Search tips
Search criteria

Results 1-25 (1136531)

Clipboard (0)

Related Articles

1.  SUMO Losing Balance 
Genes & Cancer  2010;1(7):748-752.
Small ubiquitin-like modifiers (SUMO) conjugation to cellular proteins is a reversible posttranslational modification that mediates the protein’s function, subcellular localization, and/or expression. The SUMO proteases (SENP) deconjugate modified proteins and thus are critical for maintaining the level of SUMOylated and un-SUMOylated substrates required for normal physiology. Altered expression of SENPs is observed in several carcinomas. This review focuses on how the change in SENP levels disturbs SUMO homeostasis and contributes to cancer development and progression. We reported that one member of the SENP family, SENP1, can transform normal prostate epithelia to a dysplasic state and directly modulate several oncogenic pathways in prostate cells, including AR, c-Jun, and Cyclin D1. Assessment of tissue from human prostate cancer patients indicates elevated mRNA levels of SENP1 and the SUMO2/3 deconjugating enzyme, SENP3. The induction of SENP3 in cancer cells initiates the angiogenic pathway; specifically, SENP3 regulates the transcriptional activity of hypoxia-inducible factor 1α via deSUMOylation of the coregulatory protein p300. Unlike prostate cancer, enhanced SUMOylation is favored with onset of breast cancer and correlated with the reduced SENP6 mRNA levels found in several breast cancer tissue arrays. Preventing enhanced SUMO conjugation of cellular substrates in breast cancer cells reduces tumorigenesis. Hence, distortion of SUMO equilibrium contributes to the initiation and progression of cancer, specifically in prostate and breast cancers. The deSUMOylation machinery may be key to restoring balance to the SUMO system and thus serve as ideal targets for therapeutic agents.
PMCID: PMC2998238  PMID: 21152235
SUMO; SENP; cancer
2.  SUMO Losing Balance: SUMO Proteases Disrupt SUMO Homeostasis to Facilitate Cancer Development and Progression 
Genes & cancer  2010;1(7):748-752.
Small ubiquitin-like modifiers (SUMO) conjugation to cellular proteins is a reversible posttranslational modification that mediates the protein’s function, subcellular localization, and/or expression. The SUMO proteases (SENP) deconjugate modified proteins and thus are critical for maintaining the level of SUMOylated and un-SUMOylated substrates required for normal physiology. Altered expression of SENPs is observed in several carcinomas. This review focuses on how the change in SENP levels disturbs SUMO homeostasis and contributes to cancer development and progression. We reported that one member of the SENP family, SENP1 can transform normal prostate epithelia to a dysplasic state and directly modulate several oncogenic pathways in prostate cells, including AR, c-Jun, and Cyclin D1. Assessment of tissue from human prostate cancer patients indicates elevated mRNA levels of SENP1 and the SUMO2/3 deconjugating enzyme, SENP3. The induction of SENP3 in cancer cells initiates the angiogenic pathway; specifically SENP3 regulates the transcriptional activity of hypoxia-inducible factor 1α (HIF1α) via deSUMOylation of the co-regulatory protein p300. Unlike prostate cancer, enhanced SUMOylation is favored with onset of breast cancer and correlated with the reduced SENP6 mRNA levels found in several breast cancer tissue arrays. Preventing enhanced SUMO conjugation of cellular substrates in breast cancer cells reduces tumorigenesis. Hence, distortion of SUMO equilibrium contributes to both the initiation and progression of cancer, specifically in prostate and breast cancers. The deSUMOylation machinery may be key to restoring balance to the SUMO system and hence serve as ideal targets for therapeutic agents.
PMCID: PMC2998238  PMID: 21152235
SUMO; SENP; Cancer
3.  Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression 
Progesterone receptors (PR) are emerging as important breast cancer drivers. Phosphorylation events common to breast cancer cells impact PR transcriptional activity, in part by direct phosphorylation. PR-B but not PR-A isoforms are phosphorylated on Ser294 by mitogen activated protein kinase (MAPK) and cyclin dependent kinase 2 (CDK2). Phospho-Ser294 PRs are resistant to ligand-dependent Lys388 SUMOylation (that is, a repressive modification). Antagonism of PR small ubiquitin-like modifier (SUMO)ylation by mitogenic protein kinases suggests a mechanism for derepression (that is, transcriptional activation) of target genes. As a broad range of PR protein expression is observed clinically, a PR gene signature would provide a valuable marker of PR contribution to early breast cancer progression.
Global gene expression patterns were measured in T47D and MCF-7 breast cancer cells expressing either wild-type (SUMOylation-capable) or K388R (SUMOylation-deficient) PRs and subjected to pathway analysis. Gene sets were validated by RT-qPCR. Recruitment of coregulators and histone methylation levels were determined by chromatin immunoprecipitation. Changes in cell proliferation and survival were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and western blotting. Finally, human breast tumor cohort datasets were probed to identify PR-associated gene signatures; metagene analysis was employed to define survival rates in patients whose tumors express a PR gene signature.
'SUMO-sensitive' PR target genes primarily include genes required for proliferative and pro-survival signaling. DeSUMOylated K388R receptors are preferentially recruited to enhancer regions of derepressed genes (that is, MSX2, RGS2, MAP1A, and PDK4) with the steroid receptor coactivator, CREB-(cAMP-response element-binding protein)-binding protein (CBP), and mixed lineage leukemia 2 (MLL2), a histone methyltransferase mediator of nucleosome remodeling. PR SUMOylation blocks these events, suggesting that SUMO modification of PR prevents interactions with mediators of early chromatin remodeling at 'closed' enhancer regions. SUMO-deficient (phospho-Ser294) PR gene signatures are significantly associated with human epidermal growth factor 2 (ERBB2)-positive luminal breast tumors and predictive of early metastasis and shortened survival. Treatment with antiprogestin or MEK inhibitor abrogated expression of SUMO-sensitive PR target-genes and inhibited proliferation in BT-474 (estrogen receptor (ER)+/PR+/ERBB2+) breast cancer cells.
We conclude that reversible PR SUMOylation/deSUMOylation profoundly alters target gene selection in breast cancer cells. Phosphorylation-induced PR deSUMOylation favors a permissive chromatin environment via recruitment of CBP and MLL2. Patients whose ER+/PR+ tumors are driven by hyperactive (that is, derepressed) phospho-PRs may benefit from endocrine (antiestrogen) therapies that contain an antiprogestin.
PMCID: PMC3446358  PMID: 22697792
4.  The Small Ubiquitin-like Modifier-Deconjugating Enzyme Sentrin-Specific Peptidase 1 Switches IFN Regulatory Factor 8 from a Repressor to an Activator during Macrophage Activation 
Macrophages, when activated by IFN-γ and TLR signaling, elicit innate immune responses. IFN regulatory factor 8 (IRF8) is a transcription factor that facilitates macrophage activation and innate immunity. We show that, in resting macrophages, some IRF8 is conjugated to small ubiquitin-like modifiers (SUMO) 2/3 through the lysine residue 310. SUMO3-conjugated IRF8 failed to induce IL12p40 and other IRF8 target genes, consistent with SUMO-mediated transcriptional repression reported for other transcription factors. SUMO3-conjugated IRF8 showed reduced mobility in live nuclei and bound poorly to the IL12p40 gene. However, macrophage activation caused a sharp reduction in the amount of SUMOylated IRF8. This reduction coincided with the induction of a deSUMOylating enzyme, sentrin-specific peptidase 1 (SENP1), in activated macrophages. In transfection analysis, SENP1 removed SUMO3 from IRF8 and enhanced expression of IL12p40 and other target genes. Conversely, SENP1 knockdown repressed IRF8 target gene expression. In parallel with IRF8 deSUMOylation, macrophage activation led to the induction of proteins active in the SUMO pathway and caused a global shift in nuclear protein SUMOylation patterns. Together, the IRF8 SUMO conjugation/deconjugation switch is part of a larger transition in SUMO modifications that takes place upon macrophage activation, serving as a mechanism to trigger innate immune responses.
PMCID: PMC4158928  PMID: 22942423
5.  SENP1 deSUMOylates and regulates Pin1 protein activity and cellular function 
Cancer research  2013;73(13):10.1158/0008-5472.CAN-12-4360.
The Pin1 prolyl isomerase regulates phosphorylation signaling by controlling protein conformation after phosphorylation and its upregulation promotes oncogenesis via acting on numerous oncogenic molecules. SUMOylation and deSUMOylation are dynamic mechanisms regulating a spectrum of protein activities. The SUMO proteases (SENPs) remove SUMO conjugate from proteins and their expression is deregulated in cancers. However, nothing is known about the role of SUMOylation in regulating Pin1 function. Here, we show that Pin1 is SUMOylated on Lys6 in the WW domain and on Lys63 in the PPIase domain. Pin1 SUMOylation inhibits its protein activity and oncogenic function. We further identify that SENP1 binds to and deSUMOylates Pin1. Importantly, either overexpression of SENP1 or disruption of Pin1 SUMOylation promotes the ability of Pin1 to induce centrosome amplification and cell transformation. Moreover, SENP1 also increases Pin1 protein stability in cell cultures and Pin1 levels are positively correlated with SENP1 levels in human breast cancer specimens. These results not only uncover Pin1 SUMOylation on Lys6/63 as a novel mechanism to inhibit its activity and function, but also identify a critical role for SENP1-mediated deSUMOylation in promoting Pin1 function during tumorigenesis.
PMCID: PMC3818121  PMID: 23633483
Pin1; SENP1; SUMOylation; phosphorylation signaling; Oncogenesis
6.  SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis 
The Journal of Experimental Medicine  2010;207(6):1183-1195.
Small ubiquitin-like modifier (SUMO) modification of proteins (SUMOylation) and deSUMOylation have emerged as important regulatory mechanisms for protein function. SENP1 (SUMO-specific protease) deconjugates SUMOs from modified proteins. We have created SENP1 knockout (KO) mice based on a Cre–loxP system. Global deletion of SENP1 (SENP1 KO) causes anemia and embryonic lethality between embryonic day 13.5 and postnatal day 1, correlating with erythropoiesis defects in the fetal liver. Bone marrow transplantation of SENP1 KO fetal liver cells to irradiated adult recipients confers erythropoiesis defects. Protein analyses show that the GATA1 and GATA1-dependent genes are down-regulated in fetal liver of SENP1 KO mice. This down-regulation correlates with accumulation of a SUMOylated form of GATA1. We further show that SENP1 can directly deSUMOylate GATA1, regulating GATA1-dependent gene expression and erythropoiesis by in vitro assays. Moreover, we demonstrate that GATA1 SUMOylation alters its DNA binding, reducing its recruitment to the GATA1-responsive gene promoter. Collectively, we conclude that SENP1 promotes GATA1 activation and subsequent erythropoiesis by deSUMOylating GATA1.
PMCID: PMC2882842  PMID: 20457756
7.  SUMOylation Regulates Insulin Exocytosis Downstream of Secretory Granule Docking in Rodents and Humans 
Diabetes  2011;60(3):838-847.
The reversible attachment of small ubiquitin-like modifier (SUMO) proteins controls target localization and function. We examined an acute role for the SUMOylation pathway in downstream events mediating insulin secretion.
We studied islets and β-cells from mice and human donors, as well as INS-1 832/13 cells. Insulin secretion, intracellular Ca2+, and β-cell exocytosis were monitored after manipulation of the SUMOylation machinery. Granule localization was imaged by total internal reflection fluorescence and electron microscopy; immunoprecipitation and Western blotting were used to examine the soluble NSF attachment receptor (SNARE) complex formation and SUMO1 interaction with synaptotagmin VII.
SUMO1 impairs glucose-stimulated insulin secretion by blunting the β-cell exocytotic response to Ca2+. The effect of SUMO1 to impair insulin secretion and β-cell exocytosis is rapid and does not require altered gene expression or insulin content, is downstream of granule docking at the plasma membrane, and is dependent on SUMO-conjugation because the deSUMOylating enzyme, sentrin/SUMO-specific protease (SENP)-1, rescues exocytosis. SUMO1 coimmunoprecipitates with the Ca2+ sensor synaptotagmin VII, and this is transiently lost upon glucose stimulation. SENP1 overexpression also disrupts the association of SUMO1 with synaptotagmin VII and mimics the effect of glucose to enhance exocytosis. Conversely, SENP1 knockdown impairs exocytosis at stimulatory glucose levels and blunts glucose-dependent insulin secretion from mouse and human islets.
SUMOylation acutely regulates insulin secretion by the direct and reversible inhibition of β-cell exocytosis in response to intracellular Ca2+ elevation. The SUMO protease, SENP1, is required for glucose-dependent insulin secretion.
PMCID: PMC3046844  PMID: 21266332
8.  SENP1 participates in the dynamic regulation of Elk-1 SUMOylation 
Biochemical Journal  2010;428(Pt 2):247-254.
The modification of proteins with SUMO (small ubiquitin-related modifier) plays an important role in determining their functional properties. Importantly though, SUMOylation is a highly dynamic process enabling transient responses to be elicited. This dynamism is controlled by two competing conjugating and deconjugating activities. The latter activity is mediated by the SENP [SUMO1/sentrin/SMT3 (suppressor of mif two 3 homologue 1)-specific peptidase] family of SUMO-specific proteases. The transcription factor Elk-1 [ETS (E twenty-six)-like 1] undergoes rapid de-SUMOylation following cellular stimulation with growth factors, and this contributes to its conversion from a SUMO-dependent repressor into a potent transcriptional activator. In the present study we demonstrate an important role for SENP1 in the de-SUMOylation of Elk-1, and therefore an integral role in determining the Elk-1-dependent transcriptional programme. Among the SENPs, Elk-1 preferentially forms a complex with SENP1. This preferential binding is reflected by the higher efficiency of SENP1 in promoting Elk-1 transactivation. Moreover, depletion of SENP1 causes a reciprocal effect and reduces the transactivation properties of Elk-1. Partial redundancy of function with SENP2 is revealed by combinatorial knockdown studies. Importantly, depletion of SENP1 also reduces the activation of the Elk-1 target gene c-FOS. Taken together, these results therefore reveal an important role for SENP1 in the regulation of Elk-1-mediated gene expression in response to mitogenic signalling cues.
PMCID: PMC2943748  PMID: 20337593
ETS (E twenty-six)-like 1 (Elk-1); SUMO1/sentrin/SMT3 (suppressor of mif two 3 homologue 1)-specific peptidase (SENP); small ubiquitin-related modifier (SUMO); transcription; Elk-1, ETS (E twenty-six)-like 1; ERK, extracellular-signal-regulated kinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GST, glutathione transferase; HA, haemagglutinin; HDAC, histone deacetylase; HEK, human embryonic kidney; MAPK, mitogen-activated protein kinase; RT, reverse transcription; SENP, SUMO1/sentrin/SMT3 (suppressor of mif two 3 homologue 1)-specific peptidase; siRNA, small interfering RNA; SUMO, small ubiquitin-related modifier; WT, wild-type
9.  RSUME Enhances Glucocorticoid Receptor SUMOylation and Transcriptional Activity 
Molecular and Cellular Biology  2013;33(11):2116-2127.
Glucocorticoid receptor (GR) activity is modulated by posttranslational modifications, including phosphorylation, ubiquitination, and SUMOylation. The GR has three SUMOylation sites: lysine 297 (K297) and K313 in the N-terminal domain (NTD) and K721 within the ligand-binding domain. SUMOylation of the NTD sites mediates the negative effect of the synergy control motifs of GR on promoters with closely spaced GR binding sites. There is scarce evidence on the role of SUMO conjugation to K721 and its impact on GR transcriptional activity. We have previously shown that RSUME (RWD-containing SUMOylation enhancer) increases protein SUMOylation. We now demonstrate that RSUME interacts with the GR and increases its SUMOylation. RSUME regulates GR transcriptional activity and the expression of its endogenous target genes, FKBP51 and S100P. RSUME uncovers a positive role for the third SUMOylation site, K721, on GR-mediated transcription, demonstrating that GR SUMOylation acts positively in the presence of a SUMOylation enhancer. Both mutation of K721 and small interfering RNA-mediated RSUME knockdown diminish GRIP1 coactivator activity. RSUME, whose expression is induced under stress conditions, is a key factor in heat shock-induced GR SUMOylation. These results show that inhibitory and stimulatory SUMO sites are present in the GR and at higher SUMOylation levels the stimulatory one becomes dominant.
PMCID: PMC3648064  PMID: 23508108
10.  SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia 
The EMBO Journal  2013;32(11):1514-1528.
Global increases in small ubiquitin-like modifier (SUMO)-2/3 conjugation are a neuroprotective response to severe stress but the mechanisms and specific target proteins that determine cell survival have not been identified. Here, we demonstrate that the SUMO-2/3-specific protease SENP3 is degraded during oxygen/glucose deprivation (OGD), an in vitro model of ischaemia, via a pathway involving the unfolded protein response (UPR) kinase PERK and the lysosomal enzyme cathepsin B. A key target for SENP3-mediated deSUMOylation is the GTPase Drp1, which plays a major role in regulating mitochondrial fission. We show that depletion of SENP3 prolongs Drp1 SUMOylation, which suppresses Drp1-mediated cytochrome c release and caspase-mediated cell death. SENP3 levels recover following reoxygenation after OGD allowing deSUMOylation of Drp1, which facilitates Drp1 localization at mitochondria and promotes fragmentation and cytochrome c release. RNAi knockdown of SENP3 protects cells from reoxygenation-induced cell death via a mechanism that requires Drp1 SUMOylation. Thus, we identify a novel adaptive pathway to extreme cell stress in which dynamic changes in SENP3 stability and regulation of Drp1 SUMOylation are crucial determinants of cell fate.
SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia
The SUMO-2/3-specific deSUMOylating enzyme SENP3 induces apoptosis by targeting the GTPase Drp1 to mitochondria, causing cytochrome c release.
PMCID: PMC3671254  PMID: 23524851
apoptosis; Drp1; mitochondria; SENP3; SUMO
11.  SENP1 Enhances Androgen Receptor-Dependent Transcription through Desumoylation of Histone Deacetylase 1 
Molecular and Cellular Biology  2004;24(13):6021-6028.
SUMO (also called Sentrin) is a ubiquitin-like protein that plays an important role in regulating protein function and localization. It is known that several nuclear receptors are modified by SUMO; however, the effect of desumoylation in regulating nuclear receptor function has not been elucidated. Here we show that androgen receptor (AR)-mediated transcription is markedly enhanced by SENP1, a member of SUMO-specific protease family. SENP1's ability to enhance AR-dependent transcription is not mediated through desumoylation of AR, but rather through its ability to deconjugate histone deacetylase 1 (HDAC1), thereby reducing its deacetylase activity. HDAC1's repressive effect on AR-dependent transcription could be reversed by SENP1 and by deletion of its sumoylation sites. RNA interference depletion of endogenous HDAC1 also reduced SENP1's effect. Thus, SENP1 could regulate AR-dependent transcription through desumoylation of HDAC1. These studies provide insights on the potential role of desumoylation in the regulation of nuclear receptor activity.
PMCID: PMC480885  PMID: 15199155
12.  NF-κB Induction of the SUMO Protease SENP2: A Negative Feedback Loop to Attenuate Cell Survival Response to Genotoxic Stress 
Molecular cell  2011;43(2):180-191.
Activation of NF-κB, pivotal for immunity and oncogenesis, is tightly controlled by multiple feedback mechanisms. In response to DNA damage, SUMOylation of NEMO (NF-κB essential modulator) is critical for NF-κB activation, however SUMO proteases and feedback mechanisms involved remain unknown. Here we show that among the six known SENPs (Sentrin/SUMO-specific proteases) only SENP2 can efficiently associate with NEMO, deSUMOylate NEMO and inhibit NF-κB activation induced by DNA damage. We further show that NF-κB induces SENP2 (and SENP1) transcription selectively in response to genotoxic stimuli, which involves ATM (ataxia telangiectasia mutated)-dependent histone methylation of SENP2 promoter κB regions and NF-κB recruitment. SENP2-null cells display biphasic NEMO SUMOylation and activation of IKK and NF-κB, and higher resistance to DNA damage-induced cell death. Our study establishes a self-attenuating feedback mechanism selective to DNA damage induced signaling to limit NF-κB-dependent cell survival responses.
PMCID: PMC3172129  PMID: 21777808
13.  Senp1 Is Essential for Desumoylating Sumo1-Modified Proteins but Dispensable for Sumo2 and Sumo3 Deconjugation in the Mouse Embryo 
Cell reports  2013;3(5):1640-1650.
Posttranslational modification with small ubiquitin-like modifier (Sumo) regulates numerous cellular and developmental processes. Sumoylation is dynamic with deconjugation by Sumo-specific proteases (Senps) regulating steady-state levels. Different Senps are found in distinct subcellular domains, which may limit their deconjugation activity to colocalizing Sumo-modified proteins. In vitro, Senps can discriminate between the different Sumo paralogs: Sumo1 versus the highly related Sumo2 and Sumo3 (Sumo2/3), which can form poly-Sumo chains. However, a full understanding of Senp specificity in vivo is still lacking. Here, using biochemical and genetic approaches, we establish that Senp1 has an essential, nonredundant function to desumoylate Sumo1-modified proteins during mouse embryonic development. Senp1 specificity for Sumo1 conjugates represents an intrinsic function and not simply a product of colocalization. In contrast, Senp1 has only a limited role in Sumo2/3 desumoylation, although it may regulate Sumo1-mediated termination of poly-Sumo2/3 chains.
PMCID: PMC3775507  PMID: 23684609
14.  Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation 
Nature Communications  2014;5:4980.
Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability.
Maintenance of proper membrane excitability is vital to neuronal function and in several neuronal types this relies on a balance between receptor-mediated excitation and inhibition. Here the authors report a crosstalk between excitatory kainate receptors and inhibitory glycine receptors that relies on the SUMOylation status of PKC.
PMCID: PMC4199113  PMID: 25236484
15.  LEDGF DeSumoylation by Sumo-Specific Protease, Senp-1 Regulates Its Transcriptional Activation of Small Heat Shock Protein and Cellular Response 
The FEBS journal  2012;279(17):3048-3070.
Lens epithelium-derived growth factor (LEDGF), a ubiquitously expressed nuclear protein, acts by interacting with DNA and protein and is involved in widely varying cellular functions. Despite its importance, the mechanism(s) that regulate naturally occurring LEDGF activity are unidentified. Here we report that LEDGF is constitutively Sumoylated, and that the dynamical regulatory mechanism(s), Sumoylation and deSumoylation act as a molecular switch in modulating DNA binding and transcriptional activity of LEDGF with the functional consequences. Using bioinformatics analysis coupled with in vitro and in vivo Sumoylation assays, we found that lysine (K) 364 of LEDGF was Sumoylated, repressing its transcriptional activity. Conversely, mutation of K364 to arginine (R) or deSumoylation by Senp-1, a nuclear deSumoylase, enhanced the transactivation capacity of LEDGF and its cellular abundance. The enhancements were directly correlated with an increase in LEDGF’s DNA binding activity and small heat shock protein (Hsps) transcription, while the process was reversed in cells overexpressing Sumo1. Interestingly, cells expressing Sumoylation-deficient pEGFP-K364R protein showed increased cellular survival compared with the wild-type LEDGF protein. The findings provide insights into regulation and regulatory functions of LEDGF in Sumoylation-dependent transcriptional control that may be essential for modifying the physiology of cells to maintain cellular homeostasis. These studies also provide new evidence of the important role of post-translational modification in controlling LEDGF function.
PMCID: PMC3470485  PMID: 22748127
LEDGF; Senp-1; Sumo1; Sp1; Hsp27
16.  Geminin overexpression prevents the completion of topoisomerase IIα chromosome decatenation, leading to aneuploidy in human mammary epithelial cells 
The nuclear enzyme topoisomerase IIα (TopoIIα) is able to cleave DNA in a reversible manner, making it a valuable target for agents such as etoposide that trap the enzyme in a covalent bond with the 5′ DNA end to which it cleaves. This prevents DNA religation and triggers cell death in cancer cells. However, development of resistance to these agents limits their therapeutic use. In this study, we examined the therapeutic targeting of geminin for improving the therapeutic potential of TopoIIα agents.
Human mammary epithelial (HME) cells and several breast cancer cell lines were used in this study. Geminin, TopoIIα and cell division cycle 7 (Cdc7) silencing were done using specific small interfering RNA. Transit or stable inducible overexpression of these proteins and casein kinase Iε (CKIε) were also used, as well as several pharmacological inhibitors that target TopoIIα, Cdc7 or CKIε. We manipulated HME cells that expressed H2B-GFP, or did not, to detect chromosome bridges. Immunoprecipitation and direct Western blot analysis were used to detect interactions between these proteins and their total expression, respectively, whereas interactions on chromosomal arms were detected using a trapped in agarose DNA immunostaining assay. TopoIIα phosphorylation by Cdc7 or CKIε was done using an in vitro kinase assay. The TopoGen decatenation kit was used to measure TopoIIα decatenation activity. Finally, a comet assay and metaphase chromosome spread were used to detect chromosome breakage and changes in chromosome condensation or numbers, respectively.
We found that geminin and TopoIIα interact primarily in G2/M/early G1 cells on chromosomes, that geminin recruits TopoIIα to chromosomal decatenation sites or vice versa and that geminin silencing in HME cells triggers the formation of chromosome bridges by suppressing TopoIIα access to chromosomal arms. CKIε kinase phosphorylates and positively regulates TopoIIα chromosome localization and function. CKIε kinase overexpression or Cdc7 kinase silencing, which we show phosphorylates TopoIIα in vitro, restored DNA decatenation and chromosome segregation in geminin-silenced cells before triggering cell death. In vivo, at normal concentration, geminin recruits the deSUMOylating sentrin-specific proteases SENP1 and SENP2 enzymes to deSUMOylate chromosome-bound TopoIIα and promote its release from chromosomes following completion of DNA decatenation. In cells overexpressing geminin, premature departure of TopoIIα from chromosomes is thought to be due to the fact that geminin recruits more of these deSUMOylating enzymes, or recruits them earlier, to bound TopoIIα. This triggers premature release of TopoIIα from chromosomes, which we propose induces aneuploidy in HME cells, since chromosome breakage generated through this mechanism were not sensed and/or repaired and the cell cycle was not arrested. Expression of mitosis-inducing proteins such as cyclin A and cell division kinase 1 was also increased in these cells because of the overexpression of geminin.
TopoIIα recruitment and its chromosome decatenation function require a normal level of geminin. Geminin silencing induces a cytokinetic checkpoint in which Cdc7 phosphorylates TopoIIα and inhibits its chromosomal recruitment and decatenation and/or segregation function. Geminin overexpression prematurely deSUMOylates TopoIIα, triggering its premature departure from chromosomes and leading to chromosomal abnormalities and the formation of aneuploid, drug-resistant cancer cells. On the basis of our findings, we propose that therapeutic targeting of geminin is essential for improving the therapeutic potential of TopoIIα agents.
PMCID: PMC3218940  PMID: 21595939
17.  Sentrin/SUMO Specific Proteases as Novel Tissue-Selective Modulators of Vitamin D Receptor-Mediated Signaling 
PLoS ONE  2014;9(2):e89506.
Vitamin D receptor (VDR) is a substrate for modification with small ubiquitin-like modifier (SUMO). To further assess the role of reversible SUMOylation within the vitamin D hormonal response, we evaluated the effects of sentrin/SUMO-specific proteases (SENPs) that can function to remove small ubiquitin-like modifier (SUMO) from target proteins upon the activities of VDR and related receptors. We report that SENP1 and SENP2 strikingly potentiate ligand-mediated transactivation of VDR and also its heterodimeric partner, retinoid X receptor (RXRα) with depletion of cellular SENP1 significantly diminishing the hormonal responsiveness of the endogenous vitamin D target gene CYP24A1. We find that SENP-directed modulation of VDR activity is cell line-dependent, achieving potent modulatory effects in Caco-2 and HEK-293 cells, while in MCF-7 cells the vitamin D signal is unaffected by any tested SENP. In support of their function as novel modulators of the vitamin D hormonal pathway we demonstrate that both SENP1 and SENP2 can interact with VDR and reverse its modification with SUMO2. In a preliminary analysis we identify lysine 91, a residue known to be critical for formation and DNA binding of the VDR-RXR heterodimer, as a minor SUMO acceptor site within VDR. In combination, our results support a repressor function for SUMOylation of VDR and reveal SENPs as a novel class of VDR/RXR co-regulatory protein that significantly modulate the vitamin D response and which could also have important impact upon the functionality of both RXR-containing homo and heterodimers.
PMCID: PMC3930751  PMID: 24586832
18.  Inhibition of p53 deSUMOylation Exacerbates Puromycin Aminonucleoside-Induced Apoptosis in Podocytes 
Apoptosis is a major cause of reduced podocyte numbers, which leads to proteinuria and/or glomerulosclerosis. Emerging evidence has indicated that deSUMOylation, a dynamic post-translational modification that reverses SUMOylation, is involved in the apoptosis of Burkitt’s lymphoma cells and cardiomyocytes; however, the impact of deSUMOylation on podocyte apoptosis remains unexplored. The p53 protein plays a major role in the pathogenesis of podocyte apoptosis, and p53 can be SUMOylated. Therefore, in the present study, we evaluated the effect of p53 deSUMOylation, which is regulated by sentrin/SUMO-specific protease 1 (SENP1), on podocyte apoptosis. Our results showed that SENP1 deficiency significantly increases puromycin aminonucleoside (PAN)-induced podocyte apoptosis. Moreover, SENP1 knockdown results in the accumulation of SUMOylated p53 protein and the increased expression of the p53 target pro-apoptotic genes, BAX, Noxa and PUMA, in podocytes during PAN stimulation. Thus, SENP1 may be essential for preventing podocyte apoptosis, at least partly through regulating the functions of p53 protein via deSUMOylation. The regulation of deSUMOylation may provide a novel strategy for the treatment of glomerular disorders that involve podocyte apoptosis.
PMCID: PMC4264227  PMID: 25411797
apoptosis; deSUMOylation; p53; podocyte; sentrin/SUMO-specific protease 1
19.  SUMOylation regulates kainate-receptor-mediated synaptic transmission 
Nature  2007;447(7142):321-325.
The small ubiqwitin-like modifier protein (SUMO) regulates transcriptional activity and the translocation of proteins across the nuclear membrane1. The identification of SUMO substrates outside the nucleus is progressing2 but little is yet known about the wider cellular role of protein SUMOylation. Here we report that in rat hippocampal neurons multiple SUMOylation targets are present at synapses and we show that the kainate receptor subunit GluR6 is a SUMO substrate. SUMOylation of GluR6 regulates endocytosis of the kainate receptor and modifies synaptic transmission. GluR6 exhibits low levels of SUMOylation under resting conditions and is rapidly SUMOylated in response to a kainate but not an N-methyl-D-aspartate (NMDA) treatment. Reducing GluR6 SUMOylation using the SUMO-specific isopeptidase SENP-1 prevents kainate-evoked endocytosis of the kainate receptor. Furthermore, a mutated non-SUMOylatable form of GluR6 is not endocytosed in response to kainate in COS-7 cells. Consistent with this, electrophysiological recordings in hippocampal slices demonstrate that kainate-receptor-mediated excitatory postsynaptic currents are decreased by SUMOylation and enhanced by deSUMOylation. These data reveal a previously unsuspected role for SUMO in the regulation of synaptic function.
PMCID: PMC3310901  PMID: 17486098
20.  Transcriptional Profile and Structural Conservation of SUMO-Specific Proteases in Schistosoma mansoni 
Small ubiquitin-related modifier (SUMO) is involved in numerous cellular processes including protein localization, transcription, and cell cycle control. SUMOylation is a dynamic process, catalyzed by three SUMO-specific enzymes and reversed by Sentrin/SUMO-specific proteases (SENPs). Here we report the characterization of these proteases in Schistosoma mansoni. Using in silico analysis, we identified two SENPs sequences, orthologs of mammalian SENP1 and SENP7, confirming their identities and conservation through phylogenetic analysis. In addition, the transcript levels of Smsenp1/7 in cercariae, adult worms, and in vitro cultivated schistosomula were measured by qRT-PCR. Our data revealed upregulation of the Smsenp1/7 transcripts in cercariae and early schistosomula, followed by a marked differential gene expression in the other analyzed stages. However, no significant difference in expression profile between the paralogs was observed for the analyzed stages. Furthermore, in order to detect deSUMOylating capabilities in crude parasite extracts, SmSENP1 enzymatic activity was evaluated using SUMO-1-AMC substrate. The endopeptidase activity related to SUMO-1 precursor processing did not differ significantly between cercariae and adult worms. Taken together, these results support the developmentally regulated expression of SUMO-specific proteases in S. mansoni.
PMCID: PMC3483780  PMID: 23125916
21.  Coronin2A mediates actin-dependent de-repression of inflammatory response genes 
Nature  2011;470(7334):414-418.
Toll-like receptors (TLRs) function as initiators of inflammation through their ability to sense pathogen-associated molecular patterns and products of tissue damage1,2. Transcriptional activation of many TLR-responsive genes requires an initial de-repression step in which NCoR co-repressor complexes are actively removed from target gene promoters to relieve basal repression3,4. Ligand-dependent SUMOylation of liver X receptors (LXRs) potently suppresses TLR4-induced transcription by preventing the NCoR clearance step5–7, but the underlying mechanisms remain enigmatic. Here, we provide evidence that Coronin 2A (Coro2A), a component of the NCoR complex of previously unknown function8,9, mediates TLR-induced NCoR turnover by a mechanism involving interaction with oligomeric nuclear actin. SUMOylated LXRs block NCoR turnover by binding to a conserved SUMO2/3 interaction motif in Coro2A and preventing actin recruitment. Intriguingly, the LXR transrepression pathway can itself be inactivated by inflammatory signals that induce CaMKIIγ-dependent phosphorylation of LXR, leading to its deSUMOylation by the SUMO protease SENP3 and release from Coro2A. These findings reveal a Coro2A/actin-dependent mechanism for de-repression of inflammatory response genes that can be differentially regulated by phosphorylation and nuclear receptor signaling pathways that control immunity and homeostasis.
PMCID: PMC3464905  PMID: 21331046
22.  Enhanced desumoylation in murine hearts by overexpressed SENP2 leads to congenital heart defects and cardiac dysfunction 
Sumoylation is a posttranslational modification implicated in a variety of cellular activities, and its role in a number of human pathogeneses such as cleft lip/palate has been well documented. However, the importance of the SUMO conjugation pathway in cardiac development and functional disorders is newly emerging. We previously reported that knockout of SUMO-1 in mice led to congenital heart diseases (CHDs). To further investigate the effects of imbalanced SUMO conjugation on heart development and function and its underlying mechanisms, we generated transgenic (Tg) mice with cardiac-specific expression of SENP2, a SUMO-specific protease that deconjugates sumoylated proteins, to evaluate the impact of desumoylation on heart development and function. Overexpression of SENP2 resulted in premature death of mice with CHDs—atrial septal defects (ASDs) and/or ventricular septal defects (VSDs). Immunobiochemistry revealed diminished cardiomyocyte proliferation in SENP2-Tg mouse hearts compared with that in wild type (WT) hearts. Surviving SENP2-Tg mice showed growth retardation, and developed cardiomyopathy with impaired cardiac function with aging. Cardiac-specific overexpression of the SUMO-1 transgene reduced the incidence of cardiac structural phenotypes in the sumoylation defective mice. Moreover, cardiac overexpression of SENP2 in the mice with Nkx2.5 haploinsufficiency promoted embryonic lethality and severity of CHDs, indicating the functional interaction between SENP2 and Nkx2.5 in vivo. Our findings indicate the indispensability of a balanced SUMO pathway for proper cardiac development and function.
PMCID: PMC3294171  PMID: 22155005
SUMO; SENP2; congenital heart defects; cardiomyopathy; Nkx2.5
23.  Homeostatic Synaptic Scaling Is Regulated by Protein SUMOylation* 
The Journal of Biological Chemistry  2012;287(27):22781-22788.
Background: SUMOylation regulates many cell pathways.
Results: Synaptic scaling elicited by suppression of neuronal activity decreases the deSUMOylating enzyme SENP1; overexpression of SENP1 prevents synaptic scaling.
Conclusion: SUMOylation is required for AMPA receptor trafficking underlying scaling, an important form of neuronal plasticity.
Significance: Regulation of synaptic dynamics and plasticity is fundamental to understanding brain function and dysfunction.
Homeostatic scaling allows neurons to alter synaptic transmission to compensate for changes in network activity. Here, we show that suppression of network activity with tetrodotoxin, which increases surface expression of AMPA receptors (AMPARs), dramatically reduces levels of the deSUMOylating (where SUMO is small ubiquitin-like modifier) enzyme SENP1, leading to a consequent increase in protein SUMOylation. Overexpression of the catalytic domain of SENP1 prevents this scaling effect, and we identify Arc as a SUMO substrate involved in the tetrodotoxin-induced increase in AMPAR surface expression. Thus, protein SUMOylation plays an important and previously unsuspected role in synaptic trafficking of AMPARs that underlies homeostatic scaling.
PMCID: PMC3391081  PMID: 22582390
Ionotropic Glutamate Receptors (AMPA/NMDA); Neurons; Post-translational Modification; Sumoylation; Synaptic plasticity
24.  SUMO-Dependent Compartmentalization in Promyelocytic Leukemia Protein Nuclear Bodies Prevents the Access of LRH-1 to Chromatin 
Molecular and Cellular Biology  2005;25(12):5095-5105.
Posttranslational modification by SUMO elicits a repressive effect on many transcription factors. In principle, sumoylation may either influence transcription factor activity on promoters, or it may act indirectly by targeting the modified factors to specific cellular compartments. To provide direct experimental evidence for the above, not necessarily mutually exclusive models, we analyzed the role of SUMO modification on the localization and the activity of the orphan nuclear receptor LRH-1. We demonstrate, by using fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching (FRAP) assays, that sumoylated LRH-1 is exclusively localized in promyelocytic leukemia protein (PML) nuclear bodies and that this association is a dynamic process. Release of LRH-1 from nuclear bodies correlated with its desumoylation, pointing to the pivotal role of SUMO conjugation in keeping LRH-1 in these locations. SUMO-dependent shuttling of LRH-1 into PML bodies defines two spatially separated pools of the protein, of which only the soluble, unmodified one is associated with actively transcribed target genes. The results suggest that SUMO-PML nuclear bodies may primarily function as dynamic molecular reservoirs, controlling the availability of certain transcription factors to active chromatin domains.
PMCID: PMC1140606  PMID: 15923626
25.  Triptolide Inhibits the Proliferation of Prostate Cancer Cells and Down-Regulates SUMO-Specific Protease 1 Expression 
PLoS ONE  2012;7(5):e37693.
Recently, traditional Chinese medicine and medicinal herbs have attracted more attentions worldwide for its anti-tumor efficacy. Celastrol and Triptolide, two active components extracted from the Chinese herb Tripterygium wilfordii Hook F (known as Lei Gong Teng or Thunder of God Vine), have shown anti-tumor effects. Celastrol was identified as a natural 26 s proteasome inhibitor which promotes cell apoptosis and inhibits tumor growth. The effect and mechanism of Triptolide on prostate cancer (PCa) is not well studied. Here we demonstrated that Triptolide, more potent than Celastrol, inhibited cell growth and induced cell death in LNCaP and PC-3 cell lines. Triptolide also significantly inhibited the xenografted PC-3 tumor growth in nude mice. Moreover, Triptolide induced PCa cell apoptosis through caspases activation and PARP cleavage. Unbalance between SUMOylation and deSUMOylation was reported to play an important role in PCa progression. SUMO-specific protease 1 (SENP1) was thought to be a potential marker and therapeutical target of PCa. Importantly, we observed that Triptolide down-regulated SENP1 expression in both mRNA and protein levels in dose-dependent and time-dependent manners, resulting in an enhanced cellular SUMOylation in PCa cells. Meanwhile, Triptolide decreased AR and c-Jun expression at similar manners, and suppressed AR and c-Jun transcription activity. Furthermore, knockdown or ectopic SENP1, c-Jun and AR expression in PCa cells inhibited the Triptolide anti-PCa effects. Taken together, our data suggest that Triptolide is a natural compound with potential therapeutic value for PCa. Its anti-tumor activity may be attributed to mechanisms involving down-regulation of SENP1 that restores SUMOylation and deSUMOyaltion balance and negative regulation of AR and c-Jun expression that inhibits the AR and c-Jun mediated transcription in PCa.
PMCID: PMC3364364  PMID: 22666381

Results 1-25 (1136531)