenotypes, thus providing a basis for further studies (Figure 1).
COPI depletion impaired effector injection and ruffling. This was surprising, as the COPI complex was known to regulate retrogade Golgi-to-ER transport, but was not expected to affect pathogen interactions at the plasma membrane. Therefore, we have investigated the underlying mechanism. We have observed that COPI depletion entailed dramatic changes in the plasma membrane composition (Figure 6). Cholesterol and sphingolipids, which form domains (‘lipid rafts') in the plasma membrane, were depleted from the cell surface and redirected into a large vesicular compartment. The same was true for the Rho GTPases Rac1 and Cdc42. This strong decrease in the amount of cholesterol-enriched microdomains and Rho GTPases in the plasma membrane explained the observed defects in S. Typhimurium host cell invasion and assigned a novel role for COPI in controlling mammalian plasma membrane composition. It should be noted that other viral and bacterial pathogens do show a similar dependency on host cellular COPI and plasma membrane lipids. This includes notorious pathogens such as Staphylococcus aureus (Ramet et al, 2002; Potrich et al, 2009), Listeria monocytogenes (Seveau et al, 2004; Agaisse et al, 2005; Cheng et al, 2005; Gekara et al, 2005), Mycobacterium tuberculosis (Munoz et al, 2009), Chlamydia trachomatis (Elwell et al, 2008), influenza virus (Hao et al, 2008; Konig et al, 2010), hepatitis C virus (Tai et al, 2009; Popescu and Dubuisson, 2010) and the vesicular stomatitis virus (presented study) and suggests that COPI-mediated control of host cell plasma membrane composition might be of broad importance for pathogenesis. Future work will have to address whether this might offer starting points for developing anti-infective therapeutics with a very broad spectrum of activity.
The pathogen Salmonella Typhimurium is a common cause of diarrhea and invades the gut tissue by injecting a cocktail of virulence factors into epithelial cells, triggering actin rearrangements, membrane ruffling and pathogen entry. One of these factors is SopE, a G-nucleotide exchange factor for the host cellular Rho GTPases Rac1 and Cdc42. How SopE mediates cellular invasion is incompletely understood. Using genome-scale RNAi screening we identified 72 known and novel host cell proteins affecting SopE-mediated entry. Follow-up assays assigned these ‘hits' to particular steps of the invasion process; i.e., binding, effector injection, membrane ruffling, membrane closure and maturation of the Salmonella-containing vacuole. Depletion of the COPI complex revealed a unique effect on virulence factor injection and membrane ruffling. Both effects are attributable to mislocalization of cholesterol, sphingolipids, Rac1 and Cdc42 away from the plasma membrane into a large intracellular compartment. Equivalent results were obtained with the vesicular stomatitis virus. Therefore, COPI-facilitated maintenance of lipids may represent a novel, unifying mechanism essential for a wide range of pathogens, offering opportunities for designing new drugs.
PMCID: PMC3094068  PMID: 21407211
coatomer; HeLa; Salmonella; siRNA; systems biology
6.  IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold* 
The Journal of Biological Chemistry  2012;287(27):22483-22496.
Background: Phosphoinositide 3-kinase lipid signals exert important biological effects through proteins with specific recognition domains.
Results: We identify a novel such protein domain in IQGAP proteins and define its crystal structure and phosphoinositide binding preferences.
Conclusion: This domain is a distinct cellular phosphatidylinositol 3,4,5-trisphosphate sensor, characteristic of select IQGAP proteins.
Significance: These observations open a new and unexpected window on phosphoinositide 3-kinase signaling networks.
Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105–107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.
PMCID: PMC3391087  PMID: 22493426
Cell signaling; Crystal Structure; PI 3-Kinase (PI3K); Protein Domains; Receptors; C2 Domain; IQGAP; PH Domain; PtdInsP3; aPI Domain
7.  Characterization of a Rac1- and RhoGDI-Associated Lipid Kinase Signaling Complex 
Molecular and Cellular Biology  1998;18(2):762-770.
Rho family GTPases regulate a number of cellular processes, including actin cytoskeletal organization, cellular proliferation, and NADPH oxidase activation. The mechanisms by which these G proteins mediate their effects are unclear, although a number of downstream targets have been identified. The interaction of most of these target proteins with Rho GTPases is GTP dependent and requires the effector domain. The activation of the NADPH oxidase also depends on the C terminus of Rac, but no effector molecules that bind to this region have yet been identified. We previously showed that Rac interacts with a type I phosphatidylinositol-4-phosphate (PtdInsP) 5-kinase, independent of GTP. Here we report the identification of a diacylglycerol kinase (DGK) which also associates with both GTP- and GDP-bound Rac1. In vitro binding analysis using chimeric proteins, peptides, and a truncation mutant demonstrated that the C terminus of Rac is necessary and sufficient for binding to both lipid kinases. The Rac-associated PtdInsP 5-kinase and DGK copurify by liquid chromatography, suggesting that they bind as a complex to Rac. RhoGDI also associates with this lipid kinase complex both in vivo and in vitro, primarily via its interaction with Rac. The interaction between Rac and the lipid kinases was enhanced by specific phospholipids, indicating a possible mechanism of regulation in vivo. Given that the products of the PtdInsP 5-kinase and the DGK have been implicated in several Rac-regulated processes, and they bind to the Rac C terminus, these lipid kinases may play important roles in Rac activation of the NADPH oxidase, actin polymerization, and other signaling pathways.
PMCID: PMC108787  PMID: 9447972
8.  Lipid raft involvement in yeast cell growth and death 
Frontiers in Oncology  2012;2:140.
The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.
PMCID: PMC3467458  PMID: 23087902
lipid rafts; membrane domains; ergosterol; yeast; S. cerevisiae; ion homeostasis; nutrient transporters; cell death
9.  Fpk1/2 kinases regulate cellular sphingoid long-chain base abundance and alter cellular resistance to LCB elevation or depletion 
MicrobiologyOpen  2014;3(2):196-212.
Sphingolipids are a family of eukaryotic lipids biosynthesized from sphingoid long-chain bases (LCBs). Sphingolipids are an essential class of lipids, as their depletion results in cell death. However, acute LCB supplementation is also toxic; thus, proper cellular LCB levels should be maintained. To characterize the “sphingolipid-signaling intercross,” we performed a kinome screening assay in which budding yeast protein kinase-knockout strains were screened for resistance to ISP-1, a potent inhibitor of LCB biosynthesis. Here, one pair of such DIR (deletion-mediated ISP-1 resistance) genes, FPK1 and FPK2, was further characterized. Cellular LCB levels increased in the fpk1/2Δ strain, which was hypersensitive to phytosphingosine (PHS), a major LCB species of yeast cells. Concomitantly, this strain acquired resistance to ISP-1. Fpk1 and Fpk2 were involved in two downstream events; that is, ISP-1 uptake due to aminophospholipid flippase and LCB degradation due to LCB4 expression. RSK3, which belongs to the p90-S6K subfamily, was identified as a functional counterpart of Fpk1/2 in mammalian cells as the RSK3 gene functionally complemented the ISP-1-resistant phenotype of fpk1/2Δ cells.
PMCID: PMC3996568  PMID: 24510621
DIR screening; long-chain base; protein kinase; sphingolipids; yeast
10.  It’s a lipid’s world: Bioactive lipid metabolism and signaling in neural stem cell differentiation 
Neurochemical Research  2012;37(6):1208-1229.
Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called “bioactive lipids”. Pioneering work in Dr. Robert Ledeen’s laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: 1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and 2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed.
PMCID: PMC3343224  PMID: 22246226
sphingolipids; eicosanoids; lysophospholipids; steroids; embryonic stem cells; neural progenitor cells; differentiation
11.  TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids 
eLife  2014;3:e03779.
Plasma membrane lipid composition must be maintained during growth and under environmental insult. In yeast, signaling mediated by TOR Complex 2 (TORC2)-dependent protein kinase Ypk1 controls lipid abundance and distribution in response to membrane stress. Ypk1, among other actions, alleviates negative regulation of L-serine:palmitoyl-CoA acyltransferase, upregulating production of long-chain base precursors to sphingolipids. To explore other roles for TORC2-Ypk1 signaling in membrane homeostasis, we devised a three-tiered genome-wide screen to identify additional Ypk1 substrates, which pinpointed both catalytic subunits of the ceramide synthase complex. Ypk1-dependent phosphorylation of both proteins increased upon either sphingolipid depletion or heat shock and was important for cell survival. Sphingolipidomics, other biochemical measurements and genetic analysis demonstrated that these modifications of ceramide synthase increased its specific activity and stimulated channeling of long-chain base precursors into sphingolipid end-products. Control at this branch point also prevents accumulation of intermediates that could compromise cell growth by stimulating autophagy.
eLife digest
Cells are enclosed by a plasma membrane that separates and protects each cell from its environment. These membranes are made of a variety of proteins and fatty molecules called lipids, which are carefully organized throughout the membrane. When cells experience stresses such as heat or excessive pressure, the plasma membrane changes to help protect the cell. In particular, more of a group of lipids called sphingolipids are incorporated into the membrane under stress conditions.
In yeast cells, a protein called Ypk1 plays an important role in protecting the cell from stress. Ypk1 controls the activity of a number of proteins that are responsible for balancing the amounts of different types of lipids in cell membranes. The combined action of these Ypk1-dependent proteins leads to the remodelling of the cell membrane to protect against stress. While several proteins that work with Ypk1 are known, some of the changes that serve to protect the plasma membrane cannot be explained by the action of these proteins alone.
To provide a more comprehensive picture of how Ypk1 helps cells to respond to changes in the environment, Muir et al. developed a new approach that combines biochemical, genetic and bioinformatics techniques to survey the yeast genome for proteins that could be Ypk1 targets. Muir et al. first produced a list of potential candidate proteins by searching for proteins with features similar to known Ypk1 targets, and then considered those that are known to be involved in processes that also involve Ypk1. To filter the potential targets further, Muir et al. performed experiments in yeast cells to see which proteins prevented normal cell growth if they were over-produced. Further experiments investigating which of these proteins interact with Ypk1 when purified identified 12 new proteins that are most likely targets of the Ypk1 protein.
Two of these newly identified Ypk1 target proteins form part of an enzyme complex called ceramide synthase, which produces a family of waxy lipid molecules from which more complex sphingolipids are built. Muir et al. discovered that during stress, Ypk1 enhances the activity of the ceramide synthase enzyme, which increases lipid production and the amount of sphingolipid deposited in the cell membrane. If this process is interrupted at any stage, cells struggle to survive under stress conditions.
The other candidate proteins identified by Muir et al. remain to be validated and characterized as Ypk1 targets. Nevertheless, the techniques used have conclusively identified some new Ypk1 targets and could also be applied to similar searches for proteins targeted in other biological processes.
PMCID: PMC4217029  PMID: 25279700
phosphorylation; regulation; substrates; mutants; plasma membrane; lipids; S. cerevisiae
12.  Formation of Raft-Like Assemblies within Clusters of Influenza Hemagglutinin Observed by MD Simulations 
PLoS Computational Biology  2013;9(4):e1003034.
The association of hemagglutinin (HA) with lipid rafts in the plasma membrane is an important feature of the assembly process of influenza virus A. Lipid rafts are thought to be small, fluctuating patches of membrane enriched in saturated phospholipids, sphingolipids, cholesterol and certain types of protein. However, raft-associating transmembrane (TM) proteins generally partition into Ld domains in model membranes, which are enriched in unsaturated lipids and depleted in saturated lipids and cholesterol. The reason for this apparent disparity in behavior is unclear, but model membranes differ from the plasma membrane in a number of ways. In particular, the higher protein concentration in the plasma membrane may influence the partitioning of membrane proteins for rafts. To investigate the effect of high local protein concentration, we have conducted coarse-grained molecular dynamics (CG MD) simulations of HA clusters in domain-forming bilayers. During the simulations, we observed a continuous increase in the proportion of raft-type lipids (saturated phospholipids and cholesterol) within the area of membrane spanned by the protein cluster. Lateral diffusion of unsaturated lipids was significantly attenuated within the cluster, while saturated lipids were relatively unaffected. On this basis, we suggest a possible explanation for the change in lipid distribution, namely that steric crowding by the slow-diffusing proteins increases the chemical potential for unsaturated lipids within the cluster region. We therefore suggest that a local aggregation of HA can be sufficient to drive association of the protein with raft-type lipids. This may also represent a general mechanism for the targeting of TM proteins to rafts in the plasma membrane, which is of functional importance in a wide range of cellular processes.
Author Summary
The cell membrane is composed of a wide variety of lipids and proteins. Until recently, these were thought to be mixed evenly, but we now have evidence of the existence of “lipid rafts” — small, slow-moving areas of membrane in which certain types of lipid and protein accumulate. Rafts have many important biological functions in healthy cells, but also play a role in the assembly of influenza virus. For example, after the viral protein hemagglutinin is made inside the host cell, it accumulates in rafts. Exiting virus particles then take these portions of cell membrane with them as they leave the host cell. However, the mechanism by which proteins associate with lipid rafts is unclear. Here, we have used computers to simulate lipid membranes containing hemagglutinin. The simulations allow us to look in detail at the motions and interactions of individual proteins and lipids. We found that clusters of proteins altered the properties of nearby lipids, leading to accumulation of raft-type lipids. It therefore appears that aggregation of hemagglutinin may be enough to drive its association with rafts. This helps us to better understand both the influenza assembly process and the properties of lipid rafts.
PMCID: PMC3623702  PMID: 23592976
13.  Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole 
The authors screen for compounds that show synergistic antifungal activity when combined with the widely-used fungistatic drug fluconazole. Chemogenomic profiling explains the mode of action of synergistic drugs and allows the prediction of additional drug synergies.
The authors screen for compounds that show synergistic antifungal activity when combined with the widely-used fungistatic drug fluconazole. Chemogenomic profiling explains the mode of action of synergistic drugs and allows the prediction of additional drug synergies.
Chemical screens with a library enriched for known drugs identified a diverse set of 148 compounds that potentiated the action of the antifungal drug fluconazole against the fungal pathogens Cryptococcus neoformans, Cryptococcus gattii and Candida albicans, and the model yeast Saccharomyces cerevisiae, often in a species-specific manner.Chemogenomic profiles of six confirmed hits in S. cerevisiae revealed different modes of action and enabled the prediction of additional synergistic combinations; three-way synergistic interactions exhibited even stronger synergies at low doses of fluconazole.The synergistic combination of fluconazole and the antidepressant sertraline was active against fluconazole-resistant clinical fungal isolates and in an in vivo model of Cryptococcal infection.
Rising fungal infection rates, especially among immune-suppressed individuals, represent a serious clinical challenge (Gullo, 2009). Cancer, organ transplant and HIV patients, for example, often succumb to opportunistic fungal pathogens. The limited repertoire of approved antifungal agents and emerging drug resistance in the clinic further complicate the effective treatment of systemic fungal infections. At the molecular level, the paucity of fungal-specific essential targets arises from the conserved nature of cellular functions from yeast to humans, as well as from the fact that many essential yeast genes can confer viability at a fraction of wild-type dosage (Yan et al, 2009). Although only ∼1100 of the ∼6000 genes in yeast are essential, almost all genes become essential in specific genetic backgrounds in which another non-essential gene has been deleted or otherwise attenuated, an effect termed synthetic lethality (Tong et al, 2001). Genome-scale surveys suggest that over 200 000 binary synthetic lethal gene combinations dominate the yeast genetic landscape (Costanzo et al, 2010). The genetic buffering phenomenon is also manifest as a plethora of differential chemical–genetic interactions in the presence of sublethal doses of bioactive compounds (Hillenmeyer et al, 2008). These observations frame the difficulty of interdicting network functions in eukaryotic pathogens with single agent therapeutics. At the same time, however, this genetic network organization suggests that judicious combinations of small molecule inhibitors of both essential and non-essential targets may elicit additive or synergistic effects on cell growth (Sharom et al, 2004; Lehar et al, 2008). Unbiased screens for drugs that synergistically enhance a specific bioactive effect, but which are not themselves individually active—termed a syncretic combination—are one means to substantially elaborate chemical space (Keith et al, 2005). Indeed, compounds that enhance the activity of known agents in model yeast and cancer cell line systems have been identified both by focused small molecule library screens and by computational methods (Borisy et al, 2003; Lehar et al, 2007; Nelander et al, 2008; Jansen et al, 2009; Zinner et al, 2009).
To extend the stratagem of chemical synthetic lethality to clinically relevant fungal pathogens, we screened a bioactive library of known drugs for synergistic enhancers of the widely used fungistatic drug fluconazole against the clinically relevant pathogens C. albicans, C. neoformans and C. gattii, as well as the genetically tractable budding yeast S. cerevisiae. Fluconazole is an azole drug that inhibits lanosterol 14α-demethylase, the gene product of ERG11, an essential cytochrome P450 enzyme in the ergosterol biosynthetic pathway (Groll et al, 1998). We identified 148 drugs that potentiate the antifungal action of fluconazole against the four species. These syncretic compounds had not been previously recognized in the clinic as antifungal agents, and many acted in a species-specific manner, often in a potent fungicidal manner.
To understand the mechanisms of synergism, we interrogated six syncretic drugs—trifluoperazine, tamoxifen, clomiphene, sertraline, suloctidil and L-cycloserine—in genome-wide chemogenomic profiles of the S. cerevisiae deletion strain collection (Giaever et al, 1999). These profiles revealed that membrane, vesicle trafficking and lipid biosynthesis pathways are targeted by five of the synergizers, whereas the sphingolipid biosynthesis pathway is targeted by L-cycloserine. Cell biological assays confirmed the predicted membrane disruption effects of the former group of compounds, which may perturb ergosterol metabolism, impair fluconazole export by drug efflux pumps and/or affect active import of fluconazole (Kuo et al, 2010; Mansfield et al, 2010). Based on the integration of chemical–genetic and genetic interaction space, a signature set of deletion strains that are sensitive to the membrane active synergizers correctly predicted additional drug synergies with fluconazole. Similarly, the L-cycloserine chemogenomic profile correctly predicted a synergistic interaction between fluconazole and myriocin, another inhibitor of sphingolipid biosynthesis. The structure of genetic networks suggests that it should be possible to devise higher order drug combinations with even greater selectivity and potency (Sharom et al, 2004). In an initial test of this concept, we found that the combination of a non-synergistic pair drawn from the membrane active and sphingolipid target classes exhibited potent three-way synergism with a low dose of fluconazole. Finally, the combination of sertraline and fluconazole was active in a G. mellonella model of Cryptococcal infection, and was also efficacious against fluconazole-resistant clinical isolates of C. albicans and C. glabrata.
Collectively, these results demonstrate that the combinatorial redeployment of known drugs defines a powerful antifungal strategy and establish a number of potential lead combinations for future clinical assessment.
Resistance to widely used fungistatic drugs, particularly to the ergosterol biosynthesis inhibitor fluconazole, threatens millions of immunocompromised patients susceptible to invasive fungal infections. The dense network structure of synthetic lethal genetic interactions in yeast suggests that combinatorial network inhibition may afford increased drug efficacy and specificity. We carried out systematic screens with a bioactive library enriched for off-patent drugs to identify compounds that potentiate fluconazole action in pathogenic Candida and Cryptococcus strains and the model yeast Saccharomyces. Many compounds exhibited species- or genus-specific synergism, and often improved fluconazole from fungistatic to fungicidal activity. Mode of action studies revealed two classes of synergistic compound, which either perturbed membrane permeability or inhibited sphingolipid biosynthesis. Synergistic drug interactions were rationalized by global genetic interaction networks and, notably, higher order drug combinations further potentiated the activity of fluconazole. Synergistic combinations were active against fluconazole-resistant clinical isolates and an in vivo model of Cryptococcus infection. The systematic repurposing of approved drugs against a spectrum of pathogens thus identifies network vulnerabilities that may be exploited to increase the activity and repertoire of antifungal agents.
PMCID: PMC3159983  PMID: 21694716
antifungal; combination; pathogen; resistance; synergism
14.  Sphingolipids: the nexus between Gaucher disease and insulin resistance 
Sphingolipids constitute a diverse array of lipids in which fatty acids are linked through amide bonds to a long-chain base, and, structurally, they form the building blocks of eukaryotic membranes. Ceramide is the simplest and serves as a precursor for the synthesis of the three main types of complex sphingolipids; sphingomyelins, glycosphingolipids and gangliosides. Sphingolipids are no longer considered mere structural spectators, but bioactive molecules with functions beyond providing a mechanically stable and chemically resistant barrier to a diverse array of cellular processes. Although sphingolipids form a somewhat minor component of the total cellular lipid pool, their accumulation in certain cells forms the basis of many diseases. Human diseases caused by alterations in the metabolism of sphingolipids are conventionally inborn errors of degradation, the most common being Gaucher disease, in which the catabolism of glucosylceramide is defective and accumulates. Insulin resistance has been reported in patients with Gaucher disease and this article presents evidence that this is due to perturbations in the metabolism of sphingolipids. Ceramide and the more complex sphingolipids, the gangliosides, are constituents of specialised membrane microdomains termed lipid rafts. Lipid rafts play a role in facilitating and regulating lipid and protein interactions in cells, and their unique lipid composition enables them to carry out this role. The lipid composition of rafts is altered in cell models of Gaucher disease which may be responsible for impaired lipid and protein sorting observed in this disorder, and consequently pathology. Lipid rafts are also necessary for correct insulin signalling, and a perturbed lipid raft composition may impair insulin signalling. Unravelling common nodes of interaction between insulin resistance and Gaucher disease may lead to a better understanding of the biochemical mechanisms behind pathology.
PMCID: PMC2964722  PMID: 20937139
15.  Sphingoid Base Is Required for Translation Initiation during Heat Stress in Saccharomyces cerevisiaeD⃞ 
Molecular Biology of the Cell  2006;17(3):1164-1175.
Sphingolipids are required for many cellular functions including response to heat shock. We analyzed the yeast lcb1-100 mutant, which is conditionally impaired in the first step of sphingolipid biosynthesis and shows a strong decrease in heat shock protein synthesis and viability. Transcription and nuclear export of heat shock protein mRNAs is not affected. However, lcb1-100 cells exhibited a strong decrease in protein synthesis caused by a defect in translation initiation under heat stress conditions. The essential lipid is sphingoid base, not ceramide or sphingoid base phosphates. Deletion of the eIF4E-binding protein Eap1p in lcb-100 cells restored translation of heat shock proteins and increased viability. The translation defect during heat stress in lcb1-100 was due at least partially to a reduced function of the sphingoid base-activated PKH1/2 protein kinases. In addition, depletion of the translation initiation factor eIF4G was observed in lcb1-100 cells and ubiquitin overexpression allowed partial recovery of translation after heat stress. Taken together, we have shown a requirement for sphingoid bases during the recovery from heat shock and suggest that this reflects a direct lipid-dependent signal to the cap-dependent translation initiation apparatus.
PMCID: PMC1382306  PMID: 16381812
16.  An overview of sphingolipid metabolism: from synthesis to breakdown 
Sphingolipids constitute a class of lipids defined by their eighteen carbon amino-alcohol backbones which are synthesized in the ER from nonsphingolipid precursors. Modification of this basic structure is what gives rise to the vast family of sphingolipids that play significant roles in membrane biology and provide many bioactive metabolites that regulate cell function. Despite the diversity of structure and function of sphingolipids, their creation and destruction are governed by common synthetic and catabolic pathways. In this regard, sphingolipid metabolism can be imagined as an array of interconnected networks that diverge from a single common entry point and converge into a single common breakdown pathway. In their simplest forms, sphingosine, phytosphingosine and dihydrosphingosine serve as the backbones upon which further complexity is achieved. For example, phosphorylation of the C1 hydroxyl group yields the final breakdown products and/or the important signaling molecules sphingosine-1-phosphate, phytosphingosine-1-phosphate and dihydrosphingosine-1-phosphate, respectively. On the other hand, acylation of sphingosine, phytosphingosine, or dihydrosphingosine with one of several possible acyl CoA molecules through the action of distinct ceramide synthases produces the molecules defined as ceramide, phytoceramide, or dihydroceramide. Ceramide, due to the differing acyl CoAs that can be used to produce it, is technically a class of molecules rather than a single molecule and therefore may have different biological functions depending on the acyl chain it is composed of. At the apex of complexity is the group of lipids known as glycosphingolipids (GSL) which contain dozens of different sphingolipid species differing by both the order and type of sugar residues attached to their headgroups. Since these molecules are produced from ceramide precursors, they too may have differences in their acyl chain composition, revealing an additional layer of variation. The glycosphingolipids are divided broadly into two categories: glucosphingolipids and galactosphingolipids. The glucosphingolipids depend initially on the enzyme glucosylceramide synthase (GCS) which attaches glucose as the first residue to the C1 hydroxyl position. Galactosphingolipids, on the other hand, are generated from galactosylceramide synthase (GalCerS), an evolutionarily dissimilar enzyme from GCS. Glycosphingolipids are further divided based upon further modification by various glycosyltransferases which increases the potential variation in lipid species by several fold. Far more abundant are the sphingomyelin species which are produced in parallel with glycosphingolipids, however they are defined by a phosphocholine headgroup rather than the addition of sugar residues. Although sphingomyelin species all share a common headgroup, they too are produced from a variety of ceramide species and therefore can have differing acyl chains attached to their C-2 amino groups. Whether or not the differing acyl chain lengths in SMs dictate unique functions or important biophysical distinctions has not yet been established. Understanding the function of all the existing glycosphingolipids and sphingomyelin species will be a major undertaking in the future since the tools to study and measure these species are only beginning to be developed. The simple sphingolipids serve both as the precursors and the breakdown products of the more complex ones. Importantly, in recent decades, these simple sphingolipids have gained attention for having significant signaling and regulatory roles within cells. In addition, many tools have emerged to measure the levels of simple sphingolipids and therefore have become the focus of even more intense study in recent years. With this thought in mind, this chapter will pay tribute to the complex sphingolipids, but focus on the regulation of simple sphingolipid metabolism.
PMCID: PMC3069696  PMID: 20919643
17.  The Pleckstrin Homology Domain Proteins Slm1 and Slm2 Are Required for Actin Cytoskeleton Organization in Yeast and Bind Phosphatidylinositol-4,5-Bisphosphate and TORC2D⃞ 
Molecular Biology of the Cell  2005;16(4):1883-1900.
Phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] is a key second messenger that regulates actin and membrane dynamics, as well as other cellular processes. Many of the effects of PtdIns(4,5)P2 are mediated by binding to effector proteins that contain a pleckstrin homology (PH) domain. Here, we identify two novel effectors of PtdIns(4,5)P2 in the budding yeast Saccharomyces cerevisiae: the PH domain containing protein Slm1 and its homolog Slm2. Slm1 and Slm2 serve redundant roles essential for cell growth and actin cytoskeleton polarization. Slm1 and Slm2 bind PtdIns(4,5)P2 through their PH domains. In addition, Slm1 and Slm2 physically interact with Avo2 and Bit61, two components of the TORC2 signaling complex, which mediates Tor2 signaling to the actin cytoskeleton. Together, these interactions coordinately regulate Slm1 targeting to the plasma membrane. Our results thus identify two novel effectors of PtdIns(4,5)P2 regulating cell growth and actin organization and suggest that Slm1 and Slm2 integrate inputs from the PtdIns(4,5)P2 and TORC2 to modulate polarized actin assembly and growth.
PMCID: PMC1073669  PMID: 15689497
18.  GRP1 Pleckstrin Homology Domain: Activation Parameters and Novel Search Mechanism for Rare Target Lipid† 
Biochemistry  2004;43(51):16161-16173.
Pleckstrin homology (PH) domains play a central role in a wide array of signaling pathways by binding second messenger lipids of the phosphatidylinositol phosphate (PIP) lipid family. A given type of PIP lipid is formed in a specific cellular membrane where it is generally a minor component of the bulk lipid mixture. For example, the signaling lipid PI(3,4,5)P3 (or PIP3) is generated primarily in the inner leaflet of the plasma membrane where it is believed to never exceed 0.02% of the bulk lipid. The present study focuses on the PH domain of the general receptor for phosphoinositides, isoform 1 (GRP1), which regulates the actin cytoskeleton in response to PIP3 signals at the plasma membrane surface. The study systematically analyzes both the equilibrium and kinetic features of GRP1-PH domain binding to its PIP lipid target on a bilayer surface. Equilibrium binding measurements utilizing protein-to-membrane fluorescence resonance energy transfer (FRET) to detect GRP1-PH domain docking to membrane-bound PIP lipids confirm specific binding to PIP3. A novel FRET competitive binding measurement developed to quantitate docking affinity yields a KD of 50 ± 10 nM for GRP1-PH domain binding to membrane-bound PIP3 in a physiological lipid mixture approximating the composition of the plasma membrane inner leaflet. This observed KD lies in a suitable range for regulation by physiological PIP3 signals. Interestingly, the affinity of the interaction decreases at least 12-fold when the background anionic lipids phosphatidylserine (PS) and phosphatidylinositol (PI) are removed from the lipid mixture. Stopped-flow kinetic studies using protein-to-membrane FRET to monitor association and dissociation time courses reveal that this affinity decrease arises from a corresponding decrease in the on-rate for GRP1-PH domain docking with little or no change in the off-rate for domain dissociation from membrane-bound PIP3. Overall, these findings indicate that the PH domain interacts not only with its target lipid, but also with other features of the membrane surface. The results are consistent with a previously undescribed type of two-step search mechanism for lipid binding domains in which weak, nonspecific electrostatic interactions between the PH domain and background anionic lipids facilitate searching of the membrane surface for PIP3 headgroups, thereby speeding the high-affinity, specific docking of the domain to its rare target lipid.
PMCID: PMC3625374  PMID: 15610010
19.  Plasma membrane organization and function: moving past lipid rafts 
Molecular Biology of the Cell  2013;24(18):2765-2768.
“Lipid raft” is the name given to the tiny, dynamic, and ordered domains of cholesterol and sphingolipids that are hypothesized to exist in the plasma membranes of eukaryotic cells. According to the lipid raft hypothesis, these cholesterol- and sphingolipid-enriched domains modulate the protein–protein interactions that are essential for cellular function. Indeed, many studies have shown that cellular levels of cholesterol and sphingolipids influence plasma membrane organization, cell signaling, and other important biological processes. Despite 15 years of research and the application of highly advanced imaging techniques, data that unambiguously demonstrate the existence of lipid rafts in mammalian cells are still lacking. This Perspective summarizes the results that challenge the lipid raft hypothesis and discusses alternative hypothetical models of plasma membrane organization and lipid-mediated cellular function.
PMCID: PMC3771939  PMID: 24030510
20.  Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis 
Molecular Biology of the Cell  2014;25(20):3234-3246.
An unbiased mass spectrometry–based lipidomic screening method is used to analyze the major lipids of yeast deletions in protein kinase/phosphatase genes. This creates a new, rich source of biological insight. It uncovers new players in lipid homeostasis and gives a useful data set to further the understanding of lipid regulation by signaling networks.
The regulatory pathways required to maintain eukaryotic lipid homeostasis are largely unknown. We developed a systematic approach to uncover new players in the regulation of lipid homeostasis. Through an unbiased mass spectrometry–based lipidomic screening, we quantified hundreds of lipid species, including glycerophospholipids, sphingolipids, and sterols, from a collection of 129 mutants in protein kinase and phosphatase genes of Saccharomyces cerevisiae. Our approach successfully identified known kinases involved in lipid homeostasis and uncovered new ones. By clustering analysis, we found connections between nutrient-sensing pathways and regulation of glycerophospholipids. Deletion of members of glucose- and nitrogen-sensing pathways showed reciprocal changes in glycerophospholipid acyl chain lengths. We also found several new candidates for the regulation of sphingolipid homeostasis, including a connection between inositol pyrophosphate metabolism and complex sphingolipid homeostasis through transcriptional regulation of AUR1 and SUR1. This robust, systematic lipidomic approach constitutes a rich, new source of biological information and can be used to identify novel gene associations and function.
PMCID: PMC4196872  PMID: 25143408
21.  Identification of Novel Families and Classification of the C2 domain Superfamily Elucidate the Origin and Evolution of Membrane Targeting Activities in Eukaryotes 
Gene  2010;469(1-2):18-30.
Eukaryotes contain an elaborate membrane system, which bounds the cell itself, nuclei, organelles and transient intracellular structures, such as vesicles. The emergence of this system was marked by an expansion of number of structurally distinct classes of lipid-binding domains that could throw light on the early evolution of eukaryotic membranes. The C2 domain is a useful model to understand these events because it is one of the most prevalent eukaryotic lipid-binding domains deployed in diverse functional contexts. Most studies have concentrated on C2 domains prototyped by those in protein kinase C (PKC-C2) isoforms that bind lipid in a calcium-dependent manner. While two other distinct families of C2 domains, namely those in PI3K-C2 and PTEN-C2 are also recognized, a complete picture of evolutionary relationships within the C2 domain superfamily is lacking. We systematically studied this superfamily using sequence-profile searches, phylogenetic and phyletic-pattern analysis and structure-prediction. Consequently, we identified several distinct families of C2 domains including those respectively typified by C2 domains in the Aida (axin interactor, dorsalization associated) proteins, B9 proteins (e.g. Mks1 (Xbx-7), Stumpy (Tza-1) and Tza-2) involved in centrosome migration and ciliogenesis, Dock180/Zizimin proteins which are Rac/CDC42 GDP exchange factors, the EEIG1/Sym-3, EHBP1 and plant RPG/PMI1 proteins involved in endocytotic recycling and organellar positioning and an apicomplexan family. We present evidence that the last eukaryotic common ancestor (LECA) contained at least 10 C2 domains belonging to 6 well-defined families. Further, we suggest that this pre-LECA diversification was linked to emergence of several quintessentially eukaryotic structures, such as membrane repair and vesicular trafficking system, anchoring of the actin and tubulin cytoskeleton to the plasma and vesicular membranes, localization of small GTPases to membranes and lipid-based signal transduction. Subsequent lineage-specific expansions of Zizimin-type C2 domains and functionally linked CDC42/Rac GTPases occurred independently in eukaryotes that evolved active amoeboid motility. While two lipid-binding regions are likely to be shared by majority of C2 domains, the actual constellation of lipid-binding residues (predominantly basic) are distinct in each family potentially reflective of the functional and biochemical diversity of these domains. Importantly, we show that the calcium-dependent membrane interaction is a derived feature limited to the PKC-C2 domains. Our identification of novel C2 domains offers new insights into interaction between both the microtubular and microfilament cytoskeleton and cellular membranes.
PMCID: PMC2965036  PMID: 20713135
C2 domain; evolution; remote homology detection; structure and function; membranes; lipid recognition; cytoskeleton; GTPase signaling; vesicular trafficking
22.  Lipid Rafts and Alzheimer’s Disease: Protein-Lipid Interactions and Perturbation of Signaling 
Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein–protein interactions and for cellular signaling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses), axonal development and maintenance of synaptic integrity, rafts have also been implicated in the pathogenesis of several neurodegenerative diseases including Alzheimer’s disease (AD). Lipid rafts promote interaction of the amyloid precursor protein (APP) with the secretase (BACE-1) responsible for generation of the amyloid β peptide, Aβ. Rafts also regulate cholinergic signaling as well as acetylcholinesterase and Aβ interaction. In addition, such major lipid raft components as cholesterol and GM1 ganglioside have been directly implicated in pathogenesis of the disease. Perturbation of lipid raft integrity can also affect various signaling pathways leading to cellular death and AD. In this review, we discuss modulation of APP cleavage by lipid rafts and their components, while also looking at more recent findings on the role of lipid rafts in signaling events.
PMCID: PMC3381238  PMID: 22737128
AChE; Alzheimer’s disease; amyloid β peptide; APP; AICD; BACE-1; cholesterol; neprilysin
23.  Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells 
PLoS Pathogens  2012;8(3):e1002584.
Dengue virus causes ∼50–100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.
Author Summary
Dengue virus is one of the most aggressive human pathogens worldwide. It causes 50–100 million infections per year but there is no vaccine or antiviral that is currently effective against the disease. The virus is spread by Aedes aegyptii and Aedes albopictus mosquitoes and viral replication within the mosquito vector is required for transmission to a new human host. During this replication cycle, the virus causes significant changes to the membrane organization of infected cells. These virus-induced membrane alterations help to assemble arrays of viral replication factories and aid the virus to evade host antiviral defense mechanisms. Previously, much effort has been placed in trying to identify viral and cellular protein effectors that aid virus replication. In this study we have explored the role of lipids in the formation of these extensive membrane platforms in mosquito cells. Using high-resolution mass spectrometry we have profiled the lipid composition of dengue virus infected mosquito cells and compared it to uninfected cells. Through this we have identified several lipid classes that are differentially regulated during dengue virus replication. Using inhibitors of lipid biosynthesis we have also identified a lipid repertoire that is inhibitory to viral replication. Knowledge of how dengue virus utilizes cellular lipids and downstream signaling pathways to facilitate its replication will provide novel targets that could be utilized for developing effective antivirals. This study is also a forerunner for future comparative analyses of the human host and vector membrane environments required for viral replication.
PMCID: PMC3310792  PMID: 22457619
24.  A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi 
The Journal of Cell Biology  2014;205(1):113-126.
Characterization of a new biosensor for PtdIns4P reveals a wider cellular distribution for the polyphosphoinositide than the Golgi localization reported previously, including pools in both the plasma membrane and late endosomes/lysosomes.
Polyphosphoinositides are an important class of lipid that recruit specific effector proteins to organelle membranes. One member, phosphatidylinositol 4-phosphate (PtdIns4P) has been localized to Golgi membranes based on the distribution of lipid binding modules from PtdIns4P effector proteins. However, these probes may be biased by additional interactions with other Golgi-specific determinants. In this paper, we derive a new PtdIns4P biosensor using the PtdIns4P binding of SidM (P4M) domain of the secreted effector protein SidM from the bacterial pathogen Legionella pneumophila. PtdIns4P was necessary and sufficient for localization of P4M, which revealed pools of the lipid associated not only with the Golgi but also with the plasma membrane and Rab7-positive late endosomes/lysosomes. PtdIns4P distribution was determined by the localization and activities of both its anabolic and catabolic enzymes. Therefore, P4M reports a wider cellular distribution of PtdIns4P than previous probes and therefore will be valuable for dissecting the biological functions of PtdIns4P in its assorted membrane compartments.
PMCID: PMC3987136  PMID: 24711504
25.  A Deficiency of Ceramide Biosynthesis Causes Cerebellar Purkinje Cell Neurodegeneration and Lipofuscin Accumulation 
PLoS Genetics  2011;7(5):e1002063.
Sphingolipids, lipids with a common sphingoid base (also termed long chain base) backbone, play essential cellular structural and signaling functions. Alterations of sphingolipid levels have been implicated in many diseases, including neurodegenerative disorders. However, it remains largely unclear whether sphingolipid changes in these diseases are pathological events or homeostatic responses. Furthermore, how changes in sphingolipid homeostasis shape the progression of aging and neurodegeneration remains to be clarified. We identified two mouse strains, flincher (fln) and toppler (to), with spontaneous recessive mutations that cause cerebellar ataxia and Purkinje cell degeneration. Positional cloning demonstrated that these mutations reside in the Lass1 gene. Lass1 encodes (dihydro)ceramide synthase 1 (CerS1), which is highly expressed in neurons. Both fln and to mutations caused complete loss of CerS1 catalytic activity, which resulted in a reduction in sphingolipid biosynthesis in the brain and dramatic changes in steady-state levels of sphingolipids and sphingoid bases. In addition to Purkinje cell death, deficiency of CerS1 function also induced accumulation of lipofuscin with ubiquitylated proteins in many brain regions. Our results demonstrate clearly that ceramide biosynthesis deficiency can cause neurodegeneration and suggest a novel mechanism of lipofuscin formation, a common phenomenon that occurs during normal aging and in some neurodegenerative diseases.
Author Summary
Lipids play many essential cellular roles as structural components of biological membranes or signaling molecules. Alterations of lipids have been observed in the brains of patients with neurodegenerative diseases. However, whether these changes can cause neurodegeneration or otherwise influence the pathology of these diseases is unclear. We identified mouse mutations in a gene encoding a neuronally expressed enzyme that generates ceramide, the basic structural component of many lipids known as sphingolipids. These mutations result in progressive ataxia and loss of cerebellar Purkinje cells. In addition, many neurons in these mutant mice harbor lipofuscin, a storage material containing both membranes and proteins, that is present in aging brains and in brains of patients with neurodegenerative disorders, suggesting that both membrane and protein homeostasis are impaired in mutant neurons. This study directly demonstrates that disruption of sphingolipid biosynthesis can lead to selective neuron death and the abnormal accumulation of lipofuscin, and it underscores the need for further study of the roles of lipids in neurodegenerative disorders.
PMCID: PMC3098191  PMID: 21625621

Results 1-25 (1231943)