PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1217469)

Clipboard (0)
None

Related Articles

1.  An siRNA Screen in Pancreatic Beta Cells Reveals a Role for Gpr27 in Insulin Production 
PLoS Genetics  2012;8(1):e1002449.
The prevalence of type 2 diabetes in the United States is projected to double or triple by 2050. We reasoned that the genes that modulate insulin production might be new targets for diabetes therapeutics. Therefore, we developed an siRNA screening system to identify genes important for the activity of the insulin promoter in beta cells. We created a subclone of the MIN6 mouse pancreatic beta cell line that expresses destabilized GFP under the control of a 362 base pair fragment of the human insulin promoter and the mCherry red fluorescent protein under the control of the constitutively active rous sarcoma virus promoter. The ratio of the GFP to mCherry fluorescence of a cell indicates its insulin promoter activity. As G protein coupled receptors (GPCRs) have emerged as novel targets for diabetes therapies, we used this cell line to screen an siRNA library targeting all known mouse GPCRs. We identified several known GPCR regulators of insulin secretion as regulators of the insulin promoter. One of the top positive regulators was Gpr27, an orphan GPCR with no known role in beta cell function. We show that knockdown of Gpr27 reduces endogenous mouse insulin promoter activity and glucose stimulated insulin secretion. Furthermore, we show that Pdx1 is important for Gpr27's effect on the insulin promoter and insulin secretion. Finally, the over-expression of Gpr27 in 293T cells increases inositol phosphate levels, while knockdown of Gpr27 in MIN6 cells reduces inositol phosphate levels, suggesting this orphan GPCR might couple to Gq/11. In summary, we demonstrate a MIN6-based siRNA screening system that allows rapid identification of novel positive and negative regulators of the insulin promoter. Using this system, we identify Gpr27 as a positive regulator of insulin production.
Author Summary
Pancreatic beta cells are the only physiologic source of insulin. When these cells are destroyed in type 1 diabetics, there is uncontrolled hyperglycemia from complete insulin deficiency. In type 2 diabetes, these same cells fail to increase insulin secretion to compensate for peripheral insulin resistance leading to relative insulin deficiency. We constructed a novel screening system to find new regulators of insulin production in this critical cell type. Here, we describe a screen of the G protein coupled receptors (GPCRs) and show a role for orphan GPCR, Gpr27, in insulin promoter activity and insulin secretion. We propose that Gpr27 is a novel target for diabetes therapeutics.
doi:10.1371/journal.pgen.1002449
PMCID: PMC3257298  PMID: 22253604
2.  Harnessing the lysosome-dependent antitumor activity of phenothiazines in human small cell lung cancer 
Cell Death & Disease  2014;5(3):e1111-.
Phenothiazines are a family of heterocyclic compounds whose clinical utility includes treatment of psychiatric disorders as well as chemotherapy-induced emesis. Various studies have demonstrated that these compounds possess cytotoxic activities in tumor cell lines of different origin. However, there is considerable confusion regarding the molecular basis of phenothiazine-induced cell death. Lung cancer (LC) remains one of the most prevalent and deadly malignancies worldwide despite considerable efforts in the development of treatment strategies, especially new targeted therapies. In this work, we evaluated the potential utility of phenothiazines in human LC. We show that phenothiazines as single treatment decreased cell viability and induced cell death preferentially in small cell lung carcinoma (SCLC) over non small cell lung carcinoma (NSCLC) cell lines. Sensitivity to phenothiazines was not correlated with induction of apoptosis but due to phenothiazine-induced lysosomal dysfunction. Interestingly, the higher susceptibility of SCLC cells to phenothiazine-induced cell death correlated with an intrinsically lower buffer capacity in response to disruption of lysosomal homeostasis. Importantly, this effect in SCLC occurred despite mutation in p53 and was not influenced by intrinsic sensitivity/resistance toward conventional chemotherapeutic agents. Our data thus uncovered a novel context-dependent activity of phenothiazines in SCLC and suggest that phenothiazines could be considered as a treatment regimen of this disease, however, extended cell line analyses as well as in vivo studies are needed to make such conclusion.
doi:10.1038/cddis.2014.56
PMCID: PMC3973193  PMID: 24625970
small cell lung cancer; phenothiazines; lysosomal dysfunctions
3.  A Multi-Parameter, High-Content, High-Throughput Screening Platform to Identify Natural Compounds that Modulate Insulin and Pdx1 Expression 
PLoS ONE  2010;5(9):e12958.
Diabetes is a devastating disease that is ultimately caused by the malfunction or loss of insulin-producing pancreatic beta-cells. Drugs capable of inducing the development of new beta-cells or improving the function or survival of existing beta-cells could conceivably cure this disease. We report a novel high-throughput screening platform that exploits multi-parameter high-content analysis to determine the effect of compounds on beta-cell survival, as well as the promoter activity of two key beta-cell genes, insulin and pdx1. Dispersed human pancreatic islets and MIN6 beta-cells were infected with a dual reporter lentivirus containing both eGFP driven by the insulin promoter and mRFP driven by the pdx1 promoter. B-score statistical transformation was used to correct systemic row and column biases. Using this approach and 5 replicate screens, we identified 7 extracts that reproducibly changed insulin and/or pdx1 promoter activity from a library of 1319 marine invertebrate extracts. The ability of compounds purified from these extracts to significantly modulate insulin mRNA levels was confirmed with real-time PCR. Insulin secretion was analyzed by RIA. Follow-up studies focused on two lead compounds, one that stimulates insulin gene expression and one that inhibits insulin gene expression. Thus, we demonstrate that multi-parameter, high-content screening can identify novel regulators of beta-cell gene expression, such as bivittoside D. This work represents an important step towards the development of drugs to increase insulin expression in diabetes and during in vitro differentiation of beta-cell replacements.
doi:10.1371/journal.pone.0012958
PMCID: PMC2944895  PMID: 20886041
4.  Chemosensitization by phenothiazines in human lung cancer cells: impaired resolution of γH2AX and increased oxidative stress elicit apoptosis associated with lysosomal expansion and intense vacuolation 
Cell Death & Disease  2011;2(7):e181-.
Chemotherapy resistance poses severe limitations on the efficacy of anti-cancer medications. Recently, the notion of using novel combinations of ‘old' drugs for new indications has garnered significant interest. The potential of using phenothiazines as chemosensitizers has been suggested earlier but so far our understanding of their molecular targets remains scant. The current study was designed to better define phenothiazine-sensitive cellular processes in relation to chemosensitivity. We found that phenothiazines shared the ability to delay γH2AX resolution in DNA-damaged human lung cancer cells. Accordingly, cells co-treated with chemotherapy and phenothiazines underwent protracted cell-cycle arrest followed by checkpoint escape that led to abnormal mitoses, secondary arrest and/or a form of apoptosis associated with increased endogenous oxidative stress and intense vacuolation. We provide evidence implicating lysosomal dysfunction as a key component of cell death in phenothiazine co-treated cells, which also exhibited more typical hallmarks of apoptosis including the activation of both caspase-dependent and -independent pathways. Finally, we demonstrated that vacuolation in phenothiazine co-treated cells could be reduced by ROS scavengers or the vacuolar ATPase inhibitor bafilomycin, leading to increased cell viability. Our data highlight the potential benefit of using phenothiazines as chemosensitizers in tumors that acquire molecular alterations rendering them insensitive to caspase-mediated apoptosis.
doi:10.1038/cddis.2011.62
PMCID: PMC3199719  PMID: 21776019
phenothiazine; γH2AX, checkpoint recovery, apoptosis, lysosomes, oxidative stress
5.  A Genome-Wide siRNA Screen to Identify Modulators of Insulin Sensitivity and Gluconeogenesis 
PLoS ONE  2012;7(5):e36384.
Background
Hepatic insulin resistance impairs insulin’s ability to suppress hepatic glucose production (HGP) and contributes to the development of type 2 diabetes (T2D). Although the interests to discover novel genes that modulate insulin sensitivity and HGP are high, it remains challenging to have a human cell based system to identify novel genes.
Methodology/Principal Findings
To identify genes that modulate hepatic insulin signaling and HGP, we generated a human cell line stably expressing beta-lactamase under the control of the human glucose-6-phosphatase (G6PC) promoter (AH-G6PC cells). Both beta-lactamase activity and endogenous G6PC mRNA were increased in AH-G6PC cells by a combination of dexamethasone and pCPT-cAMP, and reduced by insulin. A 4-gene High-Throughput-Genomics assay was developed to concomitantly measure G6PC and pyruvate-dehydrogenase-kinase-4 (PDK4) mRNA levels. Using this assay, we screened an siRNA library containing pooled siRNA targeting 6650 druggable genes and identified 614 hits that lowered G6PC expression without increasing PDK4 mRNA levels. Pathway analysis indicated that siRNA-mediated knockdown (KD) of genes known to positively or negatively affect insulin signaling increased or decreased G6PC mRNA expression, respectively, thus validating our screening platform. A subset of 270 primary screen hits was selected and 149 hits were confirmed by target gene KD by pooled siRNA and 7 single siRNA for each gene to reduce G6PC expression in 4-gene HTG assay. Subsequently, pooled siRNA KD of 113 genes decreased PEPCK and/or PGC1alpha mRNA expression thereby demonstrating their role in regulating key gluconeogenic genes in addition to G6PC. Last, KD of 61 of the above 113 genes potentiated insulin-stimulated Akt phosphorylation, suggesting that they suppress gluconeogenic gene by enhancing insulin signaling.
Conclusions/Significance
These results support the proposition that the proteins encoded by the genes identified in our cell-based druggable genome siRNA screen hold the potential to serve as novel pharmacological targets for the treatment of T2D.
doi:10.1371/journal.pone.0036384
PMCID: PMC3348929  PMID: 22590537
6.  In vitro differential sensitivity of melanomas to phenothiazines is based on the presence of codon 600 BRAF mutation 
Molecular cancer therapeutics  2008;7(6):1337-1346.
The panel of 60 human cancer cell lines (the NCI-60) assembled by the National Cancer Institute for anticancer drug discovery is a widely used resource. We previously sequenced 24 cancer genes in those cell lines. Eleven of the genes were found to be mutated in three or more of the lines. Using a pharmacogenomic approach, we analyzed the relationship between drug activity and mutations in those 11 genes (APC, RB1, KRAS, NRAS, BRAF, PIK3CA, PTEN, STK11, MADH4, TP53, and CDKN2A). That analysis identified an association between mutation in BRAF and the antiproliferative potential of phenothiazine compounds. Phenothiazines have been used as antipsychotics and as adjunct antiemetics during cancer chemotherapy and more recently have been reported to have anticancer properties. However, to date, the anticancer mechanism of action of phenothiazines has not been elucidated. To follow up on the initial pharmacologic observations in the NCI-60 screen, we did pharmacologic experiments on 11 of the NCI-60 cell lines and, prospectively, on an additional 24 lines. The studies provide evidence that BRAF mutation (codon 600) in melanoma as opposed to RAS mutation is predictive of an increase in sensitivity to phenothiazines as determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt assay (Wilcoxon P = 0.007). That pattern of increased sensitivity to phenothiazines based on the presence of codon 600 BRAF mutation may be unique to melanomas, as we do not observe it in a panel of colorectal cancers. The findings reported here have potential implications for the use of phenothiazines in the treatment of V600E BRAF mutant melanoma.
doi:10.1158/1535-7163.MCT-07-2308
PMCID: PMC2705835  PMID: 18524847
7.  Antipsychotics activate the TGFβ pathway effector SMAD3 
Molecular psychiatry  2012;18(3):347-357.
Although effective in treating an array of neurological disorders, antipsychotics are associated with deleterious metabolic side effects. Through high-throughput screening, we previously identified phenothiazine antipsychotics as modulators of the human insulin promoter. Here, we extended our initial finding to structurally diverse typical and atypical antipsychotics. We then identified the TGFβ pathway as being involved in the effect of antipsychotics on the insulin promoter, finding that antipsychotics activated SMAD3, a downstream effector of the TGFβ pathway, through a receptor distinct from the TGFβ receptor family and known neurotransmitter receptor targets of antipsychotics. Of note, antipsychotics that do not cause metabolic side effects did not activate SMAD3. In vivo relevance was demonstrated by reanalysis of gene expression data from human brains treated with antipsychotics, which showed altered expression of SMAD3 responsive genes. This work raises the possibility that antipsychotics could be designed that retain beneficial CNS activity while lacking deleterious metabolic side effects.
doi:10.1038/mp.2011.186
PMCID: PMC3991551  PMID: 22290122
Antipsychotics; TGFβ; SMAD3; Insulin Promoter
8.  Chronic Antidiabetic Sulfonylureas In Vivo: Reversible Effects on Mouse Pancreatic β-Cells 
PLoS Medicine  2008;5(10):e206.
Background
Pancreatic β-cell ATP-sensitive potassium (KATP) channels are critical links between nutrient metabolism and insulin secretion. In humans, reduced or absent β-cell KATP channel activity resulting from loss-of-function KATP mutations induces insulin hypersecretion. Mice with reduced KATP channel activity also demonstrate hyperinsulinism, but mice with complete loss of KATP channels (KATP knockout mice) show an unexpected insulin undersecretory phenotype. Therefore we have proposed an “inverse U” hypothesis to explain the response to enhanced excitability, in which excessive hyperexcitability drives β-cells to insulin secretory failure without cell death. Many patients with type 2 diabetes treated with antidiabetic sulfonylureas (which inhibit KATP activity and thereby enhance insulin secretion) show long-term insulin secretory failure, which we further suggest might reflect a similar progression.
Methods and Findings
To test the above hypotheses, and to mechanistically investigate the consequences of prolonged hyperexcitability in vivo, we used a novel approach of implanting mice with slow-release sulfonylurea (glibenclamide) pellets, to chronically inhibit β-cell KATP channels. Glibenclamide-implanted wild-type mice became progressively and consistently diabetic, with significantly (p < 0.05) reduced insulin secretion in response to glucose. After 1 wk of treatment, these mice were as glucose intolerant as adult KATP knockout mice, and reduction of secretory capacity in freshly isolated islets from implanted animals was as significant (p < 0.05) as those from KATP knockout animals. However, secretory capacity was fully restored in islets from sulfonylurea-treated mice within hours of drug washout and in vivo within 1 mo after glibenclamide treatment was terminated. Pancreatic immunostaining showed normal islet size and α-/β-cell distribution within the islet, and TUNEL staining showed no evidence of apoptosis.
Conclusions
These results demonstrate that chronic glibenclamide treatment in vivo causes loss of insulin secretory capacity due to β-cell hyperexcitability, but also reveal rapid reversibility of this secretory failure, arguing against β-cell apoptosis or other cell death induced by sulfonylureas. These in vivo studies may help to explain why patients with type 2 diabetes can show long-term secondary failure to secrete insulin in response to sulfonylureas, but experience restoration of insulin secretion after a drug resting period, without permanent damage to β-cells. This finding suggests that novel treatment regimens may succeed in prolonging pharmacological therapies in susceptible individuals.
In a mouse study aiming to understand why long-term treatment for type 2 diabetes with sulfonylureas eventually fails, Colin Nichols and Maria Remedi suggest that slow restoration of insulin secretion may be possible after a drug-resting period.
Editors' Summary
Background.
Diabetes is an increasingly common chronic disease characterized by high blood sugar (glucose) levels. In normal people, blood sugar levels are controlled by the hormone insulin. Insulin is released by β-cells in the pancreas when blood glucose levels rise after eating (glucose is produced by the digestion of food). In fasting people, membrane proteins called ATP-sensitive potassium (KATP) channels keep the β-cell in a “hyperpolarized” state in which they do not secrete insulin. After a meal, glucose enters the β-cell where its chemical breakdown converts ADP into ATP (the molecule that provides the energy that drives cellular processes). The increased ratio of ATP to ADP closes the KATP channels, “depolarizes” the β-cells, and allows the entry of calcium ions, which trigger insulin release. The released insulin then “instructs” insulin-responsive muscle and fat cells to take up glucose from the bloodstream. In type 2 diabetes, the commonest type of diabetes, the muscle and fat cells gradually become nonresponsive to insulin and consequently blood glucose levels rise. Over time, this hyperglycemia increases the risk of heart attacks, kidney failure, and other life-threatening complications. On average, people with diabetes die 5–10 y younger than people without diabetes.
Why Was This Study Done?
People with type 2 diabetes are often initially treated with drugs called sulfonylureas (for example, glibenclamide). Sulfonylureas help to reduce blood glucose levels by inhibiting (in effect, closing) the KATP channels, which enhances insulin secretion. Unfortunately, after patients have been treated for several years with sulfonylureas, their β-cells often stop secreting insulin and the patients then have to inject insulin to control their blood sugar levels. The mechanism by which chronic sulfonylurea treatment affects β-cell behavior is poorly understood, which means that it is hard to improve this antidiabetes treatment. Mice that have been genetically altered so that they have no KATP channels (KATP knockout mice) also rapidly lose their ability to secrete insulin, although they secrete unusually large amounts at birth. This suggests that permanent membrane depolarization (β-cell hyperexcitability) may cause insulin secretory failure. In this study, the researchers investigate whether this mechanism might be responsible for sulfonylurea-induced loss of insulin secretion.
What Did the Researchers Do and Find?
The researchers implanted slowly releasing pellets of glibenclamide into wild-type mice and then monitored their blood glucose levels and glucose tolerance (the speed of glucose removal from the blood after a glucose “meal”) for up to 128 d; the pellets released drug for 90 d. The glibenclamide-implanted mice progressively developed diabetes, lost the ability to secrete insulin in response to glucose and, after 1 wk of treatment, were as glucose intolerant as adult KATP knockout mice. Compared to freshly isolated β-cells from untreated wild-type mice, glucose-stimulated insulin secretion by β-cells isolated from glibenclamide-treated wild-type mice and from KATP knockout mice was reduced to a similar degree. However, the secretory capacity of β-cells isolated from the glibenclamide-treated wild-type mice was restored to normal within hours of drug washout and was normal in β-cells isolated from treated mice 1 mo after exhaustion of the slow-release pellets. Consistent with this result, there was no obvious β-cell death in the glibenclamide-treated mice.
What Do These Findings Mean?
Although findings from animal studies do not always reflect what happens in people, these findings suggest that insulin secretion might sometimes fail in people who take sulfonylureas for a long time, because these drugs cause β-cell hyperexcitability. The finding that the secretory failure caused by sulfonylurea treatment is reversible is important because it suggests that short-acting sulfonylureas might be re-evaluated to see whether they could delay sulfonylurea-induced failure of the insulin secretory response by providing the pancreatic β-cells with periods when they are not depolarized. This finding (and the absence of β-cells death in the glibenclamide-treated mice) also suggests that there may be a way to reverse the loss of the insulin secretory response in patients who have taken sulfonylureas for a long time. Both approaches could help patients with diabetes delay or even avoid the need for insulin injections.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050206.
This study is further discussed in a PLoS Medicine Perspective by Renstrom and colleagues
The MedlinePlus encyclopedia provides information for patients about diabetes (in English and Spanish)
The US National Diabetes Information Clearinghouse provides information on all aspects of diabetes (in English and Spanish)
The International Diabetes Federation also provides comprehensive information about diabetes
Wikipedia has pages on KATP channels and on sulfonylurea drugs (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.0050206
PMCID: PMC2573909  PMID: 18959471
9.  Antitubercular pharmacodynamics of phenothiazines 
Objectives
Phenothiazines have been shown to exhibit in vitro and in vivo activity against Mycobacterium tuberculosis (Mtb) and multidrug-resistant Mtb. They are predicted to target the genetically validated respiratory chain component type II NADH:quinone oxidoreductase (Ndh). Using a set of compounds containing the phenothiazine pharmacophore, we have (i) investigated whether chemical validation data support the molecular target and (ii) evaluated pharmacophore tractability for further drug development.
Methods
Recombinant Mtb Ndh was generated and its functionality confirmed by steady-state kinetics. Pharmacodynamic profiling of the phenothiazines, including antitubercular efficacy in aerobic and O2-limited conditions, time–kill assays and isobole analyses against first-line antituberculars, was performed. Potential mitochondrial toxicity was assessed in a modified HepG2 cell-line assay and against bovine cytochrome bc1.
Results
Steady-state kinetic analyses revealed a substrate preference for coenzyme Q2 and an inability to utilize NADPH. A positive correlation between recombinant Ndh inhibition and kill of aerobically cultured Mtb was observed, whilst enhanced potency was demonstrated in a hypoxic model. Time–kill studies revealed the phenothiazines to be bactericidal whilst isobolograms exposed antagonism with isoniazid, indicative of intracellular NADH/NAD+ couple perturbation. At therapeutic levels, phenothiazine-mediated toxicity was appreciable; however, specific mitochondrial targeting was excluded.
Conclusions
Data generated support the hypothesis that Ndh is the molecular target of phenothiazines. The favourable pharmacodynamic properties of the phenothiazines are consistent with a target product profile that includes activity against dormant/persistent bacilli, rapid bactericidal activity and activity against drug-resistant Mtb by a previously unexploited mode of action. These properties warrant further medicinal chemistry to improve potency and safety.
doi:10.1093/jac/dks483
PMCID: PMC3594496  PMID: 23228936
tuberculosis; thioridazine; Ndh; latency; toxicity
10.  TXNIP Regulates Peripheral Glucose Metabolism in Humans  
PLoS Medicine  2007;4(5):e158.
Background
Type 2 diabetes mellitus (T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure.
Methods and Findings
We combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein (TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated to total body measures of glucose uptake. Forced expression of TXNIP in cultured adipocytes significantly reduced glucose uptake, while silencing with RNA interference in adipocytes and in skeletal muscle enhanced glucose uptake, confirming that the gene product is also a regulator of glucose uptake. TXNIP expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM.
Conclusions
TXNIP regulates both insulin-dependent and insulin-independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic β-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM.
Vamsi Mootha, Leif Groop, and colleagues report that TXNIP regulates insulin-dependent and -independent pathways of glucose uptake in human skeletal muscle and that its expression is elevated in individuals with prediabetes and type 2 diabetes.
Editors' Summary
Background.
An epidemic of diabetes mellitus is threatening world health. 246 million people (6% of the world's population) already have diabetes and it is estimated that within 20 years, 380 million people will have this chronic disease, most of them in developing countries. Diabetes is characterized by high blood sugar (glucose) levels. It arises when the pancreas does not make enough insulin (type 1 diabetes) or when the body responds poorly to insulin (type 2 diabetes). Insulin, which is released in response to high blood glucose levels, instructs muscle, fat, and liver cells to take glucose (a product of food digestion) out of the bloodstream; cells use glucose as a fuel. Type 2 diabetes, which accounts for 90% of all cases of diabetes, is characterized by impaired glucose uptake by target tissues in response to insulin (this “insulin resistance” is one of the first signs of type 2 diabetes) and inappropriate glucose release from liver cells. Over time, the pancreas may also make less insulin. These changes result in poor glucose homeostasis (inadequate control of blood sugar levels), which can cause life-threatening complications such as kidney failure and heart attacks.
Why Was This Study Done?
If the world diabetes epidemic is to be halted, researchers need a better understanding of glucose homeostasis and need to identify which parts of this complex control system go awry in type 2 diabetes. This information might suggest ways to prevent type 2 diabetes developing in the first place and might reveal targets for drugs that could slow or reverse the disease process. In this study, the researchers have used multiple approaches to identify a new mediator of glucose homeostasis and to investigate whether this mediator is causally involved in the development of type 2 diabetes.
What Did the Researchers Do and Find?
The researchers took small muscle samples from people who did not have diabetes before and after increasing their blood insulin levels and used a technique called “microarray expression profiling” to identify genes whose expression was induced or suppressed by insulin. One of the latter genes was thioredoxin interacting protein (TXNIP), a gene whose expression is strongly induced by glucose yet suppressed by insulin. They next used previously published microarray expression data to show that TXNIP expression was consistently higher in the muscles of patients with diabetes or prediabetes (a condition in which blood glucose levels are slightly raised) than in normal individuals. The researchers then examined whether TXNIP expression was correlated with glucose uptake, again using previously published data. In people with no diabetes and those with prediabetes, as glucose uptake rates increased, TXNIP expression decreased but this inverse correlation was missing in people with diabetes. Finally, by manipulating TXNIP expression levels in insulin-responsive cells grown in the laboratory, the researchers found that TXNIP overexpression reduced basal and insulin-stimulated glucose uptake but that reduced TXNIP expression had the opposite effect.
What Do These Findings Mean?
These results provide strong evidence that TXNIP is a regulator of glucose homeostasis in people. Specifically, the researchers propose that TXNIP regulates glucose uptake in the periphery of the human body by acting as a glucose- and insulin-sensitive switch. They also suggest how it might be involved in the development of type 2 diabetes. Early in the disease process, a small insulin deficiency or slightly raised blood sugar levels would increase TXNIP expression in muscles and suppress glucose uptake by these cells. Initially, the pancreas would compensate for this by producing more insulin, but this compensation would eventually fail, allowing blood sugar levels to rise sufficiently to increase TXNIP expression in the pancreas. Previously published results suggest that this would induce the loss of insulin-producing cells in the pancreas, thus further reducing insulin production and glucose uptake in the periphery and, ultimately, resulting in type 2 diabetes. Although there are many unanswered questions about the exact role of TXNIP in glucose homeostasis, these results help to explain many of the changes in glucose control that occur early in the development of diabetes. Furthermore, they suggest that interventions designed to modulate the activity of TXNIP might break the vicious cycle that eventually leads to type 2 diabetes.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040158.
The MedlinePlus encyclopedia has pages on diabetes
The US National Institute of Diabetes and Digestive and Kidney Diseases has information for patients on diabetes
Information on diabetes is available for patients and professionals from the US Centers for Disease Control and Prevention
The American Diabetes Association provides information on diabetes for patients
International Diabetes Federation has information on diabetes and a recent press release on the global diabetes epidemic
doi:10.1371/journal.pmed.0040158
PMCID: PMC1858708  PMID: 17472435
11.  BETA3, a novel helix-loop-helix protein, can act as a negative regulator of BETA2 and MyoD-responsive genes. 
Molecular and Cellular Biology  1996;16(2):626-633.
Using degenerate PCR cloning we have identified a novel basic helix-loop-helix (bHLH) transcription factor, BETA3, from a hamster insulin tumor (HIT) cell cDNA library. Sequence analysis revealed that this factor belongs to the class B bHLH family and has the highest degree of homology with another bHLH transcription factor recently isolated in our laboratory, BETA2 (neuroD) (J. E. Lee, S. M. Hollenberg, L. Snider, D. L. Turner, N. Lipnick, and H. Weintraub, Science 268:836-844, 1995; F. J. Naya, C. M. M. Stellrecht, and M.-J. Tsai, Genes Dev. 8:1009-1019, 1995). BETA2 is a brain- and pancreatic-islet-specific bHLH transcription factor and is largely responsible for the tissue-specific expression of the insulin gene. BETA3 was found to be tissue restricted, with the highest levels of expression in HIT, lung, kidney, and brain cells. Surprisingly, despite the homology between BETA2 and BETA3 and its intact basic region, BETA3 is unable to bind the insulin E box in bandshift analysis as a homodimer or as a heterodimer with the class A bHLH factors E12, E47, or BETA1. Instead, BETA3 inhibited both the E47 homodimer and the E47/BETA2 heterodimer binding to the insulin E box. In addition, BETA3 greatly repressed the BETA2/E47 induction of the insulin enhancer in HIT cells as well as the MyoD/E47 induction of a muscle-specific E box in the myoblast cell line C2C12. In contrast, expression of BETA3 had no significant effect on the GAL4-VP16 transcriptional activity. Immunoprecipitation analysis demonstrates that the mechanism of repression is via direct protein-protein interaction, presumably by heterodimerization between BETA3 and class A bHLH factors.
PMCID: PMC231042  PMID: 8552091
12.  Identification of an INSM1 Binding Site in the Insulin Promoter: Negative Regulation of the Insulin Gene Transcription 
The Journal of endocrinology  2008;198(1):29-39.
In this study, an INSM1-binding site in the proximal promoter sequence of the insulin gene was identified. Co-transfection of INSM1 with rat insulin I/II promoter-driven reporter genes exhibited a 40-50% inhibitory effect on reporter activity. Mutational experiments were performed by introducing a substitution, GG to AT, into the INSM1 core binding site of the rat insulin I/II promoters. The mutated insulin promoter exhibited a 3-20 fold increase of promoter activity over the wild type promoter in several insulinoma cell lines. Moreover, INSM1 over-expression exhibited no inhibitory effect on the mutated insulin promoter. Chromatin immunoprecipitation assays using βTC-1, mouse fetal pancreas, and Ad-INSM1 transduced human islets demonstrated that INSM1 occupies the endogenous insulin promoter sequence containing the INSM1-binding site in vivo. Binding of the INSM1 to the insulin promoter could suppress approximately 50% of insulin message in human islets. The mechanism for transcriptional repression of the insulin gene by INSM1 is mediated through the recruitment of cyclin D1 and histone deacetylase-3 to the insulin promoter. Anti-INSM1 or anti-cyclin D1 morpholino treatment of fetal mouse pancreas enhances the insulin promoter activity. These data strongly support that INSM1 is a new zinc-finger transcription factor that modulates insulin gene transcription during early pancreas development.
doi:10.1677/JOE-08-0001
PMCID: PMC2529182  PMID: 18417529
INSM1; Insulin promoter; Transcriptional repressor; HDAC-3; Cyclin D1
13.  Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome 
First systematic analysis of the evolutionary conserved InR/TOR pathway interaction proteome in Drosophila.Quantitative mass spectrometry revealed that 22% of identified protein interactions are regulated by the growth hormone insulin affecting membrane proximal as well as intracellular signaling complexes.Systematic RNA interference linked a significant fraction of network components to the control of dTOR kinase activity.Combined biochemical and genetic data suggest dTTT, a dTOR-containing complex required for cell growth control by dTORC1 and dTORC2 in vivo.
Cellular growth is a fundamental process that requires constant adaptations to changing environmental conditions, like growth factor and nutrient availability, energy levels and more. Over the years, the insulin receptor/target of rapamycin pathway (InR/TOR) emerged as a key signaling system for the control of metazoan cell growth. Genetic screens carried out in the fruit fly Drosophila melanogaster identified key InR/TOR pathway components and their relationships. Phenotypes such as altered cell growth are likely to emerge from perturbed dynamic networks containing InR/TOR pathway components, which stably or transiently interact with other cellular proteins to form complexes and networks thereof. Systematic studies on the topology and dynamics of protein interaction networks become therefore highly relevant to gain systems level understanding of deregulated cell growth. Despite much progress in genetic analysis only few systematic protein interaction studies have been reported for Drosophila, which in most cases lack quantitative information representing the dynamic nature of such networks. Here, we present the first quantitative affinity purification mass spectrometry (AP–MS/MS) analysis on the evolutionary conserved InR/TOR signaling network in Drosophila. Systematic RNAi-based functional analysis of identified network components revealed key components linked to the regulation of the central effector kinase dTOR. This includes also dTTT, a novel dTOR-containing complex required for the control of dTORC1 and dTORC2 in vivo.
For systematic AP–MS analysis, we generated Drosophila Kc167 cell lines inducibly expressing affinity-tagged bait proteins previously linked to InR/TOR signaling. Bait expressing Kc167 cell lines were harvested before and after insulin stimulation for subsequent affinity purification. Following LC–MS/MS analysis and probabilistic data filtering using SAINT (Choi et al, 2010), we generated a quantitative network model from 97 high confidence protein–protein interactions and 58 network components (Figure 2). The presented network displayed a high degree of orthologous interactions conserved also in human cells and identified a number of novel molecular interactions with InR/TOR signaling components for future hypothesis driven analysis.
To measure insulin-induced changes within the InR/TOR interaction proteome, we applied a recently introduced label-free quantitative MS approach (Rinner et al, 2007). The obtained quantitative data suggest that 22% of all interactions in the network are regulated by insulin. Major changes could be observed within the membrane proximal InR/chico/PI3K signaling complexes, and also in 14-3-3 protein containing signaling complexes and dTORC1, a complex that contains besides dTOR all major orthologous proteins found also in human mTORC1 including the two dTORC1 substrates d4E-BP (Thor) and S6 Kinase (S6K). Insulin triggered both, dissociation and association of dTORC1 proteins. Among the proteins that showed enhanced binding to dTORC1 upon insulin stimulation we found Unkempt, a RING-finger protein with a proposed role in ubiquitin-mediated protein degradation (Lores et al, 2010). Besides dTORC1 our systematic AP–MS analysis also revealed the presence of dTORC2, the second major TOR complex in Drosophila. dTORC2 contains the Drosophila orthologous of human mTORC2 proteins, but in contrast to dTORC1 was not affected upon insulin stimulation. Interestingly, we also found a specific set of proteins that were not linked to the canonical TOR complexes TORC1 and TORC2 in dTOR purifications. These include LqfR (liquid facets related), Pontin, Reptin, Spaghetti and the gene product of CG16908. We found the same set of proteins when we used CG16908 as a bait, suggesting complex formation among the identified proteins. None of the dTORC1/2 components besides dTOR was identified in CG16908 purifications, indicating that these proteins form dTOR complexes distinct from dTORC1 and dTORC2. Based on known interaction information from other species and data obtained from this study we refer to this complex as dTTT (Drosophila TOR, TELO2, TTI1) (Horejsi et al, 2010; [18]Hurov et al, 2010; [20]Kaizuka et al, 2010). A directed quantitative MS analysis of dTOR complex components suggests that dTORC1 is the most abundant dTOR complex we identified in Kc167 cells.
We next studied the potential roles of the identified network components for controlling the activity of the dInR/TOR pathway using systematic RNAi depletion and quantitative western blotting to measure the changes in abundance of phosphorylated substrates of dTORC1 (Thor/d4E-BP, dS6K) and dTORC2 (dPKB) in RNAi-treated cells (Figure 5). Overall, we could identify 16 proteins (out of 58) whose depletion caused an at least 50% increase or decrease in the levels of phosphorylated d4E-BP, S6K and/or PKB compared with control GFP RNAi. Besides established pathway components, we found several novel regulators within the dInR/TOR interaction network. For example, RNAi against the novel insulin-regulated dTORC1 component Unkempt resulted in enhanced phosphorylation of the dTORC1 substrate d4E-BP, which suggests a negative role for Unkempt on dTORC1 activity. In contrast, depletion of CG16908 and LqfR caused hypo-phosphorylation of all dTOR substrates similar to dTOR itself, suggesting a positive role for the dTTT complex on dTOR activity. Subsequently, we tested whether dTTT components also plays a role in dTOR-mediated cell growth in vivo. Depletion of both dTTT components, CG16908 and LqfR, in the Drosophila eye resulted in a substantial decrease in eye size. Likewise, FLP-FRT-mediated mitotic recombination resulted in CG16908 and LqfR mutant clones with a similar reduced growth phenotype as observed in dTOR mutant clones. Hence, the combined biochemical and genetic analysis revealed dTTT as a dTOR-containing complex required for the activity of both dTORC1 and dTORC2 and thus plays a critical role in controlling cell growth.
Taken together, these results illustrate how a systematic quantitative AP–MS approach when combined with systematic functional analysis in Drosophila can reveal novel insights into the dynamic organization of regulatory networks for cell growth control in metazoans.
Using quantitative mass spectrometry, this study reports how insulin affects the modularity of the interaction proteome of the Drosophila InR/TOR pathway, an evolutionary conserved signaling system for the control of metazoan cell growth. Systematic functional analysis linked a significant number of identified network components to the control of dTOR activity and revealed dTTT, a dTOR complex required for in vivo cell growth control by dTORC1 and dTORC2.
Genetic analysis in Drosophila melanogaster has been widely used to identify a system of genes that control cell growth in response to insulin and nutrients. Many of these genes encode components of the insulin receptor/target of rapamycin (InR/TOR) pathway. However, the biochemical context of this regulatory system is still poorly characterized in Drosophila. Here, we present the first quantitative study that systematically characterizes the modularity and hormone sensitivity of the interaction proteome underlying growth control by the dInR/TOR pathway. Applying quantitative affinity purification and mass spectrometry, we identified 97 high confidence protein interactions among 58 network components. In all, 22% of the detected interactions were regulated by insulin affecting membrane proximal as well as intracellular signaling complexes. Systematic functional analysis linked a subset of network components to the control of dTORC1 and dTORC2 activity. Furthermore, our data suggest the presence of three distinct dTOR kinase complexes, including the evolutionary conserved dTTT complex (Drosophila TOR, TELO2, TTI1). Subsequent genetic studies in flies suggest a role for dTTT in controlling cell growth via a dTORC1- and dTORC2-dependent mechanism.
doi:10.1038/msb.2011.79
PMCID: PMC3261712  PMID: 22068330
cell growth; InR/TOR pathway; interaction proteome; quantitative mass spectrometry; signaling
14.  Synergistic Interaction between Phenothiazines and Antimicrobial Agents against Burkholderia pseudomallei▿  
The gram-negative soil bacillus Burkholderia pseudomallei is the causative agent of melioidosis, a severe and potentially fatal septicemic disease that is endemic to Southeast Asia and northern Australia. Its intrinsic resistance to many antibiotics is attributed mainly to the presence of several drug efflux pumps, and therefore, inhibitors of such pumps are expected to restore the activities of many clinically important antimicrobial agents that are the substrates of these pumps. The phenothiazine antipsychotic and antihistaminic drugs prochlorperazine, chlorpromazine, and promazine have a synergistic interaction with a wide spectrum of antimicrobial agents, thereby enhancing their antimicrobial potency against B. pseudomallei. Antimicrobial agents that interacted synergistically with the phenothiazines include streptomycin, erythromycin, oleandomycin, spectinomycin, levofloxacin, azithromycin, and amoxicillin-clavulanic acid. The MICs of these antibiotics were reduced as much as 8,000-fold in the presence of the phenothiazines. Antimicrobial agents which did not interact synergistically with the phenothiazines include gentamicin, amoxicillin, and ampicillin. Omeprazole, a proton pump inhibitor, provided an augmentation of antimicrobial activities similar to that of the phenothiazines, suggesting that the phenothiazines might have interfered with the proton gradient at the inner membrane. B. pseudomallei cells accumulated more erythromycin in the presence of the phenothiazines, an effect similar to that of carbonyl cyanide m-chlorophenylhydrazone, a proton gradient uncoupler. In the presence of the phenothiazines, a much reduced concentration of erythromycin (0.06× MIC) also protected human lung epithelial cells and macrophage cells from B. pseudomallei infection and attenuated its cytotoxicity.
doi:10.1128/AAC.01033-06
PMCID: PMC1797753  PMID: 17145801
15.  Identification of Small Molecule Lead Compounds for Visceral Leishmaniasis Using a Novel Ex Vivo Splenic Explant Model System 
Background
New drugs are needed to treat visceral leishmaniasis (VL) because the current therapies are toxic, expensive, and parasite resistance may weaken drug efficacy. We established a novel ex vivo splenic explant culture system from hamsters infected with luciferase-transfected Leishmania donovani to screen chemical compounds for anti-leishmanial activity.
Methodology/Principal Findings
This model has advantages over in vitro systems in that it: 1) includes the whole cellular population involved in the host-parasite interaction; 2) is initiated at a stage of infection when the immunosuppressive mechanisms that lead to progressive VL are evident; 3) involves the intracellular form of Leishmania; 4) supports parasite replication that can be easily quantified by detection of parasite-expressed luciferase; 5) is adaptable to a high-throughput screening format; and 6) can be used to identify compounds that have both direct and indirect anti-parasitic activity. The assay showed excellent discrimination between positive (amphotericin B) and negative (vehicle) controls with a Z' Factor >0.8. A duplicate screen of 4 chemical libraries containing 4,035 compounds identified 202 hits (5.0%) with a Z score of <–1.96 (p<0.05). Eighty-four (2.1%) of the hits were classified as lead compounds based on the in vitro therapeutic index (ratio of the compound concentration causing 50% cytotoxicity in the HepG2 cell line to the concentration that caused 50% reduction in the parasite load). Sixty-nine (82%) of the lead compounds were previously unknown to have anti-leishmanial activity. The most frequently identified lead compounds were classified as quinoline-containing compounds (14%), alkaloids (10%), aromatics (11%), terpenes (8%), phenothiazines (7%) and furans (5%).
Conclusions/Significance
The ex vivo splenic explant model provides a powerful approach to identify new compounds active against L. donovani within the pathophysiologic environment of the infected spleen. Further in vivo evaluation and chemical optimization of these lead compounds may generate new candidates for preclinical studies of treatment for VL.
Author Summary
Visceral leishmaniasis is a life threatening parasitic disease present in several countries of the world. New drugs are needed to treat this disease because treatments are becoming increasingly ineffective. We established a novel system to screen for new anti-leishmanial compounds that utilizes spleen cells from hamsters infected with the parasite Leishmania donovani. The parasite strain we used was genetically engineered to emit light by the incorporation of the firefly luciferase gen. This laboratory test system has the advantage of reproducing the cellular environment where the drug has to combat the infection. The efficacy of the compounds is easily determined by measuring the light emitted by the surviving parasites in a luminometer after exposing the infected cells to the test compounds. The screening of more than 4,000 molecules showed that 84 (2.1%) of them showed anti-leishmanial activity and had an acceptable toxicity evaluation. Eighty two percent of these molecules, which had varied chemical structures, were previously unknown to have anti-leishmanial activity. Further studies in animals of these new chemical entities may identify drug candidates for the treatment of visceral leishmaniasis.
doi:10.1371/journal.pntd.0000962
PMCID: PMC3039689  PMID: 21358812
16.  Insulin/IGF-1 and Hypoxia Signaling Act in Concert to Regulate Iron Homeostasis in Caenorhabditis elegans 
PLoS Genetics  2012;8(3):e1002498.
Iron plays an essential role in many biological processes, but also catalyzes the formation of reactive oxygen species (ROS), which can cause molecular damage. Iron homeostasis is therefore a critical determinant of fitness. In Caenorhabditis elegans, insulin/IGF-1 signaling (IIS) promotes growth and reproduction but limits stress resistance and lifespan through inactivation of the DAF-16/FoxO transcription factor (TF). We report that long-lived daf-2 insulin/IGF-1 receptor mutants show a daf-16–dependent increase in expression of ftn-1, which encodes the iron storage protein H-ferritin. To better understand the regulation of iron homeostasis, we performed a TF–limited genetic screen for factors influencing ftn-1 gene expression. The screen identified the heat-shock TF hsf-1, the MAD bHLH TF mdl-1, and the putative histone acetyl transferase ada-2 as activators of ftn-1 expression. It also revealed that the HIFα homolog hif-1 and its binding partner aha-1 (HIFβ) are potent repressors of ftn-1 expression. ftn-1 expression is induced by exposure to iron, and we found that hif-1 was required for this induction. In addition, we found that the prolyl hydroxylase EGL-9, which represses HIF-1 via the von Hippel-Lindau tumor suppressor VHL-1, can also act antagonistically to VHL-1 in regulating ftn-1. This suggests a novel mechanism for HIF target gene regulation by these evolutionarily conserved and clinically important hydroxylases. Our findings imply that the IIS and HIF pathways act together to regulate iron homeostasis in C. elegans. We suggest that IIS/DAF-16 regulation of ftn-1 modulates a trade-off between growth and stress resistance, as elevated iron availability supports growth but also increases ROS production.
Author Summary
Iron plays a role in many biological processes, including energy generation and DNA replication. But to maintain health, levels of cellular iron must be just right: too much or too little iron can cause illnesses, such as anemia and hemochromatosis, respectively. Animals therefore carefully control their iron levels by regulating of iron uptake, transport, and storage within protein capsules called ferritins. But how do they coordinate this? Using the model organism C. elegans, we have discovered a network of genes and pathways that control iron homeostasis. We find that ferritin is regulated by insulin/IGF-1 signaling, which also controls growth and resistance to oxidative stress in response to harsh environmental conditions. Ferritin is also regulated by the hypoxia signaling pathway, which responds to oxygen and iron levels as well as to metabolic cues. We find that the hypoxia pathway acts as an iron sensor, a role it may also play in humans. Our work defines a network of signaling pathways that can adjust iron availability in response to a range of environmental cues. Understanding this network in C. elegans can help us to understand the causes of iron dyshomeostasis in humans, which can profoundly affect health.
doi:10.1371/journal.pgen.1002498
PMCID: PMC3291539  PMID: 22396654
17.  Altered Insulin Receptor Signalling and β-Cell Cycle Dynamics in Type 2 Diabetes Mellitus 
PLoS ONE  2011;6(11):e28050.
Insulin resistance, reduced β-cell mass, and hyperglucagonemia are consistent features in type 2 diabetes mellitus (T2DM). We used pancreas and islets from humans with T2DM to examine the regulation of insulin signaling and cell-cycle control of islet cells. We observed reduced β-cell mass and increased α-cell mass in the Type 2 diabetic pancreas. Confocal microscopy, real-time PCR and western blotting analyses revealed increased expression of PCNA and down-regulation of p27-Kip1 and altered expression of insulin receptors, insulin receptor substrate-2 and phosphorylated BAD. To investigate the mechanisms underlying these findings, we examined a mouse model of insulin resistance in β-cells – which also exhibits reduced β-cell mass, the β-cell-specific insulin receptor knockout (βIRKO). Freshly isolated islets and β-cell lines derived from βIRKO mice exhibited poor cell-cycle progression, nuclear restriction of FoxO1 and reduced expression of cell-cycle proteins favoring growth arrest. Re-expression of insulin receptors in βIRKO β-cells reversed the defects and promoted cell cycle progression and proliferation implying a role for insulin-signaling in β-cell growth. These data provide evidence that human β- and α-cells can enter the cell-cycle, but proliferation of β-cells in T2DM fails due to G1-to-S phase arrest secondary to defective insulin signaling. Activation of insulin signaling, FoxO1 and proteins in β-cell-cycle progression are attractive therapeutic targets to enhance β-cell regeneration in the treatment of T2DM.
doi:10.1371/journal.pone.0028050
PMCID: PMC3227614  PMID: 22140505
18.  Protein histidine [de]phosphorylation in insulin secretion: abnormalities in models of impaired insulin secretion 
In the majority of cell types, including the islet β-cell, transduction of extracellular signals involves ligand binding to a receptor, often followed by the activation G proteins and their effector modules. The islet β-cell is unusual in that glucose lacks an extracellular receptor. Instead, events consequent to glucose metabolism promote insulin secretion via the generation of diffusible second messengers and mobilization of calcium. A selective increase in intracellular calcium has been shown to regulate the phosphorylation status key islet proteins thereby facilitating insulin secretion. In addition to classical protein kinases [e.g., protein kinases A and C], recent studies from our laboratory have focused on the expression and function of various forms of NDPK/nm23-like histidine kinases in clonal β-cells, normal rodent, and human islets. Further, we recently reported localization of a cytosolic protein histidine phosphatase [PHP] in INS 832/13 cells, normal rat islets, and human islets. siRNA-mediated knock down of nm23-H1 and PHP in insulin-secreting INS 832/13 cells significantly attenuated glucose-induced insulin secretion. We also observed significant alterations in the expression and function of nm23-H1/PHP in β-cells chronically exposed to elevated levels of glucose and saturated fatty acids, such as palmitate (i.e., glucolipotoxicity). Similar changes were also noted in islets from the Goto-Kakizaki and Zucker Diabetic Fatty rats, two known models for type 2 diabetes. It is concluded that protein histidine phosphorylation–dephosphorylation cycles play novel regulatory roles in G protein-mediated physiological insulin secretion and that abnormalities in this signaling axis lead to impaired insulin secretion in glucolipo-toxicity and type 2 diabetes.
doi:10.1007/s00210-011-0616-z
PMCID: PMC3165078  PMID: 21626002
Pancreatic islet; Insulin secretion; Histidine kinases; Histidine phosphatases; nm23
19.  Negative Regulators of Insulin Signaling Revealed in a Genome-Wide Functional Screen 
PLoS ONE  2009;4(9):e6871.
Background
Type 2 diabetes develops due to a combination of insulin resistance and β-cell failure and current therapeutics aim at both of these underlying causes. Several negative regulators of insulin signaling are known and are the subject of drug discovery efforts. We sought to identify novel contributors to insulin resistance and hence potentially novel targets for therapeutic intervention.
Methodology
An arrayed cDNA library encoding 18,441 human transcripts was screened for inhibitors of insulin signaling and revealed known inhibitors and numerous potential novel regulators. The novel hits included proteins of various functional classes such as kinases, phosphatases, transcription factors, and GTPase associated proteins. A series of secondary assays confirmed the relevance of the primary screen hits to insulin signaling and provided further insight into their modes of action.
Conclusion/Significance
Among the novel hits was PALD (KIAA1274, paladin), a previously uncharacterized protein that when overexpressed led to inhibition of insulin's ability to down regulate a FOXO1A-driven reporter gene, reduced upstream insulin-stimulated AKT phosphorylation, and decreased insulin receptor (IR) abundance. Conversely, knockdown of PALD gene expression resulted in increased IR abundance, enhanced insulin-stimulated AKT phosphorylation, and an improvement in insulin's ability to suppress FOXO1A-driven reporter gene activity. The present data demonstrate that the application of arrayed genome-wide screening technologies to insulin signaling is fruitful and is likely to reveal novel drug targets for insulin resistance and the metabolic syndrome.
doi:10.1371/journal.pone.0006871
PMCID: PMC2731165  PMID: 19727444
20.  Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells. 
Journal of Clinical Investigation  1996;98(12):2786-2793.
FK506 (tacrolimus) is an immunosuppressive drug which interrupts Ca2+-calmodulin-calcineurin signaling pathways in T lymphocytes, thereby blocking antigen activation of T cell early activation genes. Regulation of insulin gene expression in the beta cell may also involve Ca2+-signaling pathways and FK506 has been associated with insulin-requiring diabetes mellitus during clinical use. The purpose of this study was to characterize the effects of FK506 on human insulin gene transcription, insulin mRNA levels, and insulin secretion using as a model the HIT-T15 beta cell line. FK506 had no acute effect on insulin secretion in the HIT cell, but caused a reversible time- and dose-dependent (10(-9)-10(-6) M) decrease in HIT cell insulin secretion. Decreased insulin secretion in the presence of FK506 was also accompanied by a dose-dependent decrease in HIT cell insulin content, insulin mRNA levels, and expression of a human insulin promoter-chloramphenicol acetyl transferase (CAT) reporter gene. FK506 decreased HIT cell expression of the human insulin promoter-CAT reporter gene by 40% in the presence of both low (0.4 mM) at high (20 mM) glucose concentrations. Western blot analysis of HIT cell proteins gave evidence for the presence of calcineurin in the HIT cell. These findings suggest that FK506 may have direct effects to reversibly inhibit insulin gene transcription, leading to a decline in insulin mRNA levels, insulin synthesis, and ultimately insulin secretion.
PMCID: PMC507744  PMID: 8981925
21.  Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development 
BMC Biology  2014;12:5.
Background
The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host’s liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood.
Results
Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite’s glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin.
Conclusions
Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.
doi:10.1186/1741-7007-12-5
PMCID: PMC3923246  PMID: 24468049
Cestode; Tapeworm; Echinococcus; Echinococcosis; Insulin; Receptor kinase; Kinase inhibitor; Host-parasite interaction
22.  Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells 
eLife  null;3:e04631.
Epigenetic modifiers are an emerging class of anti-tumor drugs, potent in multiple cancer contexts. Their effect on spontaneously developing autoimmune diseases has been little explored. We report that a short treatment with I-BET151, a small-molecule inhibitor of a family of bromodomain-containing transcriptional regulators, irreversibly suppressed development of type-1 diabetes in NOD mice. The inhibitor could prevent or clear insulitis, but had minimal influence on the transcriptomes of infiltrating and circulating T cells. Rather, it induced pancreatic macrophages to adopt an anti-inflammatory phenotype, impacting the NF-κB pathway in particular. I-BET151 also elicited regeneration of islet β-cells, inducing proliferation and expression of genes encoding transcription factors key to β-cell differentiation/function. The effect on β cells did not require T cell infiltration of the islets. Thus, treatment with I-BET151 achieves a ‘combination therapy’ currently advocated by many diabetes investigators, operating by a novel mechanism that coincidentally dampens islet inflammation and enhances β-cell regeneration.
DOI: http://dx.doi.org/10.7554/eLife.04631.001
eLife digest
The DNA inside a cell is often tightly wrapped around proteins to form a compact structure called chromatin. Chemical groups added to the chromatin can encourage nearby genes to either be switched on or off; and several enzymes and other proteins help to read, add, or remove these marks from the chromatin. If these chromatin modifications (or the related enzymes and proteins) are disturbed it can lead to diseases like cancer. It has also been suggested that similar changes may influence autoimmune diseases, in which the immune system attacks the body's own tissues.
Drugs that target the proteins that read, add, or remove these chromatin modifications are currently being developed to treat cancer. For example, drugs that inhibit one family of these proteins called BET have helped to treat tumors in mice that have cancers of the blood or lymph nodes. However, because these drugs target pathways involved in the immune system they may also be useful for treating autoimmune diseases.
Now Fu et al. have tested whether a BET inhibitor might be a useful treatment for type-1 diabetes. In patients with type-1 diabetes, the cells in the pancreas that produce the insulin hormone are killed off by the immune system. Without adequate levels of insulin, individuals with type-1 diabetes may experience dangerous highs and lows in their blood sugar levels and must take insulin and sometimes other medications.
Using mice that spontaneously develop type-1 diabetes when still relatively young, Fu et al. tested what would happen if the mice received a BET inhibitor for just 2 weeks early on in life. Treated mice were protected from developing type-1 diabetes for the rest of their lives. Specifically, the treatment protected the insulin-producing cells and allowed them to continue producing insulin. The drug reduced inflammation in the pancreas and increased the expression of genes that promote the regeneration of insulin-producing cells.
Diabetes researchers have been searching for drug combinations that protect the insulin-producing cells and boost their regeneration. As such, Fu et al. suggest that these findings justify further studies to see if BET inhibitors may help to treat or prevent type-1 diabetes in humans.
DOI: http://dx.doi.org/10.7554/eLife.04631.002
doi:10.7554/eLife.04631
PMCID: PMC4270084  PMID: 25407682
autoimmune diabetes; bromodomain inhibitor; NF-KB; mouse
23.  Isolation and characterization of a novel transcription factor that binds to and activates insulin control element-mediated expression. 
Molecular and Cellular Biology  1994;14(10):6704-6714.
Pancreatic beta-cell-type-specific transcription of the insulin gene is principally regulated by a single cis-acting DNA sequence element, termed the insulin control element (ICE), which is found within the 5'-flanking region of the gene. The ICE activator is a heteromeric complex composed of an islet alpha/beta-cell-specific factor associated with the ubiquitously distributed E2A-encoded proteins (E12, E47, and E2-5). We describe the isolation and characterization of a cDNA for a protein present in alpha and beta cells, termed INSAF for insulin activator factor, which binds to and activates ICE-mediated expression. INSAF was isolated from a human insulinoma cDNA library. Transfection experiments demonstrated that INSAF activates ICE expression in insulin-expressing cells but not in non-insulin-expressing cells. Cotransfection experiments showed that activation by INSAF was inhibited by Id, a negative regulator of basic helix-loop-helix (bHLH) protein function. INSAF was also shown to associate in vitro with the bHLH protein E12. In addition, affinity-purified INSAF antiserum abolished the formation of the activator-specific ICE-binding complex. Immunohistochemical studies indicate that INSAF is restricted in terms of its expression pattern, in that INSAF appears to be detected only within the nuclei of islet pancreatic alpha and beta cells. All of these data are consistent with the proposal that INSAF is either part of the ICE activator or is antigenically related to the specific activator required for insulin gene transcription.
Images
PMCID: PMC359201  PMID: 7935390
24.  Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia 
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors. We identified the antipsychotic drug perphenazine in both screens due to its ability to induce apoptosis in fish, mouse, and human T-ALL cells. Using ligand-affinity chromatography coupled with mass spectrometry, we identified protein phosphatase 2A (PP2A) as a perphenazine target. T-ALL cell lines treated with perphenazine exhibited rapid dephosphorylation of multiple PP2A substrates and subsequent apoptosis. Moreover, shRNA knockdown of specific PP2A subunits attenuated perphenazine activity, indicating that PP2A mediates the drug’s antileukemic activity. Finally, human T-ALLs treated with perphenazine exhibited suppressed cell growth and dephosphorylation of PP2A targets in vitro and in vivo. Our findings provide a mechanistic explanation for the recurring identification of phenothiazines as a class of drugs with anticancer effects. Furthermore, these data suggest that pharmacologic PP2A activation in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates has therapeutic potential.
doi:10.1172/JCI65093
PMCID: PMC3904599  PMID: 24401270
25.  A Biosensor of S100A4 Metastasis Factor Activation: Inhibitor Screening and Cellular Activation Dynamics† 
Biochemistry  2007;47(3):986-996.
S100A4, a member of the S100 family of Ca2+-binding proteins, displays elevated expression in malignant human tumors compared with benign tumors, and increased expression correlates strongly with poor patient survival. S100A4 has a direct role in metastatic progression, likely due to the modulation of actomyosin cytoskeletal dynamics, which results in increased cellular motility. We developed a fluorescent biosensor (Mero-S100A4) that reports on the Ca2+-bound, activated form of S100A4. Direct attachment of a novel solvatochromatic reporter dye to S100A4 results in a sensor that, upon activation, undergoes a 3-fold enhancement in fluorescence, thus providing a sensitive assay for use in vitro and in vivo. In cells, localized activation of S100A4 at the cell periphery is observed during random migration and following stimulation with lysophosphatidic acid, a known activator of cell motility and proliferation. Additionally, a screen against a library of FDA-approved drugs with the biosensor identified an array of phenothiazines as inhibitors of myosin-II associated S100A4 function. These data demonstrate the utility of the new biosensor both for drug discovery and for probing the cellular dynamics controlled by the S100A4 metastasis factor.
doi:10.1021/bi7021624
PMCID: PMC3227476  PMID: 18154362

Results 1-25 (1217469)