PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1059853)

Clipboard (0)
None

Related Articles

1.  Celastrol induces unfolded protein response-dependent cell death in head and neck cancer 
Experimental cell research  2014;330(2):412-422.
The survival rate for patients with oral squamous cell carcinoma (OSCC) has not seen marked improvement in recent decades despite enhanced efforts in prevention and the introduction of novel therapies. We have reported that pharmacological exacerbation of the unfolded protein response (UPR) is an effective approach to killing OSCC cells. The UPR is executed via distinct signaling cascades whereby an initial attempt to restore folding homeostasis in the endoplasmic reticulum during stress is complemented by an apoptotic response if the defect cannot be resolved. To identify novel small molecules able to overwhelm the adaptive capacity of the UPR in OSCC cells, we engineered a complementary cell-based assay to screen a broad spectrum of chemical matter. Stably transfected CHO-K1 cells that individually report (luciferase) on the PERK/eIF2α/ATF4/CHOP (apoptotic) or the IRE1/XBP1 (adaptive) UPR pathways, were engineered [1]. The triterpenoids dihydrocelastrol and celastrol were identified as potent inducers of UPR signaling and cell death in a primary screen and confirmed in a panel of OSCC cells and other cancer cell lines. Biochemical and genetic assays using OSCC cells and modified murine embryonic fibroblasts demonstrated that intact PERK-eIF2–ATF4-CHOP signaling is required for pro-apoptotic UPR and OSCC death following celastrol treatment.
doi:10.1016/j.yexcr.2014.08.014
PMCID: PMC4280347  PMID: 25139619
Celastrol; ER stress; Unfolded protein response; Oral cancer; Apoptosis; Drug discovery; Chaperone; Protein folding
2.  Brucella Induces an Unfolded Protein Response via TcpB That Supports Intracellular Replication in Macrophages 
PLoS Pathogens  2013;9(12):e1003785.
Brucella melitensis is a facultative intracellular bacterium that causes brucellosis, the most prevalent zoonosis worldwide. The Brucella intracellular replicative niche in macrophages and dendritic cells thwarts immune surveillance and complicates both therapy and vaccine development. Currently, host-pathogen interactions supporting Brucella replication are poorly understood. Brucella fuses with the endoplasmic reticulum (ER) to replicate, resulting in dramatic restructuring of the ER. This ER disruption raises the possibility that Brucella provokes an ER stress response called the Unfolded Protein Response (UPR). In this study, B. melitensis infection up regulated expression of the UPR target genes BiP, CHOP, and ERdj4, and induced XBP1 mRNA splicing in murine macrophages. These data implicate activation of all 3 major signaling pathways of the UPR. Consistent with previous reports, XBP1 mRNA splicing was largely MyD88-dependent. However, up regulation of CHOP, and ERdj4 was completely MyD88 independent. Heat killed Brucella stimulated significantly less BiP, CHOP, and ERdj4 expression, but induced XBP1 splicing. Although a Brucella VirB mutant showed relatively intact UPR induction, a TcpB mutant had significantly compromised BiP, CHOP and ERdj4 expression. Purified TcpB, a protein recently identified to modulate microtubules in a manner similar to paclitaxel, also induced UPR target gene expression and resulted in dramatic restructuring of the ER. In contrast, infection with the TcpB mutant resulted in much less ER structural disruption. Finally, tauroursodeoxycholic acid, a pharmacologic chaperone that ameliorates the UPR, significantly impaired Brucella replication in macrophages. Together, these results suggest Brucella induces a UPR, via TcpB and potentially other factors, that enables its intracellular replication. Thus, the UPR may provide a novel therapeutic target for the treatment of brucellosis. These results also have implications for other intracellular bacteria that rely on host physiologic stress responses for replication.
Author Summary
Brucella melitensis is an intracellular bacterium that invades and replicates within macrophages and dendritic cells. With over 500,000 new infections per year, brucellosis is the most prevalent zoonosis worldwide and incurs significant human morbidity and economic loss. The intracellular location of Brucella renders the organism resistant to antibiotics. A safe and effective human vaccine does not exist. Thus, better understanding of the host-pathogen interactions supporting establishment of the intracellular replicative niche is critical. In this study, we found that infection of macrophages with Brucella induces a host stress response called the Unfolded Protein Response (UPR), a conserved stress response originating in the endoplasmic reticulum (ER). Full induction of the UPR requires live bacteria and expression of a microtubule modulating protein, TcpB. Inhibition of the UPR with the drug tauroursodeoxycholic acid significantly diminished Brucella replication. Together these results suggest Brucella induces the UPR to enable its own replication within host macrophages. Thus the UPR may represent a novel therapeutic target for the treatment of brucellosis.
doi:10.1371/journal.ppat.1003785
PMCID: PMC3855547  PMID: 24339776
3.  Genetic Interactions Due to Constitutive and Inducible Gene Regulation Mediated by the Unfolded Protein Response in C. elegans 
PLoS Genetics  2005;1(3):e37.
The unfolded protein response (UPR) is an adaptive signaling pathway utilized to sense and alleviate the stress of protein folding in the endoplasmic reticulum (ER). In mammals, the UPR is mediated through three proximal sensors PERK/PEK, IRE1, and ATF6. PERK/PEK is a protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 to inhibit protein synthesis. Activation of IRE1 induces splicing of XBP1 mRNA to produce a potent transcription factor. ATF6 is a transmembrane transcription factor that is activated by cleavage upon ER stress. We show that in Caenorhabditis elegans, deletion of either ire-1 or xbp-1 is synthetically lethal with deletion of either atf-6 or pek-1, both producing a developmental arrest at larval stage 2. Therefore, in C. elegans, atf-6 acts synergistically with pek-1 to complement the developmental requirement for ire-1 and xbp-1. Microarray analysis identified inducible UPR (i-UPR) genes, as well as numerous constitutive UPR (c-UPR) genes that require the ER stress transducers during normal development. Although ire-1 and xbp-1 together regulate transcription of most i-UPR genes, they are each required for expression of nonoverlapping sets of c-UPR genes, suggesting that they have distinct functions. Intriguingly, C. elegans atf-6 regulates few i-UPR genes following ER stress, but is required for the expression of many c-UPR genes, indicating its importance during development and homeostasis. In contrast, pek-1 is required for induction of approximately 23% of i-UPR genes but is dispensable for the c-UPR. As pek-1 and atf-6 mainly act through sets of nonoverlapping targets that are different from ire-1 and xbp-1 targets, at least two coordinated responses are required to alleviate ER stress by distinct mechanisms. Finally, our array study identified the liver-specific transcription factor CREBh as a novel UPR gene conserved during metazoan evolution.
Synopsis
The endoplasmic reticulum (ER) is an intracellular organelle where proteins fold and assemble prior to transport to the cell surface. The ER contains a finely tuned quality control apparatus to ensure that improperly folded proteins are retained in the ER lumen. A variety of physiological demands, environmental perturbations, and pathological conditions compromise protein folding in the ER and lead to the accumulation of unfolded proteins. The unfolded protein response (UPR) is an evolutionarily conserved intracellular adaptive signaling pathway that alleviates protein-folding defects in the ER. The unfolded protein signal is transmitted from the ER to the nucleus by three pathways involving the proteins ATF-6, PEK-1, and IRE-1/XBP-1. However, it is not known how these three pathways coordinate downstream transcriptional activation to mediate either cell adaptation or cell death. The authors have studied the nematode Caenorhabditis elegans to present a comprehensive genetic and gene expression analysis of the three UPR pathways. The findings demonstrate that the UPR regulates the expression of hundreds of genes in the presence, as well as the absence, of ER stress in a manner that is more complex and diverse than previously known.
doi:10.1371/journal.pgen.0010037
PMCID: PMC1231716  PMID: 16184190
4.  Role of Unfolded Protein Response Dysregulation in Oxidative Injury of Retinal Pigment Epithelial Cells 
Antioxidants & Redox Signaling  2014;20(14):2091-2106.
Abstract
Aims: Age-related macular degeneration (AMD), a major cause of legal blindness in the elderly, is associated with genetic and environmental risk factors, such as cigarette smoking. Recent evidence shows that cigarette smoke (CS) that contains high levels of potent oxidants preferably targets retinal pigment epithelium (RPE) leading to oxidative damage and apoptosis; however, the mechanisms are poorly understood. The present study aimed to investigate the role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in CS-related RPE apoptosis. Results: ER stress and proapoptotic gene C/EBP homologous protein (CHOP) were induced in the RPE/choroid complex from mice exposed to CS for 2 weeks and in human RPE cells treated with hydroquinone, a potent oxidant found at high concentrations in CS. Suppressing ER stress or inhibiting CHOP activation by pharmacological chaperones or genetic approaches attenuated hydroquinone-induced RPE cell apoptosis. In contrast to enhanced CHOP activation, protein level of active X-box binding protein 1 (XBP1), a major regulator of the adaptive UPR, was reduced in hydroquinone-treated cells. Conditional knockout of XBP1 gene in the RPE resulted in caspase-12 activation, increased CHOP expression, and decreased antiapoptotic gene Bcl-2. Furthermore, XBP1-deficient RPE cells are more sensitive to oxidative damage induced by hydroquinone or NaIO3, a CS-unrelated chemical oxidant. Conversely, overexpressing XBP1 protected RPE cells and attenuated oxidative stress-induced RPE apoptosis. Innovation and Conclusion: These findings provide strong evidence suggesting an important role of ER stress and the UPR in CS-related oxidative injury of RPE cells. Thus, the modulation of the UPR signaling may provide a promising target for the treatment of AMD. Antioxid. Redox Signal. 20, 2091–2106.
doi:10.1089/ars.2013.5240
PMCID: PMC3995121  PMID: 24053669
5.  C/EBP homologous protein drives pro-catabolic responses in chondrocytes 
Arthritis Research & Therapy  2013;15(6):R218.
Introduction
Excess C/EBP homologous protein (CHOP) expression is one feature of the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress. Here, we focused on CHOP expression and function in chondrocytes.
Methods
We studied human knee osteoarthritis (OA) cartilage, bovine chondrocytes cultured in alginate and subjected to sub-lethal biomechanical injury, and knee chondrocytes of human autopsy donors. We performed siRNA knockdown and transfection.
Results
UPR activation was increased in human knee OA cartilage in situ, and in biomechanically injured cultured chondrocytes in vitro. In normal human chondrocytes, CHOP “gain of function” sensitized chondrocytes to IL-1β induced nitric oxide (NO) and matrix metalloproteinase (MMP)-3 release without inducing these responses by itself. Excess CHOP expression, by itself, induced superoxide production and apoptosis. Conversely, siRNA knockdown of CHOP and the UPR-specific mediator X-box binding protein (XBP1) inhibited NO release by >80% (P <0.0005) in response to IL-1β, and blunted MMP-3 release, whereas there were only minimal effects of the UPR mediator GRP78 on these responses. The anti-inflammatory metabolic “super-regulator” AMP kinase (AMPK) is known to limit UPR activation in vascular muscle cells. Here, CHOP supported the capacity of IL-1β to suppress AMPK activity in chondrocytes. We also observed that inhibition of AMPK activity promoted an increase in chondrocyte CHOP expression. Conversely, pharmacologic activation of AMPK by 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) blunted chondrocyte CHOP expression in response to biomechanical injury.
Conclusions
Biomechanical injury and IL-1 signaling stimulate UPR activation in chondrocytes. CHOP mediates chondrocyte catabolic and apoptotic responses to IL-1β, and does so partly by inhibiting AMPK activity. Conversely, development of excess CHOP activity is limited by AMPK activity in chondrocytes. Our findings suggest a mechanism for potential chondroprotection by AICAR and other AMPK activators. The work is of translational relevance for OA, since several drugs that activate AMPK are already in the clinic for arthritis (for example, allosteric AMPK activators sodium salicylate and high dose aspirin, and methotrexate, which activates AMPK by generating AICAR).
doi:10.1186/ar4415
PMCID: PMC3978428  PMID: 24351550
6.  Interleukin-1 Receptor-Associated Kinase-2 (IRAK2) Is a Critical Mediator of Endoplasmic Reticulum (ER) Stress Signaling 
PLoS ONE  2013;8(5):e64256.
Endoplasmic reticulum (ER) stress occurs when unfolded proteins accumulate in the lumen of the organelle, triggering signal transduction events that contribute either to cellular adaptation and recovery or alternatively to cellular dysfunction and death. ER stress has been implicated in numerous diseases. To identify novel modulators of ER stress, we undertook a siRNA library screen of the kinome, revealing Interleukin-1 Receptor-Associated Kinase-2 (IRAK2) as a contributor to unfolded protein response (UPR) signaling and ER stress-induced cell death. Knocking down expression of IRAK2 (but not IRAK1) in cultured mammalian cells suppresses ER stress-induced expression of the pro-apoptotic transcription factor CHOP and activation of stress kinases. Similarly, RNAi-mediated silencing of the IRAK family member Tube (but not Pelle) suppresses activation of stress kinase signaling induced by ER stress in Drosophila cells. The action of IRAK2 maps to the IRE1 pathway, rather than the PERK or ATF6 components of the UPR. Interestingly, ER stress also induces IRAK2 gene expression in an IRE1/XBP1-dependent manner, suggesting a mutually supporting amplification loop involving IRAK2 and IRE1. In vivo, ER stress induces Irak2 expression in mice. Moreover, Irak2 gene knockout mice display defects in ER stress-induced CHOP expression and IRE1 pathway signaling. These findings demonstrate an unexpected linkage of the innate immunity machinery to UPR signaling, revealing IRAK2 as a novel amplifier of the IRE1 pathway.
doi:10.1371/journal.pone.0064256
PMCID: PMC3665826  PMID: 23724040
7.  Classification of terverticillate penicillia based on profiles of mycotoxins and other secondary metabolites. 
Strains of available terverticillate penicillium species and varieties were analyzed for profiles of known mycotoxins and other secondary metabolites produced on Czapek yeast autolysate agar (intracellular metabolites) and yeast extract-sucrose agar (extracellular metabolites) by using simple thin-layer chromatography screening techniques. These strains (2,473 in all) could be classified into 29 groups based on profiles of secondary metabolites. Most of these profiles of secondary metabolites were distinct, containing several biosynthetically different mycotoxins and unknown metabolites characterized by distinct colors and retardation factors on thin-layer chromatography plates. Some species (P. italicum and P. atramentosum) only produced one or two metabolites by the simple screening methods. The 29 groups based on profiles of secondary metabolites were known species or subgroups thereof. These species and subgroups were independently identifiable by using morphological and physiological criteria. The species accepted, the number of isolates in each species investigated, and the mycotoxins they produced were: P. atramentosum, 4; P. aurantiogriseum, 510 (group I: penicillic acid and S-toxin and group II: penicillic acid, penitrem A [low frequency], terrestric acid [low frequency], viomellein, and xanthomegnin); P. brevicompactum, 81 (brevianamid A and mycophenolic acid); P. camembertii group I, 38, and group II, 114 (cyclopiazonic acid); P. chrysogenum, 87 (penicillin, roquefortine C, and PR-toxin); P. claviforme, 4 (patulin and roquefortine C); P. clavigerum, 4 (penitrem A); P. concentricum group I, 10 (griseofulvin and roquefortine C), and group II, 3 (patulin and roquefortine C); P. crustosum, 123 (penitrem A, roquefortine C, and terrestric acid); P. echinulatum, 13; P. expansum, 91 (citrinin, patulin, and roquefortine C); P. granulatum, 6 (patulin, penitrem A, and roquefortine C [traces]); P. griseofulvum, 21 (cyclopiazonic acid, griseofulvin, patulin, and roquefortine C); P. hirsutum, 100 (group I: terrestric acid; group II: citrinin, penicillic acid , roquefortine C, and terrestric acid; and group III: roquefortine C and terrestric acid), P. hirsutum group IV, 2 (chaetoglobosin C); P. isariiforme, 1; P. italicum, 41; P. mali, 104; P. roquefortii, 78 (group I: mycophenolic acid, PR-toxin, and roquefortine C and group II: mycophenolic acid, patulin, penicillic acid [low frequency], and roquefortine C); P. viridicatum group I, 634 (brevianamid A [low frequency], penicillic acid, viomellein, and xanthomegnin), P. viridicatum group II and III, 494 (citrinin and ochratoxin A), P. viridicatum group IV, 12 (griseofulvin and viridicatumtoxin). It is proposed that profiles of secondary metabolites be strongly emphasized in any future revision of the penicillia.
PMCID: PMC239568  PMID: 6660869
8.  Attenuating the Endoplasmic Reticulum Stress Response Improves Functional Recovery After Spinal Cord Injury 
Glia  2011;59(10):1489-1502.
Activation of the unfolded protein response (UPR) is involved in the pathogenesis of numerous CNS myelin abnormalities; yet, its direct role in traumatic spinal cord injury (SCI)-induced demyelination is not known. The UPR is an evolutionarily conserved cell defense mechanism initiated to restore endoplasmic reticulum homeostasis in response to various cellular stresses including infection, trauma, and oxidative damage. However, if uncompensated, the UPR triggers apoptotic cell death. We demonstrate that the three signaling branches of UPR including the PERK, ATF6, and IRE1α are rapidly initiated in a mouse model of contusive SCI specifically at the injury epicenter. Immunohistochemical analyses of the various UPR markers revealed that in neurons, the UPR appeared at 6 and 24-h post-SCI. In contrast, in oligodendrocytes and astroglia, UPR persisted at least for up to 3 days post-SCI. The UPR-associated proapoptotic transcriptional regulator CHOP was among the UPR markers upregulated in neurons and oligodendrocytes, but not in astrocytes, of traumatized mouse spinal cords. To directly analyze its role in SCI, WT and CHOP null mice received a moderate T9 contusive injury. Deletion of CHOP led to an overall attenuation of the UPR after contusive SCI. Furthermore, analyses of hindlimb locomotion demonstrated a significant functional recovery that correlated with an increase in white-matter sparing, transcript levels of myelin basic protein, and Claudin 11 and decreased oligodendrocyte apoptosis in CHOP null mice in contrast to WT animals. Thus, our study provides evidence that the UPR contributes to oligodendrocyte loss after traumatic SCI.
doi:10.1002/glia.21191
PMCID: PMC3391751  PMID: 21638341
contusion; ER-stress; locomoter activity; oligodendrocyte; spinal cord injury; white-matter sparing
9.  XBP-1 Regulates a Subset of Endoplasmic Reticulum Resident Chaperone Genes in the Unfolded Protein Response 
Molecular and Cellular Biology  2003;23(21):7448-7459.
The mammalian unfolded protein response (UPR) protects the cell against the stress of misfolded proteins in the endoplasmic reticulum (ER). We have investigated here the contribution of the UPR transcription factors XBP-1, ATF6α, and ATF6β to UPR target gene expression. Gene profiling of cell lines lacking these factors yielded several XBP-1-dependent UPR target genes, all of which appear to act in the ER. These included the DnaJ/Hsp40-like genes, p58IPK, ERdj4, and HEDJ, as well as EDEM, protein disulfide isomerase-P5, and ribosome-associated membrane protein 4 (RAMP4), whereas expression of BiP was only modestly dependent on XBP-1. Surprisingly, given previous reports that enforced expression of ATF6α induced a subset of UPR target genes, cells deficient in ATF6α, ATF6β, or both had minimal defects in upregulating UPR target genes by gene profiling analysis, suggesting the presence of compensatory mechanism(s) for ATF6 in the UPR. Since cells lacking both XBP-1 and ATF6α had significantly impaired induction of select UPR target genes and ERSE reporter activation, XBP-1 and ATF6α may serve partially redundant functions. No UPR target genes that required ATF6β were identified, nor, in contrast to XBP-1 and ATF6α, did the activity of the UPRE or ERSE promoters require ATF6β, suggesting a minor role for it during the UPR. Collectively, these results suggest that the IRE1/XBP-1 pathway is required for efficient protein folding, maturation, and degradation in the ER and imply the existence of subsets of UPR target genes as defined by their dependence on XBP-1. Further, our observations suggest the existence of additional, as-yet-unknown, key regulators of the UPR.
doi:10.1128/MCB.23.21.7448-7459.2003
PMCID: PMC207643  PMID: 14559994
10.  HSP72 Protects Cells from ER Stress-induced Apoptosis via Enhancement of IRE1α-XBP1 Signaling through a Physical Interaction 
PLoS Biology  2010;8(7):e1000410.
The cytosolic chaperone Hsp72 directly modulates stress sensing in response to the accumulation of unfolded proteins in the endoplasmic reticulum and promotes cell survival.
Endoplasmic reticulum (ER) stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR). Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1α, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1α or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1α. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1α in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1α enhances IRE1α/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.
Author Summary
The endoplasmic reticulum (ER) is responsible for production and folding of secreted proteins. When the protein folding machinery cannot keep up with demand, misfolded proteins accumulate, leading to a state of ER stress that contributes to diseases such as cancer, neurodegeneration, diabetes, and myocardial infarct. The unfolded protein response (UPR) is an intracellular signaling network activated in response to ER stress. It initially tries to restore normal ER homeostasis, but if the damage is too severe cell death pathways mediated by cytosolic and mitochondrial proteins are activated. The molecular mechanisms involved in the transition of the UPR from a protective to an apoptotic phase are unclear. IRE1α is an ER membrane protein that acts as a sensor of ER stress. A number of proteins can interact with IRE1α to regulate its function, which includes an RNase activity responsible for inducing the unconventional splicing of the transcript for a downstream signaling protein called XBP-1. Here, we report that Hsp72, a stress-inducible cytosolic molecular chaperone, can bind to and enhance the RNase activity of IRE1α, providing an important molecular link between the heat shock response and the ER stress response. Importantly, increased production of active XBP-1 was necessary for Hsp72 to exert its prosurvival effect under conditions of ER stress. Our results suggest a mechanism whereby Hsp72 overexpression helps cells adapt to long-term ER stress in vivo by enhancing the pro-survival effects of the IRE1α/XBP1 branch of the UPR.
doi:10.1371/journal.pbio.1000410
PMCID: PMC2897763  PMID: 20625543
11.  Coxsackievirus B3 Infection Activates the Unfolded Protein Response and Induces Apoptosis through Downregulation of p58IPK and Activation of CHOP and SREBP1▿  
Journal of Virology  2010;84(17):8446-8459.
Cardiomyocyte apoptosis is a hallmark of coxsackievirus B3 (CVB3)-induced myocarditis. We used cardiomyocytes and HeLa cells to explore the cellular response to CVB3 infection, with a focus on pathways leading to apoptosis. CVB3 infection triggered endoplasmic reticulum (ER) stress and differentially regulated the three arms of the unfolded protein response (UPR) initiated by the proximal ER stress sensors ATF6a (activating transcription factor 6a), IRE1-XBP1 (X box binding protein 1), and PERK (PKR-like ER protein kinase). Upon CVB3 infection, glucose-regulated protein 78 expression was upregulated, and in turn ATF6a and XBP1 were activated via protein cleavage and mRNA splicing, respectively. UPR activity was further confirmed by the enhanced expression of UPR target genes ERdj4 and EDEM1. Surprisingly, another UPR-associated gene, p58IPK, which often is upregulated during infections with other types of viruses, was downregulated at both mRNA and protein levels after CVB3 infection. These findings were observed similarly for uninfected Tet-On HeLa cells induced to overexpress ATF6a or XBP1. In exploring potential connections between the three UPR pathways, we found that the ATF6a-induced downregulation of p58IPK was associated with the activation of PKR (PERK) and the phosphorylation of eIF2α, suggesting that p58IPK, a negative regulator of PERK and PKR, mediates cross-talk between the ATF6a/IRE1-XBP1 and PERK arms. Finally, we found that CVB3 infection eventually produced the induction of the proapoptoic transcription factor CHOP and the activation of SREBP1 and caspase-12. Taken together, these data suggest that CVB3 infection activates UPR pathways and induces ER stress-mediated apoptosis through the suppression of P58IPK and induction/activation of CHOP, SREBP1, and caspase-12.
doi:10.1128/JVI.01416-09
PMCID: PMC2918999  PMID: 20554776
12.  Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress 
Cell Stress & Chaperones  2012;18(1):11-23.
In the endoplasmic reticulum (ER), secretory and membrane proteins are properly folded and modified, and the failure of these processes leads to ER stress. At the same time, unfolded protein response (UPR) genes are activated to maintain homeostasis. Despite the thorough characterization of the individual gene regulation of UPR genes to date, further investigation of the mutual regulation among UPR genes is required to understand the complex mechanism underlying the ER stress response. In this study, we aimed to reveal a gene regulatory network formed by UPR genes, including immunoglobulin heavy chain-binding protein (BiP), X-box binding protein 1 (XBP1), C/EBP [CCAAT/enhancer-binding protein]-homologous protein (CHOP), PKR-like endoplasmic reticulum kinase (PERK), inositol-requiring 1 (IRE1), activating transcription factor 6 (ATF6), and ATF4. For this purpose, we focused on promoter-luciferase reporters for BiP, XBP1, and CHOP genes, which bear an ER stress response element (ERSE), and p5 × ATF6-GL3, which bears an unfolded protein response element (UPRE). We demonstrated that the luciferase activities of the BiP and CHOP promoters were upregulated by all the UPR genes, whereas those of the XBP1 promoter and p5 × ATF6-GL3 were upregulated by all the UPR genes except for BiP, CHOP, and ATF4 in HeLa cells. Therefore, an ERSE- and UPRE-centered gene regulatory network of UPR genes could be responsible for the robustness of the ER stress response. Finally, we revealed that BiP protein was degraded when cells were treated with DNA-damaging reagents, such as etoposide and doxorubicin; this finding suggests that the expression level of BiP is tightly regulated at the post-translational level, rather than at the transcriptional level, in the presence of DNA damage.
doi:10.1007/s12192-012-0351-5
PMCID: PMC3508129  PMID: 22802018
ER stress; Unfolded protein response; ERSE; UPRE; BiP; Gene regulation
13.  Activation of the unfolded protein response by a cataract-associated αA-crystallin mutation 
αA-crystallin is a lens chaperone that plays an essential role in the transparency and refractive properties of the lens. Mutations in αA-crystallin have been associated with the development of hereditary cataracts. The R49C mutation of αA-crystallin (αA-R49C) was identified in a four-generation Caucasian family with hereditary cataracts. The αA-R49C protein forms larger-than-normal oligomers in the lens and has decreased solubility. This aberrant αA-R49C oligomerization suggests that protein folding is altered. However, whether activation of the unfolded protein response (UPR) occurs during crystallin mutation-induced cataract formation and whether the UPR causes cell death under these conditions is unclear. We investigated UPR activation in an in vivo mouse model of αA-R49C using immunoblot analysis of lens extracts. We found that expression of the endoplasmic reticulum (ER) chaperone, BiP, was 5-fold higher in homozygous αA-R49C lenses than in wild type lenses. Analysis of proteins typically expressed during the UPR revealed that ATF-4 and CHOP levels were also higher in homozygous lenses than in wild type lenses, while the opposite was true of ATF-6 and XBP-1. Taken together, these findings show that mutation of αA-crystallin induces activation of the UPR during cataract formation. They also suggest that the UPR is an important mediator of cell death observed in homozygous αA-R49C lenses.
doi:10.1016/j.bbrc.2010.09.023
PMCID: PMC2956780  PMID: 20833134
Crystallin; cataract; mutation; lens; unfolded protein response
14.  The Unfolded Protein Response is a Major Mechanism by which LRP1 Regulates Schwann Cell Survival After Injury 
In peripheral nerve injury, Schwann cells (SCs) must survive to exert a continuing and essential role in successful nerve regeneration. Herein, we show that peripheral nerve injury is associated with activation of endoplasmic reticulum (ER) stress and the adaptive unfolded protein response (UPR). The UPR culminates in expression of C/EBP homology protein CHOP, a pro-apoptotic transcription factor in SCs, unless counteracted by LDL receptor-related protein-1 (LRP1), which serves as a major activator of phosphatidylinositol 3-kinase (PI3K). Sciatic nerve crush injury in rats induced expression of the ER chaperone, GRP78/BIP, reflecting an early, corrective phase of the UPR. However, when LRP1-signaling was inhibited with receptor-associated protein, PI3K activity was decreased and CHOP protein expression increased, particularly in myelinating SCs. In cultured SCs, the PKR-like ER kinase (PERK) target, eIF2α, was phosphorylated and CHOP was induced by: 1) inhibiting PI3K; 2) treating the cells with tumor necrosis factor-α (TNF-α); or 3) genetic silencing of LRP1. CHOP gene deletion in SCs decreased cell death in response to TNF-α. Furthermore, the effects of TNF-α on p-eIF2α, CHOP, and SC death were blocked by adding LRP1 ligands that augment LRP1-dependent cell-signaling to PI3K. Collectively, our results support a model in which UPR-activated signaling pathways represent a major challenge to SC survival in nerve injury. LRP1 functions as a potent activator of PI3K in SCs and by this mechanism, limits SC apoptosis resulting from increased CHOP expression in nerve injury.
doi:10.1523/JNEUROSCI.2850-11.2011
PMCID: PMC3188465  PMID: 21940431
Schwann cell; peripheral nerve regeneration; ER stress; CHOP; survival; phosphatidylinositol 3-kinase (PI3K)
15.  Glucose-Regulated Protein 78 (Grp78) Confers Chemoresistance to Tumor Endothelial Cells under Acidic Stress 
PLoS ONE  2014;9(6):e101053.
Objectives
This study was designed to investigate the activation of the unfolded protein response (UPR) in tumor associated endothelial cells (TECs) and its association with chemoresistance during acidic pH stress.
Materials and Methods
Endothelial cells from human oral squamous cell carcinomas (OSCC) were excised by laser capture microdissection (LCM) followed by analysis of UPR markers (Grp78, ATF4 and CHOP) using quantitative PCR. Grp78 expression was also determined by immunostaining. Acidic stress was induced in primary human dermal microvascular endothelial cells (HDMECs) by treatment with conditioned medium (CM) from tumor cells grown under hypoxic conditions or by adjusting medium pH to 6.4 or 7.0 using lactic acid or hydrochloric acid (HCl). HDMEC resistance to the anti-angiogenic drug Sunitinib was assessed with SRB assay.
Results
UPR markers, Grp78, ATF4 and CHOP were significantly upregulated in TECs from OSCC compared to HDMECs. HDMECs cultured in acidic CM (pH 6.0–6.4) showed increased expression of the UPR markers. However, severe acidosis led to marked cell death in HDMECs. Alternatively, HDMECs were able to adapt when exposed to chronic acidosis at pH 7.0 for 7 days, with concomittant increase in Grp78 expression. Chronic acidosis also confers drug resistance to HDMECs against Sunitinib. Knockdown of Grp78 using shRNA resensitizes HDMECs to drug treatment.
Conclusions
UPR induction in ECs under acidic pH conditions is related to chemoresistance and may contribute to therapeutic failures in response to chemotherapy. Targeting Grp78, the key component of the UPR pathway, may provide a promising approach to overcome ECs resistance in cancer therapy.
doi:10.1371/journal.pone.0101053
PMCID: PMC4071032  PMID: 24964091
16.  Varicella-zoster virus glycoprotein expression differentially induces the unfolded protein response in infected cells 
Varicella-zoster virus (VZV) is a human herpesvirus that spreads to children as varicella or chicken pox. The virus then establishes latency in the nervous system and re-emerges, typically decades later, as zoster or shingles. We have reported previously that VZV induces autophagy in infected cells as well as exhibiting evidence of the Unfolded Protein Response (UPR): XBP1 splicing, a greatly expanded Endoplasmic Reticulum (ER) and CHOP expression. Herein we report the results of a UPR specific PCR array that measures the levels of mRNA of 84 different components of the UPR in VZV infected cells as compared to tunicamycin treated cells as a positive control and uninfected, untreated cells as a negative control. Tunicamycin is a mixture of chemicals that inhibits N-linked glycosylation in the ER with resultant protein misfolding and the UPR. We found that VZV differentially induces the UPR when compared to tunicamycin treatment. For example, tunicamycin treatment moderately increased (8-fold) roughly half of the array elements while downregulating only three (one ERAD and two FOLD components). VZV infection on the other hand upregulated 33 components including a little described stress sensor CREB-H (64-fold) as well as ER membrane components INSIG and gp78, which modulate cholesterol synthesis while downregulating over 20 components mostly associated with ERAD and FOLD. We hypothesize that this expression pattern is associated with an expanding ER with downregulation of active degradation by ERAD and apoptosis as the cell attempts to handle abundant viral glycoprotein synthesis.
doi:10.3389/fmicb.2014.00322
PMCID: PMC4076746  PMID: 25071735
herpesvirus; unfolded protein response; autophagy; tunicamycin; ERAD; CREBH; gp78; INSIG
17.  Activation and clinical significance of the unfolded protein response in breast cancer 
British Journal of Cancer  2009;101(10):1692-1698.
Introduction:
The tumour microenvironment is hypoglycaemic, hypoxic and acidotic. This activates a stress signalling pathway: the unfolded protein response (UPR). The UPR is cytoprotective if the stressor is mild, but may initiate apoptosis if severe.
Activation of the UPR in breast carcinoma is induced by microenvironmental stress such as glucose and oxygen deprivation, but may also be linked to oestrogen stimulation. It may be clinically significant as it may alter chemosensitivity to doxorubicin.
Methods:
395 human breast adenocarcinomas were immunohistochemically stained for UPR activation markers (glucose-regulated protein (GRP-78 and XBP-1). A model of UPR activation in vitro by glucose deprivation of T47D breast cancer cells was developed to determine how the UPR affects cellular sensitivity to doxorubicin and 5-fluorouracil. Cytotoxicity was assessed using a colorimetric cytotoxicity assay (MTT). The effect of oestrogen stimulation and tamoxifen exposure on UPR activation by T47D cells was determined by western blotting measurement of the key UPR protein, GRP-78.
Results:
Expression of GRP78 and XBP-1 was demonstrated in 76% and 90% of the breast cancers, respectively, and correlated with oestrogen receptor positivity (P=0.045 and 0.017, respectively). In vitro UPR activation induced resistance to both doxorubicin and 5-flurouracil, (P<0.05). Oestrogen stimulation induced GRP78 and XBP1 over-expression on western blotting. Tamoxifen did not block this response and may induce UPR activation in its own right.
Conclusions:
The UPR is activated in the majority of breast cancers and confers resistance to chemotherapy. In vitro oestrogen stimulates UPR induction. UPR activation may contribute to breast cancer chemoresistance and interact with oestrogen response elements.
doi:10.1038/sj.bjc.6605365
PMCID: PMC2778547  PMID: 19861963
breast cancer; unfolded protein response; stress response
18.  Japanese Encephalitis Virus Infection Initiates Endoplasmic Reticulum Stress and an Unfolded Protein Response 
Journal of Virology  2002;76(9):4162-4171.
The malfunctioning of the endoplasmic reticulum (ER) of cells in hosts ranging from yeast to mammals can trigger an unfolded protein response (UPR). Such malfunctioning can result from a variety of ER stresses, including the inhibition of protein glycosylation and calcium imbalance. To cope with ER stresses, cells may rely on the UPR to send a signal(s) from the ER to the nucleus to stimulate appropriate cellular responses, including induction of chaperone expression. During Japanese encephalitis virus (JEV) infection, the lumen of the ER rapidly accumulates substantial amounts of viral proteins for virus progeny production. In the present study, we demonstrate that as evidenced by certain chaperone inductions, JEV infection triggers the UPR in fibroblast BHK-21 cells and in neuronal N18 and NT-2 cells, in which JEV results in apoptotic cell death. By contrast, no UPR was observed in apoptosis-resistant K562 cells infected by JEV. JEV infection also activates expression of CHOP/GADD153, a distinctive transcription factor often induced by the UPR, and appears to trigger activation of p38 mitogen-activated protein kinase, a posttranslational activator of CHOP. Ectopic enforcement of CHOP expression enhanced JEV-induced apoptosis, whereas treatment with a p38-specific inhibitor, SB203580, partially blocked JEV-induced apoptosis. Interestingly, bcl-2 overexpression and treatment with a pancaspase inhibitor, z-VAD-fmk, inhibited CHOP induction and diminished JEV-induced apoptosis, suggesting that Bcl-2 and caspases could be the upstream regulators of CHOP. Our results thus suggest that virus-induced ER stress may participate, via p38-dependent and CHOP-mediated pathways, in the apoptotic process triggered by JEV infection.
doi:10.1128/JVI.76.9.4162-4171.2002
PMCID: PMC155064  PMID: 11932381
19.  Resveratrol-induced cytotoxicity in human Burkitt's lymphoma cells is coupled to the unfolded protein response 
BMC Cancer  2010;10:445.
Background
Resveratrol (RES), a natural phytoalexin found at high levels in grapes and red wine, has been shown to induce anti-proliferation and apoptosis of human cancer cell lines. However, the underlying molecular mechanisms are at present only partially understood.
Method
The effects of RES on activation of unfolded protein responses (UPR) were evaluated using Western blotting, semi-quantitative and real-time RT-PCR. Cell death was evaluated using Annexin V/PI staining and subsequent FACS.
Results
Similar as tunicamycin, treatment with RES lead to the activation of all 3 branches of the UPR, with early splicing of XBP-1 indicative of IRE1 activation, phosphorylation of eIF2α consistent with ER resident kinase (PERK) activation, activating transcription factor 6 (ATF6) splicing, and increase in expression levels of the downstream molecules GRP78/BiP, GRP94 and CHOP/GADD153 in human Burkitt's lymphoma Raji and Daudi cell lines. RES was shown to induce cell death, which could be attenuated by thwarting upregulation of CHOP.
Conclusions
Our data suggest that activation of the apoptotic arm of the UPR and its downstream effector CHOP/GADD153 is involved, at least in part, in RES-induced apoptosis in Burkitt's lymphoma cells.
doi:10.1186/1471-2407-10-445
PMCID: PMC2931494  PMID: 20723265
20.  West Nile Virus Infection Activates the Unfolded Protein Response, Leading to CHOP Induction and Apoptosis▿  
Journal of Virology  2007;81(20):10849-10860.
West Nile virus (WNV)-mediated neuronal death is a hallmark of WNV meningitis and encephalitis. However, the mechanisms of WNV-induced neuronal damage are not well understood. We investigated WNV neuropathogenesis by using human neuroblastoma cells and primary rat hippocampal neurons. We observed that WNV activates multiple unfolded protein response (UPR) pathways, leading to transcriptional and translational induction of UPR target genes. We evaluated the role of the three major UPR pathways, namely, inositol-requiring enzyme 1-dependent splicing of X box binding protein 1 (XBP1) mRNA, activation of activating transcription factor 6 (ATF6), and protein kinase R-like endoplasmic reticulum (ER) kinase-dependent eukaryotic initiation factor 2α (eIF2α) phosphorylation, in WNV-infected cells. We show that XBP1 is nonessential or can be replaced by other UPR pathways in WNV replication. ATF6 was rapidly degraded by proteasomes, consistent with induction of ER stress by WNV. We further observed a transient phosphorylation of eIF2α and induction of the proapoptotic cyclic AMP response element-binding transcription factor homologous protein (CHOP). WNV-infected cells exhibited a number of apoptotic phenotypes, such as (i) induction of growth arrest and DNA damage-inducible gene 34, (ii) activation of caspase-3, and (iii) cleavage of poly(ADP-ribose) polymerase. The expression of WNV nonstructural proteins alone was sufficient to induce CHOP expression. Importantly, WNV grew to significantly higher viral titers in chop−/− mouse embryonic fibroblasts (MEFs) than in wild-type MEFs, suggesting that CHOP-dependent premature cell death represents a host defense mechanism to limit viral replication that might also be responsible for the widespread neuronal loss observed in WNV-infected neuronal tissue.
doi:10.1128/JVI.01151-07
PMCID: PMC2045561  PMID: 17686866
21.  Induction of the unfolded protein response and cell death pathway in Alzheimer's disease, but not in aged Tg2576 mice 
Experimental & Molecular Medicine  2010;42(5):386-394.
The endoplasmic reticulum (ER) stress results from disrupted protein folding triggered by protein mutation or oxidation, reduced proteasome activity, and altered Ca2+ homeostasis. ER stress is accompanied by activation of the unfolded protein response (UPR) and cell death pathway. We examined if the UPR and cell death pathway would be activated in Alzheimer's disease (AD). RT-PCR experiments revealed increased splicing of X-box binding protein-1 (XBP-1), an UPR transcription factor, in AD compared with age-matched control. Among target genes of XBP-1, expression of protein disulfide isomerase (PDI), but not glucose-regulated protein 78 (GRP78), was increased in AD, suggesting disturbed activation of the UPR in AD. C/EBP homologous protein (CHOP), caspase-3, caspase-4, and caspase-12, downstream mediators of cell death pathway, were activated in AD. Neither the UPR nor cell death pathway was induced in aged Tg2576 mice, a transgenic mouse model of Alzheimer's disease that reveals both plaque pathology and some cognitive deficits. The present study suggests that disturbed induction of the UPR and activation of the pro-apoptotic proteins contribute to neuropathological process in AD irrespective of amyloid β and senile plaque.
doi:10.3858/emm.2010.42.5.040
PMCID: PMC2877248  PMID: 20368688
Alzheimer disease; cell death; endoplasmic reticulum; protein disulfide-isomerases; unfolded protein response
22.  Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells 
Oncogene  2006;25(4):546-554.
Redox modification of thiol/disulfide interchange in proteins by selenium could lead to protein unfolding. When this occurs in the endoplasmic reticulum (ER), a process known as unfolded protein response (UPR) is orchestrated for survival through activation of PERK–eIF2α(PERK: double-stranded RNA-activated protein kinase-like ER kinase; eIF2α: eucaryotic initiation factor 2α), ATFα(ATFα: activating transcription factor 6) and inositol requiring 1 (IRE1)-x-box-binding protein 1 (XBP1) signalings. All three UPR transducer pathways were upregulated very rapidly when PC-3 cells were exposed to selenium. These changes were accompanied by increased expression of UPR target genes, including immunoglobulin heavy chain-binding protein/glucose-regulated protein, 78 kDa and CCAAT/enhancer binding protein-homologous protein/growth arrest- and DNA damage- inducible gene (CHOP/GADD153). Induction of BiP/GRP78, an ER-resident chaperone, is part of the damage control mechanism, while CHOP/GADD153 is a transcription factor associated with growth arrest and apoptosis in the event of prolonged ER stress. Knocking down BiP/GRP78 induction by small interference RNA produced a differential response of the three transducers to selenium, suggesting that the signaling intensity of each transducer could be fine-tuned depending on BiP/GRP78 availability. In the presence of selenium, CHOP/GADD153 expression was raised even higher by BiP/GRP78 knockdown. Under this condition, the selenium effect on wild-type p53-activated fragment p21 (p21WAF), cyclin-dependent kinase (CDK)1 and CDK2 was also magnified in a manner consistent with enhanced cell growth arrest. Additional experiments with CHOP/GADD153 siRNA knockdown strongly suggested that CHOP/GADD153 may play a positive role in upregulating the expression of p21WAF in a p53-independent manner (PC-3 cells are p53 null). Collectively, the above findings support the idea that UPR could be an important mechanism in mediating the anticancer activity of selenium.
doi:10.1038/sj.onc.1209071
PMCID: PMC2424019  PMID: 16205645
selenium; unfolded protein response; BiP/GRP78 knockdown; ER stress signalings
23.  Zhangfei/CREB-ZF – A Potential Regulator of the Unfolded Protein Response 
PLoS ONE  2013;8(10):e77256.
Cells respond to perturbations in the microenvironment of the endoplasmic reticulum (ER), and to the overloading of its capacity to process secretory and membrane-associate proteins, by activating the Unfolded Protein Response (UPR). Genes that mediate the UPR are regulated by three basic leucine-zipper (bLZip) motif-containing transcription factors – Xbp1s, ATF4 and ATF6. A failure of the UPR to achieve homeostasis and its continued stimulation leads to apoptosis. Mechanisms must therefore exist to turn off the UPR if it successfully restores normalcy. The bLZip protein Zhangfei/CREBZF/SMILE is known to suppress the ability of several, seemingly structurally unrelated, transcription factors. These targets include Luman/CREB3 and CREBH, ER-resident bLZip proteins known to activate the UPR in some cell types. Here we show that Zhangfei had a suppressive effect on most UPR genes activated by the calcium ionophore thapsigargin. This effect was at least partially due to the interaction of Zhangfei with Xbp1s. The leucine zipper of Zhangfei was required for this interaction, which led to the subsequent proteasomal degradation of Xbp1s. Zhangfei suppressed the ability of Xbp1s to activate transcription from a promoter containing unfolded protein response elements and significantly reduced the ability to Xbp1s to activate the UPR as measured by RNA and protein levels of UPR-related genes. Finally, specific suppression of endogenous Zhangfei in thapsigargin-treated primary rat sensory neurons with siRNA directed to Zhangfei transcripts, led to a significant increase in transcripts and proteins of UPR genes, suggesting a potential role for Zhangfei in modulating the UPR.
doi:10.1371/journal.pone.0077256
PMCID: PMC3796484  PMID: 24155933
24.  Glycogen synthase kinse-3 regulates endoplasmic reticulum (ER) stress-induced CHOP expression in neuronal cells 
Experimental cell research  2011;317(11):1621-1628.
Endoplasmic reticulum (ER) stress, often resulting from cellular accumulation of misfolded proteins, occurs in many neurodegenerative disorders, in part because of the relatively long lifetime of neurons. Excessive accumulation of misfolded proteins activates the unfolded protein response (UPR) that dampens protein synthesis and promotes removal of misfolded proteins to support survival of ER-stressed cells. However, the UPR also initiates apoptotic signaling to kill cells if recovery is not achieved. Thus, there is much interest in identifying determinants of the life-death switch and interventions that promote recovery and survival. One intervention that has consistently been shown to protect cells from ER stress-induced apoptosis is application of inhibitors of glycogen synthase kinase-3 (GSK3). Therefore, we examined where in the UPR pathway GSK3 inhibitors intercede to impede signaling towards apoptosis. Apoptosis following UPR activation can be mediated by activation of two transcription factors, ATF4 and ATF6, that activate expression of the death-inducing transcription factor C/EBP homologous protein (CHOP/GADD153) following ER stress. We found that ER stress induced activated ATF6 and ATF4, but these responses were not altered by pretreatment with GSK3 inhibitors. However, inhibition of GSK3 effectively reduced the expression of CHOP, and this was apparent in several types of neural-related cells and was evident after application of several structurally diverse GSK3 inhibitors. Therefore, reduction of CHOP activation provides one mechanism by which inhibitors of GSK3 are capable of shifting cell fate towards survival instead of apoptosis following ER stress.
doi:10.1016/j.yexcr.2011.02.012
PMCID: PMC3103628  PMID: 21356208
ER stress; CHOP; GADD153; glycogen synthase kinase-3; unfolded protein response
25.  Inhibition of Stearoyl-CoA Desaturase 1 Expression Induces CHOP-Dependent Cell Death in Human Cancer Cells 
PLoS ONE  2010;5(12):e14363.
Background
Cancer cells present a sustained de novo fatty acid synthesis with an increase of saturated and monounsaturated fatty acid (MUFA) production. This change in fatty acid metabolism is associated with overexpression of stearoyl-CoA desaturase 1 (Scd1), which catalyses the transformation of saturated fatty acids into monounsaturated fatty acids (e.g., oleic acid). Several reports demonstrated that inhibition of Scd1 led to the blocking of proliferation and induction of apoptosis in cancer cells. Nevertheless, mechanisms of cell death activation remain to be better understood.
Principal Findings
In this study, we demonstrated that Scd1 extinction by siRNA triggered abolition of de novo MUFA synthesis in cancer and non-cancer cells. Scd1 inhibition-activated cell death was only observed in cancer cells with induction of caspase 3 activity and PARP-cleavage. Exogenous supplementation with oleic acid did not reverse the Scd1 ablation-mediated cell death. In addition, Scd1 depletion induced unfolded protein response (UPR) hallmarks such as Xbp1 mRNA splicing, phosphorylation of eIF2α and increase of CHOP expression. However, the chaperone GRP78 expression, another UPR hallmark, was not affected by Scd1 knockdown in these cancer cells indicating a peculiar UPR activation. Finally, we showed that CHOP induction participated to cell death activation by Scd1 extinction. Indeed, overexpression of dominant negative CHOP construct and extinction of CHOP partially restored viability in Scd1-depleted cancer cells.
Conclusion
These results suggest that inhibition of de novo MUFA synthesis by Scd1 extinction could be a promising anti-cancer target by inducing cell death through UPR and CHOP activation.
doi:10.1371/journal.pone.0014363
PMCID: PMC3002938  PMID: 21179554

Results 1-25 (1059853)