Search tips
Search criteria

Results 1-25 (998546)

Clipboard (0)

Related Articles

1.  Dual-Purpose Magnetic Micelles for MRI and Gene Delivery 
Gene therapy is a promising therapeutic approach for treating disease, but the efficient delivery of genes to desired locations with minimal side effects remains a challenge. In addition to gene therapy, it is also highly desirable to provide sensitive imaging information in patients for disease diagnosis, screening and post-therapy monitoring. Here, we report on the development of dual-purpose chitosan and polyethyleneimine (PEI) coated magnetic micelles (CP-mag-micelles) that can deliver nucleic acid-based therapeutic agents and also provide magnetic resonance imaging (MRI). These ‘theranostic’ CP-mag-micelles are composed of monodisperse hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) loaded into the cores of micelles that are self-assembled from a block copolymer of poly (D, L-lactide) (PLA) and monomethoxy polyethylene glycol (mPEG). For efficient loading and protection of the nucleic acids the micelles were coated with cationic polymers, such as chitosan and PEI. The morphology and size distribution of the CP-mag-micelles were characterized and their potential for use as an MRI-probe was tested using an MRI scanner. The T2 relaxivity of micelles was similar to CP-mag-micelles confirming that coating with cationic polymers did not alter magnetism. Nanoparticles coated with chitosan:PEI at a weight ratio of 5:5 showed higher transfection efficiency in HEK293, 3T3 and PC3 cells than with weight ratios of 3:7 or 7:3. CP-mag-micelles are biocompatible, can be delivered to various organs and are safe. A single injection of CP-mag-micelles carrying reporter plasmids in vivo expressed genes for at least one week. Collectively, our results demonstrate that a structural reinforcement of SPIONs loaded in the core of an mPEG-PLA micelle coated with cationic polymers provides efficient DNA delivery and enhanced MRI potential, and affords a promising candidate for theranostics in the future.
PMCID: PMC3632302  PMID: 22561339
Chitosan and PEI coated magnetic micelles (CP-mag-micelles); magnetic resonance imaging (MRI); super paramagnetic iron oxide nanoparticles (SPIONs); gene delivery; theranostics
2.  The investigation of polymer-siRNA nanoparticle for gene therapy of gastric cancer in vitro 
Small interfering RNA (siRNA) molecules have significant therapeutic promise for the genetic treatment of cancer. To overcome instability and low transfection efficiency, polyethylene glycol-polyethyleneimine (PEG-PEI) was synthesized and investigated as a non-viral carrier of siRNA targeting CD44v6 in gastric carcinoma cells. The size, surface charge using zeta potential, and morphology via scanning electron microscopy (SEM) of PEG-PEI/siRNA nanoparticles was characterized, and their cytotoxicity, transfection efficiency, and interaction with SGC7901 human gastric carcinoma cells was evaluated. The transfection efficiency of PEG-PEI/siRNA nanocomplexes was dependant on the charge ratio between amino groups of PEG-PEI and phosphate groups of siRNA (N/P) values, which reflected the molar ratio of PEG-PEI to siRNA during complex formation. The transfection efficiency of PEG-PEI/siRNA at N/P 15 was 72.53% ± 2.38%, which was higher than that observed using Lipofectamine 2000 and PEI as delivery carriers. Cytotoxicity of PEG-PEI was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay and was obviously lower than that of PEI. Moreover, when N/P was below 15, PEG-PEI/siRNA was less toxic than Lipofectamine 2000/siRNA. RT-PCR (real time polymerase chain reaction) and Western blot analyses of CD44v6 expression demonstrated the gene silencing effect of PEG-PEI/siRNA at N/P 15. These data indicate that PEG-PEI may be a promising non-viral carrier for altering gene expression in the treatment of gastric cancer with many advantages, such as relatively high gene transfection efficiency and low cytotoxicity.
PMCID: PMC2841491  PMID: 20309399
siRNA; PEG-PEI; nanoparticles; CD44v6 gene; gastric carcinoma cells
3.  Dual-degradable disulfide-containing PEI–Pluronic/DNA polyplexes: transfection efficiency and balancing protection and DNA release 
Polymeric gene-delivery vectors to achieve lack of toxicity and a balance between protection and DNA release remains a formidable challenge. Incorporating intracellular environment-responsive degradable bonds is an appreciable step toward developing safer transfection agents. In this study, novel, dual-degradable polycation copolymers (Pluronic-diacrylate [PA]–polyethyleneimine [PEI]–SS) were synthesized through the addition of low molecular weight (800 Da) PEI cross-linked with SS (PEI-SS) to PA. Three PA-PEI-SS copolymers (PA-PEI-SS1, 2, and 3) with different PEI-SS to Pluronic molar ratios were investigated and found to strongly condense plasmid DNA into positively charged nanoparticles with an average particle size of approximately 200 nm and to possess higher stability against DNase I digestion and sodium heparin. Disulfide and ester bonds of the copolymers were susceptible to intracellular redox conditions. In vitro experiments demonstrated that the PA-PEI-SS copolymers had significantly lower cytotoxicity and higher transfection efficiency in both BGC-823 and 293T cell lines than the controls of degradable PEI-SS and nondegradable 25 kDa PEI. Transfection activity was influenced by the PEI-SS content in the polymers and PA-PEI-SS1 showed the highest efficiency of the three copolymers. These studies suggest that these dual-degradable copolymers could be used as potential biocompatible gene delivery carriers.
PMCID: PMC3792845  PMID: 24109182
Pluronic; PEI; gene vector; dual-degradable; disulfide-containing linker
4.  Comparisons of three polyethyleneimine-derived nanoparticles as a gene therapy delivery system for renal cell carcinoma 
Polyethyleneimine (PEI), which can interact with negatively charged DNA through electrostatic interaction to form nanocomplexes, has been widely attempted to use as a gene delivery system. However, PEI has some defects that are not fit for keeping on gene expression. Therefore, some modifications against PEI properties have been done to improve their application value in gene delivery. In this study, three modified PEI derivatives, including poly(ε-caprolactone)-pluronic-poly(ε-caprolactone) grafted PEI (PCFC-g-PEI), folic acid-PCFC-isophorone diidocyanate-PEI (FA-PEAs) and heparin-PEI (HPEI), were evaluated in terms of their cytotoxicity and transfection efficiency in vitro and in vivo in order to ascertain their potential application in gene therapy.
MTT assay and a marker GFP gene, encoding green fluorescent protein, were used to evaluate cell toxicity and transfection activity of the three modified PEI in vitro. Renal cell carcinoma (RCC) models were established in BALB/c nude mice inoculated with OS-RC-2 cells to detect the gene therapy effects using the three PEI-derived nanoparticles as gene delivery vehicles. The expression status of a target gene Von Hippel-Lindau (VHL) in treated tumor tissues was analyzed by semiquantitative RT-PCR and immunohistochemistry.
Each of three modified PEI-derived biomaterials had an increased transfection efficiency and a lower cytotoxicity compared with its precursor PEI with 25-kD or 2-kD molecule weight in vitro. And the mean tumor volume was obviously decreased 30% by using FA-PEAs to transfer VHL plasmids to treat mice RCC models. The VHL gene expression was greatly improved in the VHL-treated group. While there was no obvious tumor inhibition treated by PCFC-g-PEI:VHL and HPEI:VHL complexes.
The three modified PEI-derived biomaterials, including PCFC-g-PEI, FA-PEAs and HPEI, had an increased transfection efficiency in vitro and obviously lower toxicities compared with their precursor PEI molecules. The FA-PEAs probably provide a potential gene delivery system to treat RCC even other cancers in future.
PMCID: PMC3108928  PMID: 21513541
Polyethyleneimine; nanoparticle; gene delivery; VHL; renal cell carcinoma
5.  Biodegradable nanoparticles sequentially decorated with Polyethyleneimine and Hyaluronan for the targeted delivery of docetaxel to airway cancer cells 
Novel polymeric nanoparticles (NPs) specifically designed for delivering chemotherapeutics in the body and aimed at improving treatment activity and selectivity, cover a very relevant area in the field of nanomedicine.
Here, we describe how to build a polymer shell of Hyaluronan (HA) and Polyethyleneimine (PEI) on biodegradable NPs of poly(lactic-co-glycolic) acid (PLGA) through electrostatic interactions and to achieve NPs with unique features of sustained delivery of a docetaxel (DTX) drug cargo as well as improved intracellular uptake.
A stable PEI or HA/PEI shell could be obtained by careful selection of layering conditions. NPs with exquisite stability in salt and protein-rich media, with size and surface charge matching biological requirements for intravenous injection and endowed with sustained DTX release could be obtained. Cytotoxicity, uptake and activity of both PLGA/PEI/HA and PLGA/PEI NPs were evaluated in CD44(+) (A549) and CD44(−) (Calu-3) lung cancer cells. In fact, PEI-coated NPs can be formed after degradation/dissociation of the surface HA because of the excess hyaluronidases overexpressed in tumour interstitium. There was no statistically significant cytotoxic effect of PLGA/PEI/HA and PLGA/PEI NPs in both cell lines, thus suggesting that introduction of PEI in NP shell was not hampered by its intrinsic toxicity. Intracellular trafficking of NPs fluorescently labeled with Rhodamine (RHO) (RHO-PLGA/PEI/HA and RHO-PLGA/PEI NPs) demonstrated an increased time-dependent uptake only for RHO-PLGA/PEI/HA NPs in A549 cells as compared to Calu-3 cells. As expected, RHO-PLGA/PEI NP uptake in A549 cells was comparable to that observed in Calu-3 cells. RHO-PLGA/PEI/HA NPs internalized into A549 cells showed a preferential perinuclear localization. Cytotoxicity data in A549 cells suggested that DTX delivered through PLGA/PEI/HA NPs exerted a more potent antiproliferative activity than free DTX. Furthermore, DTX-PLGA/PEI NPs, as hypothetical result of hyaluronidase-mediated degradation in tumor interstitium, were still able to improve the cytotoxic activity of free DTX.
Taken together, results lead us to hypothesize that biodegradable NPs coated with a PEI/HA shell represent a very promising system to treat CD44 overexpressing lung cancer. In principle, this novel nanocarrier can be extended to different single drugs and drug combinations taking advantage of the shell and core properties.
Electronic supplementary material
The online version of this article (doi:10.1186/s12951-015-0088-2) contains supplementary material, which is available to authorized users.
PMCID: PMC4424546  PMID: 25888948
Nanoparticles; CD44 targeting; Poly(lactic-co-glycolic) acid; Hyaluronan; Polyethyleneimine; Docetaxel; Lung cancer
6.  Multifunctional Core/Shell Nanoparticles Cross-linked Polyetherimide-folic Acid as Efficient Notch-1 siRNA Carrier for Targeted Killing of Breast Cancer 
Scientific Reports  2014;4:7072.
In gene therapy, how genetic therapeutics can be efficiently and safely delivered into target tissues/cells remains a major obstacle to overcome. To address this issue, nanoparticles consisting of non-covalently coupled polyethyleneimine (PEI) and folic acid (FA) to the magnetic and fluorescent core/shell of Fe3O4@SiO2(FITC) was tested for their ability to deliver Notch-1 shRNA. Our results showed that Fe3O4@SiO2(FITC)/PEI-FA/Notch-1 shRNA nanoparticles are 64 nm in diameter with well dispersed and superparamagnetic. These nanoparticles with on significant cytotoxicity are capable of delivering Notch-1 shRNA into human breast cancer MDA-MB-231 cells with high efficiency while effectively protected shRNA from degradation by exogenous DNaseI and nucleases. Magnetic resonance (MR) imaging and fluorescence microscopy showed significant preferential uptake of Fe3O4@SiO2(FITC)/PEI-FA/Notch-1 shRNA nanocomplex by MDA-MB-231 cells. Transfected MDA-MB-231 cells exhibited significantly decreased expression of Notch-1, inhibited cell proliferation, and increased cell apoptosis, leading to the killing of MDA-MB-231 cells. In light of the magnetic targeting capabilities of Fe3O4@SiO2(FITC)/PEI-FA, our results show that by complexing with a second molecular targeting therapeutic, such as Notch-1 shRNA in this report, Fe3O4@SiO2(FITC)/PEI-FA can be exploited as a novel, non-viral, and concurrent targeting delivery system for targeted gene therapy as well as for MR imaging in cancer diagnosis.
PMCID: PMC4233336  PMID: 25400232
7.  Degradable polyethylenimine derivate coupled to a bifunctional peptide R13 as a new gene-delivery vector 
To solve the efficiency versus cytotoxicity and tumor-targeting problems of polyethylenimine (PEI) used as a nonviral gene delivery vector, a degradable PEI derivate coupled to a bifunctional peptide R13 was developed.
First, we synthesized a degradable PEI derivate by crosslinking low-molecular-weight PEI with pluronic P123, then used tumor-targeting peptide arginine-glycine-aspartate-cysteine (RGDC), in conjunction with the cell-penetrating peptide Tat (49–57), to yield a bifunctional peptide RGDC-Tat (49–57) named R13, which can improve cell selection and increase cellular uptake, and, lastly, adopted R13 to modify the PEI derivates so as to prepare a new polymeric gene vector (P123-PEI-R13). The new gene vector was characterized in terms of its chemical structure and biophysical parameters. We also investigated the specificity, cytotoxicity, and gene transfection efficiency of this vector in αvβ3-positive human cervical carcinoma Hela cells and murine melanoma B16 cells in vitro.
The vector showed controlled degradation, strong targeting specificity to αvβ3 receptor, and noncytotoxicity in Hela cells and B16 cells at higher doses, in contrast to PEI 25 KDa. The particle size of P123-PEI-R13/DNA complexes was around 100–250 nm, with proper zeta potential. The nanoparticles can protect plasmid DNA from being digested by DNase I at a concentration of 6 U DNase I/μg DNA. The nanoparticles were resistant to dissociation induced by 50% fetal bovine serum and 600 μg/mL sodium heparin. P123-PEI-R13 also revealed higher transfection efficiency in two cell lines as compared with PEI 25 KDa.
P123-PEI-R13 is a potential candidate as a safe and efficient gene-delivery carrier for gene therapy.
PMCID: PMC3299202  PMID: 22412301
nonviral gene vector; polyethylenimine; P123; αvβ3; cell-penetrating peptides
8.  A novel Poly(ε-caprolactone)-Pluronic-Poly(ε-caprolactone) grafted Polyethyleneimine(PCFC-g-PEI), Part 1, synthesis, cytotoxicity, and in vitro transfection study 
BMC Biotechnology  2009;9:65.
Polyethyleneimine (PEI), a cationic polymer, is one of the successful and widely used vectors for non-viral gene transfection in vitro. However, its in vivo application was greatly limited due to its high cytotoxicity and short duration of gene expression. To improve its biocompatibility and transfection efficiency, PEI has been modified with PEG, folic acid, and chloroquine in order to improve biocompatibility and enhance targeting.
Poly(ε-caprolactone)-Pluronic-Poly(ε-caprolactone) (PCFC) was synthesized by ring-opening polymerization, and PCFC-g-PEI was obtained by Michael addition reaction with GMA-PCFC-GMA and polyethyleneimine (PEI, 25 kD). The prepared PCFC-g-PEI was characterized by 1H-NMR, SEC-MALLS. Meanwhile, DNA condensation, DNase I protection, the particle size and zeta potential of PCFC-g-PEI/DNA complexes were also determined. According to the results of flow cytometry and MTT assay, the synthesized PCFC-g-PEI, with considerable transfection efficiency, had obviously lower cytotoxicity against 293 T and A549 cell lines compared with that of PEI 25 kD.
The cytotoxicity and in vitro transfection study indicated that PCFC-g-PEI copolymer prepared in this paper was a novel gene delivery system with lower cytotoxicity and considerable transfection efficiency compared with commercial PEI (25 kD).
PMCID: PMC2717081  PMID: 19607728
9.  Low-weight polyethylenimine cross-linked 2-hydroxypopyl-β-cyclodextrin and folic acid as an efficient and nontoxic siRNA carrier for gene silencing and tumor inhibition by VEGF siRNA 
Targeted delivery of small interfering RNA (siRNA) has been regarded as one of the most important technologies for the development of siRNA therapeutics. However, the need for safe and efficient delivery systems is a barrier to further development of RNA interference therapeutics. In this work, a nontoxic and efficient siRNA carrier delivery system of low molecular weight polyethyleneimine (PEI-600 Da) cross-linked with 2-hydroxypopyl-β-cyclodextrin (HP-β-CD) and folic acid (FA) was synthesized for biomedical application.
The siRNA carrier was prepared using a simple method and characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. The siRNA carrier nanoparticles were characterized in terms of morphology, size and zeta potential, stability, efficiency of delivery, and gene silencing efficiency in vitro and in vivo.
The siRNA carrier was synthesized successfully. It showed good siRNA binding capacity and ability to protect siRNA. Further, the toxicity of the carrier measured in vitro and in vivo appeared to be negligible, probably because of degradation of the low molecular weight PEI and HP-β-CD in the cytosol. Flow cytometry and confocal microscopy confirmed that the FA receptor-mediated endocytosis of the FA-HP-β-CD-PEI/siRNA complexes was greater than that of the HP-β-CD-PEI/siRNA complexes in FA receptor-enriched HeLa cells. The FA-HP-β-CD-PEI/siRNA complexes also demonstrated excellent gene silencing efficiency in vitro (in the range of 90%), and reduced vascular endothelial growth factor (VEGF) protein expression in the presence of 20% serum. FA-HP-β-CD-PEI/siRNA complexes administered via tail vein injection resulted in marked inhibition of tumor growth and reduced VEGF protein expression in the tumors.
Our results suggest that the FA-HP-β-CD-PEI complex is a nontoxic and highly efficient gene carrier with the potential to deliver siRNA for cancer gene therapy effectively in vitro and in vivo.
PMCID: PMC3678862  PMID: 23766646
polyethyleneimine; 2-hydroxypropyl-β-cyclodextrin; folic acid; siRNA carrier; vascular endothelial growth factor; gene silencing
10.  Mannosylated biodegradable polyethyleneimine for targeted DNA delivery to dendritic cells 
To establish a potential gene-delivery system with the ability to deliver plasmid DNA to dendritic cells (DCs) more efficiently and specifically, we designed and synthesized a low-molecular-weight polyethyleneimine and triethyleneglycol polymer (PEI–TEG) and a series of its mannosylated derivatives.
PEI–TEG was synthesized from PEI2000 and PEI600 with TEG as the cross-linker. PEI–TEG was then linked to mannose via a phenylisothiocyanate bridge to obtain man-PEI–TEG conjugates. The DNA conveyance abilities of PEI–TEG, man-PEI–TEG, as well as control PEI25k were evaluated by measuring their zeta potential, particle size, and DNA-binding abilities. The in vitro cytotoxicity, cell uptake, and transfection efficiency of these PEI/DNA complexes were examined on the DC2.4 cell line. Finally, a maturation experiment evaluated the effect of costimulatory molecules CD40, CD80, and CD86 on murine bone marrow-derived DCs (BMDCs) using flow cytometry.
PEI–TEG and man-PEI–TEG were successfully synthesized and were shown to retain the excellent properties of PEI25k for condensing DNA. Compared with PEI–TEG as well as PEI25k, the man-PEI–TEG had less cytotoxicity and performed better in both cellular uptake and transfection assays in vitro. The results of the maturation experiment showed that all the PEI/DNA complexes induced an adequate upregulation of surface markers for DC maturation.
These results demonstrated that man-PEI–TEG can be employed as a DC-targeting gene-delivery system.
PMCID: PMC3384368  PMID: 22745554
dendritic cells; DCs; mannose; polyethyleneimine; PEI; gene delivery
11.  N-Alkyl-PEI Functional Iron Oxide Nanocluster for Efficient siRNA Delivery** 
Small interfering RNA (siRNA) is an emerging class of therapeutics, working by regulating the expression of a specific gene involved in disease progression. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. In this study, a non-viral nanoparticle gene carrier has been developed and its efficiency for siRNA delivery and transfection has been validated at both in vitro and in vivo levels. Such a nanocarrier, abbreviated as Alkyl-PEI2k-IO, was constructed with a core of iron oxide (IO) and a shell of alkylated PEI2000 (Alkyl-PEI2k). It was found to be able to bind with siRNA, resulting in well-dispersed nanoparticles with a controlled clustering structure and narrow size distribution. Electrophoresis studies showed that the Alkyl-PEI2k-IOs could retard siRNA completely at N/P ratios above 10, protect siRNA from enzymatic degradation in serum and release complexed siRNA efficiently in the presence of polyanionic heparin. The knockdown efficiency of the siRNA loaded nanocarriers was assessed with 4T1 cells stably expressing luciferase (fluc-4T1) and further, with a fluc-4T1 xenograft model. Significant downregulation of luciferase was observed, and unlike the high molecular weight analogs, the Alkyl-PEI2k coated IOs showed a good biocompatibility. In conclusion, Alkyl-PEI2k-IOs demonstrate highly efficient delivery of siRNA and an innocuous toxic profile, making it a potential carrier for gene therapy.
PMCID: PMC3759164  PMID: 21861295
Biomaterials; Superparamagnetic nanoparticles; Polytehyleneimine; Small interfering RNA
12.  PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells 
Nanoscale Research Letters  2011;6(1):447.
The biggest challenge in the field of gene therapy is how to effectively deliver target genes to special cells. This study aimed to develop a new type of poly(D,L-lactide-co-glycolide) (PLGA)-based nanoparticles for gene delivery, which are capable of overcoming the disadvantages of polyethylenimine (PEI)- or cationic liposome-based gene carrier, such as the cytotoxicity induced by excess positive charge, as well as the aggregation on the cell surface. The PLGA-based nanoparticles presented in this study were synthesized by emulsion evaporation method and characterized by transmission electron microscopy, dynamic light scattering, and energy dispersive spectroscopy. The size of PLGA/PEI nanoparticles in phosphate-buffered saline (PBS) was about 60 nm at the optimal charge ratio. Without observable aggregation, the nanoparticles showed a better monodispersity. The PLGA-based nanoparticles were used as vector carrier for miRNA transfection in HepG2 cells. It exhibited a higher transfection efficiency and lower cytotoxicity in HepG2 cells compared to the PEI/DNA complex. The N/P ratio (ratio of the polymer nitrogen to the DNA phosphate) 6 of the PLGA/PEI/DNA nanocomplex displays the best property among various N/P proportions, yielding similar transfection efficiency when compared to Lipofectamine/DNA lipoplexes. Moreover, nanocomplex shows better serum compatibility than commercial liposome. PLGA nanocomplexes obviously accumulate in tumor cells after transfection, which indicate that the complexes contribute to cellular uptake of pDNA and pronouncedly enhance the treatment effect of miR-26a by inducing cell cycle arrest. Therefore, these results demonstrate that PLGA/PEI nanoparticles are promising non-viral vectors for gene delivery.
PMCID: PMC3211866  PMID: 21749688
13.  A Reducible Polycationic Gene Vector Derived from Thiolated Low Molecular Weight Branched Polyethyleneimine Linked by 2-Iminothiolane 
Biomaterials  2010;32(4):1193-1203.
To improve transfection efficiency and reduce the cytotoxicity of polymeric gene vectors, reducible polycations (RPC) were synthesized from low molecular weight (MW) branched polyethyleneimine (bPEI) via thiolation and oxidation. RPC (RPC-bPEI0.8kDa) possessed a MW of 5 kDa~80 kDa, and 50%~70% of the original proton buffering capacity of bPEI0.8kDa was preserved in the final product. The cytotoxicity of RPC-bPEI0.8kDa was 8~19 times less than that of the gold standard of polymeric transfection reagents, bPEI25kDa. Although bPEI0.8kDa exhibited poor gene condensing capacities (~2 µm at a weight ratio (WR) of 40), RPC-bPEI0.8kDa effectively condensed plasmid DNA (pDNA) at a WR of 2. Moreover, RPC-bPEI0.8kDa/pDNA (WR ≥ 2) formed 100~200 nm-sized particles with positively charged surfaces (20~35 mV). In addition, the results of the present study indicated that thiol/polyanions triggered the release of pDNA from RPC-bPEI0.8kDa/pDNA via the fragmentation of RPC-bPEI0.8kDa and ion-exchange. With negligible polyplex-mediated cytotoxicity, the transfection efficiencies of RPC-bPEI0.8kDa/pDNA were approximately 1200~1500-fold greater than that of bPEI0.8kDa/pDNA and were equivalent or superior (~7-fold) to that of bPEI25kDa/pDNA. Interestingly, the distribution of high MW RPC-bPEI0.8kDa/pDNA in the nucleus of the cell was higher than that of low MW RPC-bPEI0.8kDa/pDNA. Thus, the results of the present study suggest that RPC-bPEI0.8kDa has the potential to effectively deliver genetic materials with lower levels of toxicity.
PMCID: PMC2992579  PMID: 21071079
14.  Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery 
Polyethylenimine (PEI), especially PEI 25 kDa, has been widely studied for delivery of nucleic acid drugs both in vitro and in vivo. However, it lacks degradable linkages and is too toxic for therapeutic applications. Hence, low-molecular-weight PEI has been explored as an alternative to PEI 25 kDa. To reduce cytotoxicity and increase transfection efficiency, we designed and synthesized a novel small-molecular-weight PEI derivative (PEI-Et, Mn: 1220, Mw: 2895) with ethylene biscarbamate linkages. PEI-Et carried the ability to condense plasmid DNA (pDNA) into nanoparticles. Gel retardation assay showed complete condensation of pDNA at w/w ratios that exceeded three. The particle size of polymer/pDNA complexes was between 130 nm and 180 nm and zeta potential was 5–10 mV, which were appropriate for cell endocytosis. The morphology of PEI-Et/pDNA complexes observed by atomic force microscopy (AFM) was spherically shaped with diameters of 110–190 nm. The transfection efficiency of polymer/pDNA complexes as determined with the luciferase activity assay as well as fluorescence-activated cell-sorting analysis (FACS) was higher than commercially available PEI 25 kDa and Lipofectamine 2000 in various cell lines. Also, the polymer exhibited significantly lower cytotoxicity compared to PEI 25 kDa at the same concentration in three cell lines. Therefore, our results indicated that the PEI-Et would be a promising candidate for safe and efficient gene delivery in gene therapy.
PMCID: PMC3282609  PMID: 22359448
gene delivery; polyethylenimine; nanoparticles; cytotoxicity; transfection efficiency
15.  Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells 
Molecular Vision  2013;19:1029-1038.
Several nanoconjugates have been designed to deliver nucleic acids such as small interfering RNA (siRNA) and DNA to cells to study silencing and expression efficacies. In the present study, we prepared novel epithelial cell adhesion molecule (EpCAM) monoclonal antibody conjugated polyethyleneimine (PEI) capped gold nanoparticles (AuNPs) loaded with EpCAM-specific siRNA molecules to knock-down the EpCAM gene in retinoblastoma (RB) cells. We chose EpCAM as a target moiety to deliver siRNA because this molecule is highly expressed in various epithelial cancers and is an ideal target as it is highly expressed in the apical surface of tumor cells while showing basolateral expression in normal cells.
The EpCAM antibody was conjugated to AuNP-PEI loaded with siRNA molecules to specifically deliver siRNA to EpCAM-expressing RB cells. Conjugation efficiencies were confirmed with ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, and agarose and SDS–polyacrylamide gel electrophoresis. The size and zeta potential were measured using a Zeta sizer analyzer. Nanoparticle internalization and uptake were studied using fluorescent microscopy and flow cytometry. Gene silencing efficacy was monitored with western blot analysis and real-time quantitative PCR.
Optimal size and neutral zeta potential properties of the AuNP-PEI- EpCAM antibody (EpAb) antibody were achieved for the transfection studies. The AuNP-PEI nanoparticles did not show any cytotoxicity to the cells, which means these nanomaterials are suitable for intracellular delivery of siRNA for therapeutic interventions. With EpCAM antibody conjugation, PEI-capped AuNPs loaded with EpCAM siRNA were significantly internalized in the Y79 cells as observed with fluorescence microscopy and flow cytometry and induced a highly significant reduction in the cell viability of the Y79 cells. Through increased binding of EpCAM antibody–conjugated AuNP-PEI nanoparticles, significant downregulation of EpCAM gene was observed in the Y79 cells when compared to the cells treated with the antibody-unconjugated AuNP-PEI nanoparticles.
Thus, a novel antibody conjugated nanocarrier designed to deliver siRNA holds promise as an effective gene therapy strategy for retinoblastoma in the near future. In addition to serving as an siRNA delivery tool for therapy, gold nanoparticles can also serve as imaging modality in diagnosis.
PMCID: PMC3654846  PMID: 23687439
16.  Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo 
Repair of large bone defects is a major challenge, requiring sustained stimulation to continually promote bone formation locally. Bone morphogenetic protein 2 (BMP-2) plays an important role in bone development. In an attempt to overcome this difficulty of bone repair, we created a delivery system to slowly release human BMP-2 cDNA plasmid locally, efficiently transfecting local target cells and secreting functional human BMP-2 protein. For transfection, we used polyethylenimine (PEI) to create pBMP-2/PEI nanoparticles, and to ensure slow release we used poly(lactic-co-glycolic acid) (PLGA) to create microsphere encapsulated pBMP-2/PEI nanoparticles, PLGA@pBMP-2/PEI. We demonstrated that pBMP-2/PEI nanoparticles could slowly release from the PLGA@pBMP-2/PEI microspheres for a long period of time. The 3–15 μm diameter of the PLGA@pBMP-2/PEI further supported this slow release ability of the PLGA@pBMP-2/PEI. In vitro transfection assays demonstrated that pBMP-2/PEI released from PLGA@pBMP-2/PEI could efficiently transfect MC3T3-E1 cells, causing MC3T3-E1 cells to secrete human BMP-2 protein, increase calcium deposition and gene expressions of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), SP7 and I type collagen (COLL I), and finally induce MC3T3-E1 cell differentiation. Importantly, in vivo data from micro-computed tomography (micro-CT) and histological staining demonstrated that the human BMP-2 released from PLGA@pBMP-2/PEI had a long-term effect locally and efficiently promoted bone formation in the bone defect area compared to control animals. All our data suggest that our PLGA-nanoparticle delivery system efficiently and functionally delivers the human BMP-2 cDNA and has potential clinical application in the future after further modification.
PMCID: PMC3748902  PMID: 23990717
gene therapy; bone regeneration; biodegradable polymer; human BMP-2
17.  Amphiphilic and biodegradable methoxy polyethylene glycol-block-(polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate)) as an effective gene carrier 
Biomaterials  2010;32(3):879-889.
A group of amphiphilic cationic polymers, methoxy polyethylene glycol-block-(polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate)) (PECD), were synthesized by combining ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP) methods to form nanoparticles (NPs). The structures of these amphiphilic cationic polymers were characterized by 1H NMR measurement. The PECD NPs have hydrophobic cores covered with hydrophilic PEG and cationic PDMAEMA chains. These self-assembly nanoparticles were characterized by dynamic light scattering (DLS) technique. PECD NPs can effectively condense DNA to form compact complexes of the size 65–160 nm suitable for gene delivery. The in vitro gene transfection studies of HeLa and HepG2 cells show that PECD NPs have better transfection efficiency compared to polyethylenimine (PEI) and Lipofectamine 2000 at low dose (N/P = 5). The cytotoxicity result shows that PECD NPs/DNA complexes at the optimal N/P ratio for transfection have comparable toxicity with PEI and Lipofectamine. These results indicate that PECD NPs have a great potential to be used as efficient polymeric carriers for gene transfection.
PMCID: PMC3042775  PMID: 20970186
Poly(ε-caprolactone); Gene therapy; Degradable polymers; Poly(2-(dimethylamino ethyl)methacrylate); Amphiphilic copolymers
18.  Magnetic Nanoparticle Based Nonviral MicroRNA Delivery into Freshly Isolated CD105+ hMSCs 
Stem Cells International  2014;2014:197154.
Genetic modifications of bone marrow derived human mesenchymal stem cells (hMSCs) using microRNAs (miRs) may be used to improve their therapeutic potential and enable innovative strategies in tissue regeneration. However, most of the studies use cultured hMSCs, although these can lose their stem cell characteristics during expansion. Therefore, we aimed to develop a nonviral miR carrier based on polyethylenimine (PEI) bound to magnetic nanoparticles (MNPs) for efficient miR delivery in freshly isolated hMSCs. MNP based transfection is preferable for genetic modifications in vivo due to improved selectivity, safety of delivery, and reduced side effects. Thus, in this study different miR/PEI and miR/PEI/MNP complex formulations were tested in vitro for uptake efficiency and cytotoxicity with respect to the influence of an external magnetic field. Afterwards, optimized magnetic complexes were selected and compared to commercially available magnetic vectors (Magnetofectamine, CombiMag). We found that all tested transfection reagents had high miR uptake rates (yielded over 60%) and no significant cytotoxic effects. Our work may become crucial for virus-free introduction of therapeutic miRs as well as other nucleic acids in vivo. Moreover, in the field of targeted stem cell therapy nucleic acid delivery prior to transplantation may allowfor initial cell modulation in vitro.
PMCID: PMC3988711  PMID: 24799915
19.  A study on the preparation and characterization of plasmid DNA and drug-containing magnetic nanoliposomes for the treatment of tumors 
To explore the preparation and characterization of a novel nanosized magnetic liposome containing the PEI-As2O3/Mn0.5Zn0.5Fe2O4 complex.
Mn0.5Zn0.5Fe2O4 and As2O3/Mn0.5Zn0.5Fe2O4 nanoparticles were prepared by chemical coprecipitation and loaded with PEI. The PEI- As2O3/Mn0.5Zn0.5Fe2O4 complex was characterized using transmission electron and scanning electron microscopy, X-ray diffraction, energy dispersive spectrometry, and Fourier transform infrared spectroscopy. Cell transfection experiments were performed to evaluate the transfect efficiency. Magnetic nanoliposomes were prepared by rotatory evaporation and their shape, diameter, and thermodynamic characteristics were observed.
Mn0.5Zn0.5Fe2O4 and PEI-As2O3/Mn0.5Zn0.5Fe2O4 nanoparticles were spherical, with an average diameter of 20–40 nm. PEI-As2O3/Mn0.5Zn0.5Fe2O4 was an appropriate carrier for the delivery of a foreign gene to HepG2 cells. Energy dispersive spectrometry results confirmed the presence of the elements nitrogen and arsenic. Nanoliposomes of approximately 100 nm were observed under a transmission electron microscope. Upon exposure to an alternating magnetic field, they also had good magnetic responsiveness, even though Mn0.5Zn0.5Fe2O4was modified by PEI and encased in liposomes. Temperatures increased to 37°C–54°C depending on different concentrations of PEI-As2O3/Mn0.5Zn0.5Fe2O4and remained stable thereafter.
Our results suggest that PEI-As2O3/Mn0.5Zn0.5Fe2O4 magnetic nanoliposomes are an excellent biomaterial, which has multiple benefits in tumor thermotherapy, gene therapy, and chemotherapy.
PMCID: PMC3124393  PMID: 21720500
nanoliposomes; magnetic fluid hyperthermia; As2O3; DNA
20.  Linear polyethylenimine produced by partial acid hydrolysis of poly(2-ethyl-2-oxazoline) for DNA and siRNA delivery in vitro 
Polyethylenimines (PEIs) are the most efficient synthetic vectors for gene delivery available to date. With its high charge density and strong proton-buffering effect, PEI has an ability to condense DNA and small interfering RNA at physiologic pH. However, the polymer suffers from the disadvantage of high cellular toxicity. To reduce its cellular toxicity, we synthesized linear PEIs by partial hydrolysis of poly(2-ethyl-2-oxazoline). Three linear PEIs with different hydrolysis percentages (30%, 70%, and 96%, respectively) were produced as PEI30, PEI70, and PEI96. PEI30 and PEI96 cannot be considered as suitable transfection agents because of low transfection efficiency (PEI30) or high cellular toxicity (PEI96). PEI70 displayed very weak cell toxicity. The charge density of this polymer (PEI70) was strong enough to condense DNA and small interfering RNA at a physiologic pH of 7.4. Our results also show that PEI70 was highly efficient in DNA delivery and small interfering RNA-mediated knockdown of target genes. Thus, polymers such as PEI70 appear to be very promising vectors for gene delivery.
PMCID: PMC3817027  PMID: 24204139
nonviral vector; polyethylenimine; gene delivery; DNA; small interfering RNA
21.  PEI-PEG-Chitosan Copolymer Coated Iron Oxide Nanoparticles for Safe Gene Delivery: synthesis, complexation, and transfection** 
Advanced functional materials  2009;19(14):2244-2251.
Gene therapy offers the potential of mediating disease through modification of specific cellular functions of target cells. However, effective transport of nucleic acids to target cells with minimal side effects remains a challenge despite the use of unique viral and non-viral delivery approaches. Here we present a non-viral nanoparticle gene carrier that demonstrates effective gene delivery and transfection both in vitro and in vivo. The nanoparticle system (NP-CP-PEI) is made of a superparamagnetic iron oxide nanoparticle (NP), which enables magnetic resonance imaging, coated with a novel copolymer (CP-PEI) comprised of short chain polyethylenimine (PEI) and poly(ethylene glycol) (PEG) grafted to the natural polysaccharide, chitosan (CP), which allows efficient loading and protection of the nucleic acids. The function of each component material in this nanoparticle system is illustrated by comparative studies of three nanoparticle systems of different surface chemistries, through material property characterization, DNA loading and transfection analyses, and toxicity assessment. Significantly, NP-CP-PEI demonstrates an innocuous toxic profile and a high level of expression of the delivered plasmid DNA in a C6 xenograft mouse model, making it a potential candidate for safe in vivo delivery of DNA for gene therapy.
PMCID: PMC2756666  PMID: 20160995
biomaterials; superparamagnetic nanoparticles; DNA; drug delivery; gene therapy
22.  Cross-linked polyethylenimine–tripolyphosphate nanoparticles for gene delivery 
The high transfection efficiency of polyethylenimine (PEI) makes it an attractive potential nonviral genetic vector for gene delivery and therapy. However, the highly positive charge of PEI leads to cytotoxicity and limits its application. To reduce the cytotoxicity of PEI, we prepared anion-enriched nanoparticles that combined PEI with tripolyphosphate (TPP). We then characterized the PEI-TPP nanoparticles in terms of size, zeta potential, and Fourier-transform infrared (FTIR) spectra, and assessed their transfection efficiency, cytotoxicity, and ability to resist deoxyribonuclease (DNase) I digestion. The cellular uptake of PEI-TPP with phosphorylated internal ribosome entry site–enhanced green fluorescent protein C1 or FAM (fluorouracil, Adriamycin [doxorubicin] and mitomycin)-labeled small interfering ribonucleic acids (siRNAs) was monitored by fluorescence microscopy and confocal laser microscopy. The efficiency of transfected delivery of plasmid deoxyribonucleic acid (DNA) and siRNA in vitro was 1.11- to 4.20-fold higher with the PEI-TPP particles (7.6% cross-linked) than with the PEI, at all N:P ratios (nitrogen in PEI to phosphorus in DNA) tested. The cell viability of different cell lines was more than 90% at the chosen N:P ratios of PEI-TPP/DNA complexes. Moreover, PEI-TPP nanoparticles resisted digestion by DNase I for more than 2 hours. The time-dependent absorption experiment showed that 7.6% of cross-linked PEI-TPP particles were internalized by 293T cells within 1 hour. In summary, PEI-TPP nanoparticles effectively transfected cells while conferring little or no toxicity, and thus have potential application in gene delivery.
PMCID: PMC4206394  PMID: 25342902
polyethylenimine (PEI); tripolyphosphate (TPP); nanoparticles (NPs); transfection
23.  Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology 
Cystic fibrosis (CF) is an inherited disorder characterized by chronic airway inflammation. microRNAs (miRNAs) are endogenous small RNAs which act on messenger (m) RNA at a post transcriptional level, and there is a growing understanding that altered expression of miRNA is involved in the CF phenotype. Modulation of miRNA by replacement using miRNA mimics (premiRs) presents a new therapeutic paradigm for CF, but effective and safe methods of delivery to the CF epithelium are limiting clinical translation. Herein, polymeric nanoparticles are investigated for delivery of miRNA mimics into CF airway epithelial cells, using miR-126 as a proof-of-concept premiR cargo to determine efficiency. Two polymers, polyethyleneimine (PEI) and chitosan, were used to prepare miRNA nanomedicines, characterized for their size, surface (zeta) potential, and RNA complexation efficiency, and screened for delivery and cytotoxicity in CFBE41o- (human F508del cystic fibrosis transmembrane conductance regulator bronchial epithelial) cells using a novel high content analysis method. RNA extraction was carried out 24 hours post transfection, and miR-126 and TOM1 (target of Myb1) expression (a validated miR-126 target) was assessed. Manufacture was optimized to produce small nanoparticles that effectively complexed miRNA. Using high content analysis, PEI-based nanoparticles were more effective than chitosan-based nanoparticles in facilitating uptake of miRNA into CFBE41o- cells and this was confirmed in miR-126 assays. PEI-premiR-126 nanoparticles at low nitrogen/phosphate (N/P) ratios resulted in significant knockdown of TOM1 in CFBE41o- cells, with the most significant reduction of 66% in TOM1 expression elicited at an N/P ratio of 1:1 while chitosan-based miR-126 nanomedicines failed to facilitate statistically significant knockdown of TOM1 and both nanoparticles appeared relatively nontoxic. miRNA nanomedicine uptake can be qualitatively and quantitatively assessed rapidly by high content analysis and is highly polymer-dependent but, interestingly, there is not a direct correlation between the levels of miRNA uptake and the downstream gene knockdown. Polymeric nanoparticles can deliver premiRs effectively to CFBEs in order to modulate gene expression but must be tailored specifically for miRNA delivery.
PMCID: PMC3798151  PMID: 24143095
miR-126; nanotechnology; cystic fibrosis; TOM1; high content analysis; inflammation
24.  Formulation of a Peptide Nucleic Acid Based Nucleic Acid Delivery Construct 
Bioconjugate chemistry  2010;21(3):445-455.
Gene delivery biomaterials need to be designed to efficiently achieve nuclear delivery of plasmid DNA. Polycations have been used to package DNA and other nucleic acids within sub-micron sized particles, offering protection from shear-induced or enzymatic degradation. However, cytotoxicity issues coupled with limited in vivo transfection efficiencies minimize the effectiveness of this approach. In an effort to improve upon existing technologies aimed at delivering nucleic acids, an alternative approach to DNA packaging was explored. Peptide nucleic acids (PNAs) were used to directly functionalize DNA with poly(ethylene glycol) (PEG) chains that provide a steric layer and inhibit multimolecular aggregation during complexation. DNA prePEGylation by this strategy was predicted to enable the formation of more homogeneous and efficiently packaged polyplexes.
In this work, DNA-PNA-peptide-PEG (DP3) conjugates were synthesized and self-assembled with 25 kDa poly(ethylenimine) (PEI). Complexes with small standard deviations and average diameters ranging from 30 – 50 nm were created, with minimal dependence of complex size on N:P ratio (PEI amines to DNA phosphates). Furthermore, PEI-DNA interactions were altered by the derivitization strategy, resulting in tighter compaction of the PEI-DP3 complexes in comparison with PEI-DNA complexes. Transfection experiments in Chinese Hamster Ovary (CHO) cells revealed comparable transfection efficiencies but reduced cytotoxicities of the PEI-DP3 complexes relative to PEI-DNA complexes. The enhanced cellular activities of the PEI-DP3 complexes were maintained following the removal of free PEI from the PEI-DP3 formulations, whereas the cellular activity of the conventional PEI-DNA formulations was reduced by free PEI removal. These findings suggest that DNA prePEGylation by the PNA-based strategy might provide a way to circumvent cytotoxicity and formulation issues related to the use of PEI for in vivo gene delivery.
PMCID: PMC2891923  PMID: 20131756
25.  Neuron-specific delivery of nucleic acids mediated by Tet1-modified poly(ethylenimine) 
The journal of gene medicine  2007;9(8):691-702.
The development of minimally invasive, non-viral gene delivery vehicles for the central nervous system (CNS) is an important technology goal in the advancement of molecular therapies for neurological diseases. One approach is to deliver materials peripherally that are recognized and retrogradely transported by motor neurons toward the CNS. Tet1 is a peptide identified by Boulis and coworkers to possess the binding characteristics of tetanus toxin, which interacts specifically with motor neurons and undergoes fast, retrograde delivery to cell soma. In this work, Tet1-poly(ethylenimine) (Tet1-PEI) was synthesized and evaluated as a neurontargeted delivery vehicle.
Tet1-PEI and NT-PEI (neurotensin-PEI) were synthesized and complexed with plasmid DNA to form polyplexes. Polyplexes were assessed for binding and uptake in differentiated neuron-like PC-12 cells by flow cytometry and confocal microscopy. In order to determine gene delivery efficiency, polyplexes were exposed to PC-12 cells at various stages of differentiation. Targeted binding of polyplexes with primary neurons was studied using dorsal root ganglion cells.
Tet1-PEI and NT-PEI polyplexes bound specifically to differentiated PC-12 cells. The specificity of the interaction was confirmed by delivery to non-neuronal cells and by competition studies with free ligands. Tet1-PEI polyplexes preferentially transfected PC-12 cells undergoing NGF-induced differentiation. Finally, neuron-specific binding of Tet1-PEI polyplexes was confirmed in primary neurons.
These studies demonstrate the potential of Tet1-PEI as a neuron-targeted material for non-invasive CNS delivery. Tet1-PEI binds specifically and is internalized by neuron-like PC-12 cells and primary dorsal root ganglion. Future work will include evaluation of siRNA delivery with these vectors.
PMCID: PMC2633605  PMID: 17582226
neurons; non-viral gene delivery; PEI; targeting; CNS delivery

Results 1-25 (998546)