Search tips
Search criteria

Results 1-25 (1068046)

Clipboard (0)

Related Articles

1.  Inborn errors in the metabolism of glutathione 
Glutathione is a tripeptide composed of glutamate, cysteine and glycine. Glutathione is present in millimolar concentrations in most mammalian cells and it is involved in several fundamental biological functions, including free radical scavenging, detoxification of xenobiotics and carcinogens, redox reactions, biosynthesis of DNA, proteins and leukotrienes, as well as neurotransmission/neuromodulation. Glutathione is metabolised via the gamma-glutamyl cycle, which is catalyzed by six enzymes. In man, hereditary deficiencies have been found in five of the six enzymes. Glutathione synthetase deficiency is the most frequently recognized disorder and, in its severe form, it is associated with hemolytic anemia, metabolic acidosis, 5-oxoprolinuria, central nervous system (CNS) damage and recurrent bacterial infections. Gamma-glutamylcysteine synthetase deficiency is also associated with hemolytic anemia, and some patients with this disorder show defects of neuromuscular function and generalized aminoaciduria. Gamma-glutamyl transpeptidase deficiency has been found in patients with CNS involvement and glutathionuria. 5-Oxoprolinase deficiency is associated with 5-oxoprolinuria but without a clear association with other symptoms. Dipeptidase deficiency has been described in one patient. All disorders are very rare and inherited in an autosomal recessive manner. Most of the mutations are leaky so that many patients have residual enzyme activity. Diagnosis is made by measuring the concentration of different metabolites in the gamma-glutamyl cycle, enzyme activity and in glutathione synthetase and gamma-glutamylcysteine synthetase deficiency, also by mutation analysis. Prenatal diagnosis has been preformed in glutathione synthetase deficiency. The prognosis is difficult to predict, as few patients are known, but seems to vary significantly between different patients. The aims of the treatment of glutathione synthesis defects are to avoid hemolytic crises and to increase the defense against reactive oxygen species. No treatment has been recommended for gamma-glutamyl transpeptidase, 5-oxoprolinase and dipeptidase deficiency.
PMCID: PMC1852094  PMID: 17397529
2.  Expression of ABCG2 (BCRP), a Marker of Stem Cells, is Regulated by Nrf2 in Cancer Cells That Confers Side Population and Chemoresistance Phenotype 
Molecular cancer therapeutics  2010;9(8):2365-2376.
ATP-binding cassette, sub-family G, member 2 (ABCG2) is expressed in both normal and cancer cells, and plays a crucial role in the side population (SP) formation and efflux of xenobiotics and drugs. Nrf2, a redox sensing transcription factor, upon constitutive activation in non-small-cell lung cancer cells up-regulates a wide spectrum of genes involved in redox balance, glutathione metabolism, and drug detoxification that contribute to chemoresistance and tumorigenecity. This study examined the mechanism underlying Nrf2-dependent expression of ABCG2 and its role in multidrug resistance phenotype. In silico analysis of the 5’-promoter flanking region of ABCG2 identified an antioxidant response element at -431 bp to -420 bp. A detailed promoter analysis using luciferase reporter assays demonstrated that antioxidant response element (ARE) at -431 bp to -420 bp is critical for the Nrf2-mediated expression in lung cancer cells. Electrophoresis mobility shift assays (EMSA) and chromatin-immunoprecipitation (ChIP) assays revealed that Nrf2 interacts with ABCG2 ARE element at -431 bp to -420 bp in vitro and in vivo. Disruption of Nrf2 expression in lung cancer and prostate cancer cells, by short hairpin RNA, attenuated the expression of ABCG2 transcript and protein and dramatically reduced the SP fraction in Nrf2-depleted cancer cells. Moreover, depleted levels of ABCG2 in these Nrf2-knockdown cells sensitized them to mitoxantrone and topotecan, two chemotherapy drugs detoxified mainly by ABCG2. As expected, overexpression of Nrf2 cDNA in lung epithelial cells led to an increase in ABCG2 expression and a 2-fold higher SP fraction. Thus, Nrf2-mediated regulation of ABCG2 expression maintains SP fraction and confers chemoresistance.
PMCID: PMC2955865  PMID: 20682644
Nrf2; ABCG2; lung cancer; cancer stem cells; chemo-resistance; RNAi
3.  Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia 
BMC Neurology  2011;11:139.
Xenobiotics are neurotoxins that dramatically alter the health of the child. In addition, an inefficient detoxification system leads to oxidative stress, gut dysbiosis, and immune dysfunction. The consensus among physicians who treat autism with a biomedical approach is that those on the spectrum are burdened with oxidative stress and immune problems. In a trial to understand the role of detoxification in the etiology of autism, selected parameters related to sulfur-dependent detoxification mechanisms in plasma of autistic children from Saudi Arabia will be investigated compared to control subjects.
20 males autistic children aged 3-15 years and 20 age and gender matching healthy children as control group were included in this study. Levels of reduced glutathione (GSH), total (GSH+GSSG), glutathione status (GSH/GSSG), glutathione reductase (GR), glutathione- s-transferase (GST), thioredoxin (Trx), thioredoxin reductase (TrxR) and peroxidoxins (Prxs I and III) were determined.
Reduced glutathione, total glutathione, GSH/GSSG and activity levels of GST were significantly lower, GR shows non-significant differences, while, Trx, TrxR and both Prx I and III recorded a remarkably higher values in autistics compared to control subjects.
The impaired glutathione status together with the elevated Trx and TrxR and the remarkable over expression of both Prx I and Prx III, could be used as diagnostic biomarkers of autism.
PMCID: PMC3217885  PMID: 22051046
4.  Effectiveness of Methylcobalamin and Folinic Acid Treatment on Adaptive Behavior in Children with Autistic Disorder Is Related to Glutathione Redox Status 
Autism Research and Treatment  2013;2013:609705.
Treatments targeting metabolic abnormalities in children with autism are limited. Previously we reported that a nutritional treatment significantly improved glutathione metabolism in children with autistic disorder. In this study we evaluated changes in adaptive behaviors in this cohort and determined whether such changes are related to changes in glutathione metabolism. Thirty-seven children diagnosed with autistic disorder and abnormal glutathione and methylation metabolism were treated with twice weekly 75 µg/Kg methylcobalamin and twice daily 400 µg folinic acid for 3 months in an open-label fashion. The Vineland Adaptive Behavior Scale (VABS) and glutathione redox metabolites were measured at baseline and at the end of the treatment period. Over the treatment period, all VABS subscales significantly improved with an average effect size of 0.59, and an average improvement in skills of 7.7 months. A greater improvement in glutathione redox status was associated with a greater improvement in expressive communication, personal and domestic daily living skills, and interpersonal, play-leisure, and coping social skills. Age, gender, and history of regression did not influence treatment response. The significant behavioral improvements observed and the relationship between these improvements to glutathione redox status suggest that nutritional interventions targeting redox metabolism may benefit some children with autism.
PMCID: PMC3810468  PMID: 24224089
5.  A systematic review with meta-analysis of comprehensive interventions for preschool children with autism spectrum disorder (ASD): study protocol 
BMJ Open  2012;2(2):e000679.
The aims of this study are to (1) conduct a systematic review of the intervention literature in preschool children with autism spectrum disorder (ASD), including types of interventions that are tested and the classification of outcome measures used and (2) to undertake a meta-analysis of the studies, allowing for the first time the comparison of different approaches to intervention using comparative outcomes. There are a number of alternative modalities of intervention for preschool children with ASD in use with different theoretical background and orientation, each of which tend to use different trial designs and outcome measures. There is at this time an urgent need for comprehensive systematic review and meta-analyses of intervention studies for preschool children with ASD, covering studies of adequate quality across different intervention types and measurement methods, with a view to identifying the best current evidence for preschool interventions in the disorder.
Methods and analysis
The authors will perform a systematic review of randomised controlled trials for preschool children with ASD aged 0–6 years, along with a meta-analysis of qualifying studies across intervention modality. The authors will classify the interventions for preschool children with ASD under three models: behaviour, multimodal developmental and communication focused. First, the authors will perform a systematic review. Then, the authors will conduct a meta-analysis by comparing the three models with various outcomes using an inverse variance method in a random effect model. The authors will synthesise each outcome of the studies for the three models using standardised mean differences.
Dissemination and ethics
This study will identify each intervention's strengths and weaknesses. This study may also suggest what kinds of elements future intervention programmes for children with ASD should have. The authors strongly believe those findings will be able to translated into the clinical practices and patients and their family benefits. Review registration: PROSPERO CRD42011001349.
Article summary
Article focus
This is a protocol of a systematic review and meta-analysis of comprehensive interventions for preschool children with autism spectrum disorder (ASD).
We will conduct a systematic review of the intervention literature in preschool ASD, including type of intervention that is tested and classification of outcome measures used.
We will undertake a meta-analysis of the studies, allowing for the first time the comparison of different approaches to intervention using comparative outcomes.
Key messages
We will classify the interventions for preschool ASD under three models: behaviour, multimodal developmental and communication focused.
We will perform a systematic review and conduct a meta-analysis by comparing the three models with various outcomes.
Strengths and limitations of this study
This study will identify each intervention's strengths and weaknesses.
This study may also suggest what kinds of elements future intervention programmes for children with ASD should have.
The measures used for outcome are varied between studies, and the standardised data will be heterogeneous. We do not assume that each study is estimating exactly the same quantity. However, those heterogeneous data can be synthesised in the analyses using random effects models.
PMCID: PMC3298837  PMID: 22396224
6.  A mathematical model of glutathione metabolism 
Glutathione (GSH) plays an important role in anti-oxidant defense and detoxification reactions. It is primarily synthesized in the liver by the transsulfuration pathway and exported to provide precursors for in situ GSH synthesis by other tissues. Deficits in glutathione have been implicated in aging and a host of diseases including Alzheimer's disease, Parkinson's disease, cardiovascular disease, cancer, Down syndrome and autism.
We explore the properties of glutathione metabolism in the liver by experimenting with a mathematical model of one-carbon metabolism, the transsulfuration pathway, and glutathione synthesis, transport, and breakdown. The model is based on known properties of the enzymes and the regulation of those enzymes by oxidative stress. We explore the half-life of glutathione, the regulation of glutathione synthesis, and its sensitivity to fluctuations in amino acid input. We use the model to simulate the metabolic profiles previously observed in Down syndrome and autism and compare the model results to clinical data.
We show that the glutathione pools in hepatic cells and in the blood are quite insensitive to fluctuations in amino acid input and offer an explanation based on model predictions. In contrast, we show that hepatic glutathione pools are highly sensitive to the level of oxidative stress. The model shows that overexpression of genes on chromosome 21 and an increase in oxidative stress can explain the metabolic profile of Down syndrome. The model also correctly simulates the metabolic profile of autism when oxidative stress is substantially increased and the adenosine concentration is raised. Finally, we discuss how individual variation arises and its consequences for one-carbon and glutathione metabolism.
PMCID: PMC2391141  PMID: 18442411
7.  Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1 
BMC Biotechnology  2011;11:8.
Tripeptide glutathione (gamma-glutamyl-L-cysteinyl-glycine) is the most abundant non-protein thiol that protects cells from metabolic and oxidative stresses and is widely used as medicine, food additives and in cosmetic industry. The methylotrophic yeast Hansenula polymorpha is regarded as a rich source of glutathione due to the role of this thiol in detoxifications of key intermediates of methanol metabolism. Cellular and extracellular glutathione production of H. polymorpha DL-1 in the wild type and recombinant strains which overexpress genes of glutathione biosynthesis (GSH2) and its precursor cysteine (MET4) was studied.
Glutathione producing capacity of H. polymorpha DL-1 depending on parameters of cultivation (dissolved oxygen tension, pH, stirrer speed), carbon substrate (glucose, methanol) and type of overexpressed genes of glutathione and its precursor biosynthesis during batch and fed-batch fermentations were studied. Under optimized conditions of glucose fed-batch cultivation, the glutathione productivity of the engineered strains was increased from ~900 up to ~ 2300 mg of Total Intracellular Glutathione (TIG) or GSH+GSSGin, per liter of culture medium. Meantime, methanol fed-batch cultivation of one of the recombinant strains allowed achieving the extracellular glutathione productivity up to 250 mg of Total Extracellular Glutathione (TEG) or GSH+GSSGex, per liter of the culture medium.
H. polymorpha is an competitive glutathione producer as compared to other known yeast and bacteria strains (Saccharomyces cerevisiae, Candida utilis, Escherichia coli, Lactococcus lactis etc.) with good perspectives for further improvement especially for production of extracellular form of glutathione.
PMCID: PMC3032675  PMID: 21255454
8.  Comparison of white matter integrity between autism spectrum disorder subjects and typically developing individuals: a meta-analysis of diffusion tensor imaging tractography studies 
Molecular Autism  2013;4:25.
Aberrant brain connectivity, especially with long-distance underconnectivity, has been recognized as a candidate pathophysiology of autism spectrum disorders. However, a number of diffusion tensor imaging studies investigating people with autism spectrum disorders have yielded inconsistent results.
To test the long-distance underconnectivity hypothesis, we performed a systematic review and meta-analysis of diffusion tensor imaging studies in subjects with autism spectrum disorder. Diffusion tensor imaging studies comparing individuals with autism spectrum disorders with typically developing individuals were searched using MEDLINE, Web of Science and EMBASE from 1980 through 1 August 2012. Standardized mean differences were calculated as an effect size of the tracts.
A comprehensive literature search identified 25 relevant diffusion tensor imaging studies comparing autism spectrum disorders and typical development with regions-of-interest methods. Among these, 14 studies examining regions of interest with suprathreshold sample sizes were included in the meta-analysis. A random-effects model demonstrated significant fractional anisotropy reductions in the corpus callosum (P = 0.023, n = 387 (autism spectrum disorders/typically developing individuals: 208/179)), left uncinate fasciculus (P = 0.011, n = 242 (117/125)), and left superior longitudinal fasciculus (P = 0.016, n = 182 (96/86)), and significant increases of mean diffusivity in the corpus callosum (P = 0.006, n = 254 (129/125)) and superior longitudinal fasciculus bilaterally (P = 0.031 and 0.011, left and right, respectively, n = 109 (51/58)), in subjects with autism spectrum disorders compared with typically developing individuals with no significant publication bias.
The current meta-analysis of diffusion tensor imaging studies in subjects with autism spectrum disorders emphasizes important roles of the superior longitudinal fasciculus, uncinate fasciculus, and corpus callosum in the pathophysiology of autism spectrum disorders and supports the long-distance underconnectivity hypothesis.
PMCID: PMC3726469  PMID: 23876131
Autistic disorder; Asperger; Brain; Human; Imaging; Pervasive developmental disorder
9.  Glutathione is a Physiologic Reservoir of Neuronal Glutamate 
Glutamate, the principal excitatory neurotransmitter of the brain, participates in a multitude of physiologic and pathologic processes, including learning and memory. Glutathione, a tripeptide composed of the amino acids glutamate, cysteine, and glycine, serves important cofactor roles in antioxidant defense and drug detoxification, but glutathione deficits occur in multiple neuropsychiatric disorders. Glutathione synthesis and metabolism are governed by a cycle of enzymes, the γ-glutamyl cycle, which can achieve intracellular glutathione concentrations of 1-10 millimolar. Because of the considerable quantity of brain glutathione and its rapid turnover, we hypothesized that glutathione may serve as a reservoir of neural glutamate. We quantified glutamate in HT22 hippocampal neurons, PC12 cells and primary cortical neurons after treatment with molecular inhibitors targeting three different enzymes of the glutathione metabolic cycle. Inhibiting 5-oxoprolinase and γ-glutamyl transferase, enzymes that liberate glutamate from glutathione, leads to decreases in glutamate. In contrast, inhibition of γ-glutamyl cysteine ligase, which uses glutamate to synthesize glutathione, results in substantial glutamate accumulation. Increased glutamate levels following inhibition of glutathione synthesis temporally precede later effects upon oxidative stress.
PMCID: PMC3923312  PMID: 21539809
Glutathione; Glutamate; Neurons; Antioxidants; Glutamyl cycle; Neurotransmitter
10.  Neuropathology and Animal Models of Autism: Genetic and Environmental Factors 
Autism Research and Treatment  2013;2013:731935.
Autism is a heterogeneous behaviorally defined neurodevelopmental disorder. It is defined by the presence of marked social deficits, specific language abnormalities, and stereotyped repetitive patterns of behavior. Because of the variability in the behavioral phenotype of the disorder among patients, the term autism spectrum disorder has been established. In the first part of this review, we provide an overview of neuropathological findings from studies of autism postmortem brains and identify the cerebellum as one of the key brain regions that can play a role in the autism phenotype. We review research findings that indicate possible links between the environment and autism including the role of mercury and immune-related factors. Because both genes and environment can alter the structure of the developing brain in different ways, it is not surprising that there is heterogeneity in the behavioral and neuropathological phenotypes of autism spectrum disorders. Finally, we describe animal models of autism that occur following insertion of different autism-related genes and exposure to environmental factors, highlighting those models which exhibit both autism-like behavior and neuropathology.
PMCID: PMC3787615  PMID: 24151553
11.  Personal reflections on 50 years of study of benzene toxicology. 
Environmental Health Perspectives  1996;104(Suppl 6):1123-1128.
The metabolism of benzene is reviewed, and the objectives of a quantitative balance study begun in 1945 are outlined; problems of toxicology and metabolism research of some 50 years ago are considered. The quantitative metabolism of 14C-benzene in the rabbit is annotated and compared with that of unlabeled benzene quantified by nonisotopic methods. The anomalies of phenylmercapturic acid and trans-trans-muconic acid as metabolites of benzene are examined in detail by isotopic and nonisotopic methods; these compounds are true but minor metabolites of benzene. Oxygen radicals are involved in both the metabolism of benzene and its toxicity; the roles of CYP2E1, the redox cycling of quinone metabolites, glutathione oxidation, and oxidative stress in the unique radiomimetic, hematopoietic toxicity of benzene are discussed. Differences between the toxicity of benzene and the halobenzenes are related to fundamental differences in their electronic structures and to the consequent pathways of metabolic activation and detoxication.
PMCID: PMC1469731  PMID: 9118881
12.  Meta-Analysis of Studies Incorporating the Interests of Young Children with Autism Spectrum Disorders into Early Intervention Practices 
Autism Research and Treatment  2012;2012:462531.
Incorporating the interests and preferences of young children with autism spectrum disorders into interventions to promote prosocial behavior and decrease behavior excesses has emerged as a promising practice for addressing the core features of autism. The efficacy of interest-based early intervention practices was examined in a meta-analysis of 24 studies including 78 children 2 to 6 years of age diagnosed with autism spectrum disorders. Effect size analyses of intervention versus nonintervention conditions and high-interest versus low-interest contrasts indicated that interest-based intervention practices were effective in terms of increasing prosocial and decreasing aberrant child behavior. Additionally, interest-based interventions that focused on two of the three core features of autism spectrum disorders (poor communication, poor interpersonal relationships) were found most effective in influencing child outcomes. Implications for very early intervention are discussed in terms addressing the behavior markers of autism spectrum disorders before they become firmly established.
PMCID: PMC3420674  PMID: 22934173
13.  Characterization of a Glutathione Metabolic Mutant of Mycobacterium tuberculosis and Its Resistance to Glutathione and Nitrosoglutathione 
Journal of Bacteriology  2006;188(4):1364-1372.
Glutathione is a tripeptide and antioxidant, synthesized at high levels by cells during the production of reactive oxygen and nitrogen intermediates. Glutathione also serves as a carrier molecule for nitric oxide in the form of S-nitrosoglutathione. Previous studies from this laboratory have shown that glutathione and S-nitrosoglutathione are directly toxic to mycobacteria. Glutathione is not transported into the cells as a tripeptide. Extracellular glutathione is converted to a dipeptide due to the action of transpeptidase, and the dipeptide is then transported into the bacterial cells. The processing of glutathione and S-nitrosoglutathione is brought about by the action of the enzyme γ-glutamyl transpeptidase. The function of γ-glutamyl transpeptidase is to cleave glutathione and S-nitrosoglutathione to the dipeptide (Cys-Gly), which is then transported into the bacterium by the multicomponent ABC transporter dipeptide permease. We have created a mutant strain of Mycobacterium tuberculosis lacking this metabolic enzyme. We investigated the sensitivity of this strain to glutathione and S-nitrosoglutathione compared to that of the wild-type bacteria. In addition, we examined the role of glutathione and/or S-nitrosoglutathione in controlling the growth of intracellular M. tuberculosis inside mouse macrophages.
PMCID: PMC1367217  PMID: 16452418
14.  A clinical trial of glutathione supplementation in autism spectrum disorders 
Recent evidence shows that subjects diagnosed with an autism spectrum disorder (ASD) have significantly lower levels of glutathione than typically developing children. The purpose of this study was to examine the use of two commonly used glutathione supplements in subjects diagnosed with an ASD to determine their efficacy in increasing blood glutathione levels in subjects diagnosed with an ASD.
The study was an eight-week, open-label trial using oral lipoceutical glutathione (n=13) or transdermal glutathione (n=13) in children, 3–13 years of age, with a diagnosis of an ASD. Subjects underwent pre- and post-treatment lab testing to evaluate plasma reduced glutathione, oxidized glutathione, cysteine, taurine, free and total sulfate, and whole-blood glutathione levels.
The oral treatment group showed significant increases in plasma reduced glutathione, but not whole-blood glutathione levels following supplementation. Both the oral and transdermal treatment groups showed significant increases in plasma sulfate, cysteine, and taurine following supplementation.
The results suggest that oral and transdermal glutathione supplementation may have some benefit in improving some of the transsulfuration metabolites. Future studies among subjects diagnosed with an ASD should further explore the pharmacokinetics of glutathione supplementation and evaluate the potential effects of glutathione supplementation upon clinical symptoms.
PMCID: PMC3628138  PMID: 22129897
autism; glutathione; transsulfuration metabolites; oral; transdermal
15.  Redox Regulation of γ-Glutamyl Transpeptidase 
γ-Glutamyl transpeptidase (GGT) catalyzes the transfer of the glutamyl moiety from glutathione, and glutathione S-conjugates to acceptors to form another amide or to water to produce free glutamate. Functionally, GGT plays important roles in glutathione homeostasis and mercapturic acid metabolism. The expression of GGT is increased as an adaptive response upon the exposure of oxidative stress. The underlying mechanism of this, however, is nebulous, as GGT gene structure is complex and its transcription is usually controlled by multiple promoters that generate several subtypes of GGT mRNAs. Studies reveal that signaling pathways such as Ras, ERK, p38MAPK, and PI3K are involved in the induction of GGT gene expression in response to oxidative stress. Thus, not surprisingly, induction of GGT mRNA subtypes and the involvement of multiple signaling pathways vary depending on cell type and stimuli.
PMCID: PMC2778158  PMID: 19684307
glutathione; signal transduction; oxidative stress; transcription
16.  Can Asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies 
The question of whether Asperger syndrome can be distinguished from autism has attracted much debate and may even incur delay in diagnosis and intervention. Accordingly, there has been a proposal for Asperger syndrome to be subsumed under autism in the forthcoming Diagnostic and Statistical Manual of Mental Disorders, fifth edition, in 2013. One approach to resolve this question has been to adopt the criterion of absence of clinically significant language or cognitive delay — essentially, the “absence of language delay.” To our knowledge, this is the first meta-analysis of magnetic resonance imaging (MRI) studies of people with autism to compare absence with presence of language delay. It capitalizes on the voxel-based morphometry (VBM) approach to systematically explore the whole brain for anatomic correlates of delay and no delay in language acquisition in people with autism spectrum disorders.
We conducted a systematic search for VBM MRI studies of grey matter volume in people with autism. Studies with a majority (at least 70%) of participants with autism diagnoses and a history of language delay were assigned to the autism group (n = 151, control n = 190). Those with a majority (at least 70%) of individuals with autism diagnoses and no language delay were assigned to the Asperger syndrome group (n = 149, control n = 214). We entered study coordinates into anatomic likelihood estimation meta-analysis software with sampling size weighting to compare grey matter summary maps driven by Asperger syndrome or autism.
The summary autism grey matter map showed lower volumes in the cerebellum, right uncus, dorsal hippocampus and middle temporal gyrus compared with controls; grey matter volumes were greater in the bilateral caudate, prefrontal lobe and ventral temporal lobe. The summary Asperger syndrome map indicated lower grey matter volumes in the bilateral amygdala/hippocampal gyrus and prefrontal lobe, left occipital gyrus, right cerebellum, putamen and precuneus compared with controls; grey matter volumes were greater in more limited regions, including the bilateral inferior parietal lobule and the left fusiform gyrus. Both Asperger syndrome and autism studies reported volume increase in clusters in the ventral temporal lobe of the left hemisphere.
We assigned studies to autism and Asperger syndrome groups for separate analyses of the data and did not carry out a direct statistical group comparison. In addition, studies available for analysis did not capture the entire spectrum, therefore we cannot be certain that our findings apply to a wider population than that sampled.
Whereas grey matter differences in people with Asperger syndrome compared with controls are sparser than those reported in studies of people with autism, the distribution and direction of differences in each category are distinctive.
PMCID: PMC3201995  PMID: 21406158
17.  Examination of Association of Genes in the Serotonin System to Autism 
Neurogenetics  2009;10(3):209-216.
Autism is characterized as one of the Pervasive Developmental Disorders (PDDs), a spectrum of often severe behavioral and cognitive disturbances of early development. The high heritability of autism has driven multiple efforts to identify genetic variation that increases autism susceptibility. Numerous studies have suggested that variation in peripheral and central metabolism of serotonin (5-HT) may play a role in the pathophysiology of autism. We screened 403 autism families for 45 SNPs in 10 serotonin pathway candidate genes. Although genome-wide linkage scans in autism have provided support for linkage to various loci located within the serotonin pathway, our study does not provide strong evidence for linkage to any specific gene within the pathway. The most significant association (p=0.0002; p=0.02 after correcting for multiple comparisons) was found at rs1150220 (HTR3A) located on Chromosome 11 (~113 Mb). To test specifically for multilocus effects, Multifactor Dimensionality Reduction (MDR) was employed, and a significant 2-way interaction (p-value = 0.01) was found between rs10830962, near MTNR1B (Chromosome11; 92,338,075 bp) and rs1007631, near SLC7A5 (Chromosome16; 86,413,596 bp). These data suggest that variation within genes on the serotonin pathway, particularly HTR3A, may have modest effects on autism risk.
PMCID: PMC2753863  PMID: 19184136
Autism; Serotonin; SNPs; linkage; association
18.  Association of GST Genetic Polymorphisms with the Susceptibility to Hepatocellular Carcinoma (HCC) in Chinese Population Evaluated by an Updated Systematic Meta-Analysis 
PLoS ONE  2013;8(2):e57043.
Due to the possible involvement of Glutathione S-transferase Mu-1 (GSTM1) and Glutathione S-transferase theta-1 (GSTT1) in the detoxification of environmental carcinogens, environmental toxins, and oxidative stress products, genetic polymorphisms of these two genes may play important roles in the susceptibility of human being to hepatocellular carcinoma. However, the existing research results are not conclusive.
A systematic literature search using databases (PubMed, Scopus, Embase, Chinese Biomedical Database, Chinese National Knowledge Infrastructure, Wanfang Data, etc.) for the eligible studies meeting the inclusion criteria including case-control studies or cohort studies is evaluated using an updated systematic meta-analysis.
Significant increase in the risk of HCC in the Chinese population is found in GSTM1 null genotype (OR = 1.47, 95% CI: 1.21 to 1.79, P<0.001) and GSTT1 null genotype (OR = 1.38, 95% CI: 1.14 to 1.65, P<0.001). Analysis using the random-effects model found an increased risk of HCC in GSTM1-GSTT1 dual null population (OR = 1.79, 95% CI: 1.26 to 2.53, P<0.001). In addition, subgroup analyses showed a significant increase in the association of GST genetic polymorphisms (GSTM1, GSTT1, and GSTM1-GSTT1) with HCC in southeast and central China mainland. However, available data collected by this study fail to show an association between GST genetic polymorphisms and HCC in people from the Taiwan region (for GSTM1: OR = 0.78, 95% CI: 0.60 to 1.01, P = 0.06; for GSTT1: OR = 0.94, 95% CI: 0.78 to 1.14, P = 0.546; for GSTM1-GSTT1: OR = 1.04, 95% CI: 0.81 to 1.32, P = 0.77). Sensitivity analysis and publication bias diagnostics confirmed the reliability and stability of this meta-analysis.
Our results indicate that both GSTM1 and GSTT1 null genotypes are associated with an increased HCC risk in Chinese population. Peoples with dual null genotypes of GSTM1-GSTT1 are more susceptible to developing HCC. In conclusion, GST genetic polymorphisms play vital roles in the development of HCC in the Chinese population.
PMCID: PMC3577765  PMID: 23437305
19.  The Glutathione Reductase GSR-1 Determines Stress Tolerance and Longevity in Caenorhabditis elegans 
PLoS ONE  2013;8(4):e60731.
Glutathione (GSH) and GSH-dependent enzymes play a key role in cellular detoxification processes that enable organism to cope with various internal and environmental stressors. However, it is often not clear, which components of the complex GSH-metabolism are required for tolerance towards a certain stressor. To address this question, a small scale RNAi-screen was carried out in Caenorhabditis elegans where GSH-related genes were systematically knocked down and worms were subsequently analysed for their survival rate under sub-lethal concentrations of arsenite and the redox cycler juglone. While the knockdown of γ-glutamylcysteine synthetase led to a diminished survival rate under arsenite stress conditions, GSR-1 (glutathione reductase) was shown to be essential for survival under juglone stress conditions. gsr-1 is the sole GSR encoding gene found in C. elegans. Knockdown of GSR-1 hardly affected total glutathione levels nor reduced glutathione/glutathione disulphide (GSH/GSSG) ratio under normal laboratory conditions. Nevertheless, when GSSG recycling was impaired by gsr-1(RNAi), GSH synthesis was induced, but not vice versa. Moreover, the impact of GSSG recycling was potentiated under oxidative stress conditions, explaining the enormous effect gsr-1(RNAi) knockdown had on juglone tolerance. Accordingly, overexpression of GSR-1 was capable of increasing stress tolerance. Furthermore, expression levels of SKN-1-regulated GSR-1 also affected life span of C. elegans, emphasising the crucial role the GSH redox state plays in both processes.
PMCID: PMC3620388  PMID: 23593298
20.  Thimerosal Exposure and the Role of Sulfation Chemistry and Thiol Availability in Autism 
Autism spectrum disorder (ASD) is a neurological disorder in which a significant number of the children experience a developmental regression characterized by a loss of previously acquired skills and abilities. Typically reported are losses of verbal, nonverbal, and social abilities. Several recent studies suggest that children diagnosed with an ASD have abnormal sulfation chemistry, limited thiol availability, and decreased glutathione (GSH) reserve capacity, resulting in a compromised oxidation/reduction (redox) and detoxification capacity. Research indicates that the availability of thiols, particularly GSH, can influence the effects of thimerosal (TM) and other mercury (Hg) compounds. TM is an organomercurial compound (49.55% Hg by weight) that has been, and continues to be, used as a preservative in many childhood vaccines, particularly in developing countries. Thiol-modulating mechanisms affecting the cytotoxicity of TM have been identified. Importantly, the emergence of ASD symptoms post-6 months of age temporally follows the administration of many childhood vaccines. The purpose of the present critical review is provide mechanistic insight regarding how limited thiol availability, abnormal sulfation chemistry, and decreased GSH reserve capacity in children with an ASD could make them more susceptible to the toxic effects of TM routinely administered as part of mandated childhood immunization schedules.
PMCID: PMC3774468  PMID: 23965928
thimerosal; susceptibility; sulfation; thiols; autism
21.  γ-Glutamyl transpeptidase is induced by 4-hydroxynonenal via EpRE/Nrf2 signaling in rat epithelial type II cells 
Free radical biology & medicine  2005;40(8):1281-1292.
γ-Glutamyl transpeptidase (GGT) plays key roles in glutathione homeostasis and metabolism of glutathione S-conjugates. Rat GGT is transcribed via five tandemly arranged promoters into seven transcripts. The transcription of mRNAV is controlled by promoter 5. Previously we found that GGT mRNAV-2 was responsible for the induction of GGT in rat alveolar epithelial cells by 4-hydroxynonenal (HNE). In the current study, the underlying mechanism was investigated. Reporter deletion and mutation analysis demonstrated that an electrophile-response element (EpRE) in the proximal region of GGT promoter 5 (GP5) was responsible for the basal- and HNE-induced promoter activity. Gel-shift assays showed an increased binding activity of GP5 EpRE after HNE exposure. The nuclear content of NF-E2-related factor 2 (Nrf2) was significantly increased by HNE. The recruitment of Nrf2 to GP5 EpRE after HNE treatment was demonstrated by supershift and chromatin immunoprecipitation assays. The tissue expression pattern of GGT mRNA V was previously unknown. Using polymerase chain reaction, we found that GGT mRNAV-2 was expressed in many tissues in rat. Taken together, GGT mRNAV-2 is widely expressed in rat tissues and its basal and HNE-induced expression is mediated through EpRE/Nrf2 signaling.
PMCID: PMC2702664  PMID: 16631518
γ-Glutamyl transpeptidase; 4-Hydroxy-2-nonenal; Glutathione; EpRE; Nrf2; Tissue distribution; Free radicals
22.  Saccade Adaptation Abnormalities Implicate Dysfunction of Cerebellar-Dependent Learning Mechanisms in Autism Spectrum Disorders (ASD) 
PLoS ONE  2013;8(5):e63709.
The cerebellar vermis (lobules VI-VII) has been implicated in both postmortem and neuroimaging studies of autism spectrum disorders (ASD). This region maintains the consistent accuracy of saccadic eye movements and plays an especially important role in correcting systematic errors in saccade amplitudes such as those induced by adaptation paradigms. Saccade adaptation paradigms have not yet been used to study ASD. Fifty-six individuals with ASD and 53 age-matched healthy controls performed an intrasaccadic target displacement task known to elicit saccadic adaptation reflected in an amplitude reduction. The rate of amplitude reduction and the variability of saccade amplitude across 180 adaptation trials were examined. Individuals with ASD adapted slower than healthy controls, and demonstrated more variability of their saccade amplitudes across trials prior to, during and after adaptation. Thirty percent of individuals with ASD did not significantly adapt, whereas only 6% of healthy controls failed to adapt. Adaptation rate and amplitude variability impairments were related to performance on a traditional neuropsychological test of manual motor control. The profile of impaired adaptation and reduced consistency of saccade accuracy indicates reduced neural plasticity within learning circuits of the oculomotor vermis that impedes the fine-tuning of motor behavior in ASD. These data provide functional evidence of abnormality in the cerebellar vermis that converges with previous reports of cellular and gross anatomic dysmorphology of this brain region in ASD.
PMCID: PMC3660571  PMID: 23704934
23.  Redox metabolism abnormalities in autistic children associated with mitochondrial disease 
Translational Psychiatry  2013;3(6):e273-.
Research studies have uncovered several metabolic abnormalities associated with autism spectrum disorder (ASD), including mitochondrial disease (MD) and abnormal redox metabolism. Despite the close connection between mitochondrial dysfunction and oxidative stress, the relation between MD and oxidative stress in children with ASD has not been studied. Plasma markers of oxidative stress and measures of cognitive and language development and ASD behavior were obtained from 18 children diagnosed with ASD who met criteria for probable or definite MD per the Morava et al. criteria (ASD/MD) and 18 age and gender-matched ASD children without any biological markers or symptoms of MD (ASD/NoMD). Plasma measures of redox metabolism included reduced free glutathione (fGSH), oxidized glutathione (GSSG), the fGSH/GSSG ratio and 3-nitrotyrosine (3NT). In addition, a plasma measure of chronic immune activation, 3-chlorotyrosine (3CT), was also measured. Language was measured using the preschool language scale or the expressive one-word vocabulary test (depending on the age), adaptive behaviour was measured using the Vineland Adaptive Behavior Scale (VABS) and core autism symptoms were measured using the Autism Symptoms Questionnaire and the Social Responsiveness Scale. Children with ASD/MD were found to have lower scores on the communication and daily living skill subscales of the VABS despite having similar language and ASD symptoms. Children with ASD/MD demonstrated significantly higher levels of fGSH/GSSG and lower levels of GSSG as compared with children with ASD/NoMD, suggesting an overall more favourable glutathione redox status in the ASD/MD group. However, compare with controls, both ASD groups demonstrated lower fGSH and fGSH/GSSG, demonstrating that both groups suffer from redox abnormalities. Younger ASD/MD children had higher levels of 3CT than younger ASD/NoMD children because of an age-related effect in the ASD/MD group. Both ASD groups demonstrated significantly higher 3CT levels than control subjects, suggesting that chronic inflammation was present in both groups of children with ASD. Interestingly, 3NT was found to correlate positively with several measures of cognitive function, development and behavior for the ASD/MD group, but not the ASD/NoMD group, such that higher 3NT concentrations were associated with more favourable adaptive behaviour, language and ASD-related behavior. To determine whether difference in receiving medications and/or supplements could account for the differences in redox and inflammatory biomarkers across ASD groups, we examined differences in medication and supplements across groups and their effect of redox and inflammatory biomarkers. Overall, significantly more participants in the ASD/MD group were receiving folate, vitamin B12, carnitine, co-enzyme Q10, B vitamins and antioxidants. We then determined whether folate, carnitine, co-enzyme Q10, B vitamins and/or antioxidants influenced redox or inflammatory biomarkers. Antioxidant supplementation was associated with a significantly lower GSSG, whereas antioxidants, co-enzyme Q10 and B vitamins were associated with a higher fGSH/GSSG ratio. There was no relation between folate, carnitine, co-enzyme Q10, B vitamins and antioxidants with 3NT, 3CT or fGSH. Overall, our findings suggest that ASD/MD children with a more chronic oxidized microenvironment have better development. We interpret this finding in light of the fact that more active mitochondrial can create a greater oxidized microenvironment especially when dysfunctional. Thus, compensatory upregulation of mitochondria which are dysfunctional may both increase activity and function at the expense of a more oxidized microenvironment. Although more ASD/MD children were receiving certain supplements, the use of such supplements were not found to be related to the redox biomarkers that were related to cognitive development or behavior in the ASD/MD group but could possibly account for the difference in glutathione metabolism noted between groups. This study suggests that different subgroups of children with ASD have different redox abnormalities, which may arise from different sources. A better understanding of the relationship between mitochondrial dysfunction in ASD and oxidative stress, along with other factors that may contribute to oxidative stress, will be critical to understanding how to guide treatment and management of ASD children. This study also suggests that it is important to identify ASD/MD children as they may respond differently to specific treatments because of their specific metabolic profile.
PMCID: PMC3693408  PMID: 23778583
autism; inflammation; endophenotypes; mitochondrial disease; oxidative stress
24.  Stereochemical Features of Glutathione-dependent Enzymes in the Sphingobium sp. Strain SYK-6 β-Aryl Etherase Pathway* 
The Journal of Biological Chemistry  2014;289(12):8656-8667.
Background: A bacterial β-etherase pathway uses glutathione-dependent enzymes for catabolism of β-ether-linked substructures found in lignin.
Results: Racemic β-ether-linked substructures are stereoselectively converted to thioether-linked monoaromatic compounds by β-etherase pathway enzymes.
Conclusion: Multiple enzymes with complementary stereochemical features are needed to catabolize racemic lignin substructures.
Significance: Understanding the β-etherase pathway metabolism of lignin enhances our potential to use lignin for agricultural, industrial, and biotechnological purposes.
Glutathione-dependent enzymes play important protective, repair, or metabolic roles in cells. In particular, enzymes in the glutathione S-transferase (GST) superfamily function in stress responses, defense systems, or xenobiotic detoxification. Here, we identify novel features of bacterial GSTs that cleave β-aryl ether bonds typically found in plant lignin. Our data reveal several original features of the reaction cycle of these GSTs, including stereospecific substrate recognition and stereoselective formation of β-S-thioether linkages. Products of recombinant GSTs (LigE, LigP, and LigF) are β-S-glutathionyl-α-keto-thioethers that are degraded by a β-S-thioetherase (LigG). All three Lig GSTs produced the ketone product (β-S-glutathionyl-α-veratrylethanone) from an achiral side chain-truncated model substrate (β-guaiacyl-α-veratrylethanone). However, when β-etherase assays were conducted with a racemic model substrate, β-guaiacyl-α-veratrylglycerone, LigE- or LigP-catalyzed reactions yielded only one of two potential product (β-S-glutathionyl-α-veratrylglycerone) epimers, whereas the other diastereomer (differing in configuration at the β-position (i.e. its β-epimer)) was produced only in the LigF-catalyzed reaction. Thus, β-etherase catalysis causes stereochemical inversion of the chiral center, converting a β(R)-substrate to a β(S)-product (LigE and LigP), and a β(S)-substrate to a β(R)-product (LigF). Further, LigG catalyzed glutathione-dependent β-S-thioether cleavage with β-S-glutathionyl-α-veratrylethanone and with β(R)-configured β-S-glutathionyl-α-veratrylglycerone but exhibited no or significantly reduced β-S-thioether-cleaving activity with the β(S)-epimer, demonstrating that LigG is a stereospecific β-thioetherase. We therefore propose that multiple Lig enzymes are needed in this β-aryl etherase pathway in order to cleave the racemic β-ether linkages that are present in the backbone of the lignin polymer.
PMCID: PMC3961688  PMID: 24509858
Bacterial Metabolism; Enzyme Catalysis; Glutathione; Lignin Degradation; Thiol; beta-S-Thioetherase; beta-Aryl Etherase; Glutathione S-Transferase; Stereoselectivity; Stereospecificity
25.  Metabolism and toxicity of trans,trans-muconaldehyde, an open-ring microsomal metabolite of benzene. 
We have previously hypothesized that ring-opened metabolites may play an important role in benzene toxicity. In this paper we review recent work related to this hypothesis. trans,trans-Muconaldehyde (TTM), a six-carbon diene dialdehyde, was shown by our laboratory to be a microsomal metabolite of benzene. This compound is a ring-opened metabolite of benzene that is hematotoxic in mice. The toxicity of TTM may stem in part from its ability to act as a direct-acting alkylating agent involving interaction with cellular sulfhydryls and/or amino groups. On the other hand, metabolism to the diacid trans,trans-muconic acid (MA), a known urinary metabolite of benzene, may represent detoxification since this results in loss of electrophilicity of the compound. Preliminary results indicate that TTM can be metabolized to MA in vitro and in vivo. The interaction of TTM in vitro with macrophages and neutrophils, key cells in the bone marrow, results in cell membrane changes, including loss of activity in the plasma membrane-bound NADPH-dependent oxidase and decreases in membrane lipid fluidity. Deoxyguanosine also was found to react with TTM, forming several different products. These findings may be due to TTM acting directly as an alkylating agent.
PMCID: PMC1568136  PMID: 2676497

Results 1-25 (1068046)