PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1028439)

Clipboard (0)
None

Related Articles

1.  Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers 
Artificial DNA, PNA & XNA  2011;2(3):90-99.
We have explored the merits of a novel delivery strategy for the antisense oligomers based on cell penetrating peptide (CPP) conjugated to a carrier PNA with sequence complementary to part of the antisense oligomer. The effect of these carrier CPP-PNAs was evaluated by using antisense PNA targeting splicing correction of the mutated luciferase gene in the HeLa pLuc705 cell line, reporting cellular (nuclear) uptake of the antisense PNA via luciferase activity measurement. Carrier CPP-PNA constructs were studied in terms of construct modification (with octaarginine and/or decanoic acid) and carrier PNA length (to adjust binding affinity). In general, the carrier CPP-PNA constructs including the ones with decanoyl modification provided significant increase of the activity of unmodified antisense PNA as well as of antisense octaarginine-PNA conjugates. Antisense activity, and by inference cellular delivery, of unmodified antisense PNA was enhanced at least 20-fold at 6 μM upon the complexation with an equimolar amount of nonamer carrier decanoyl-CPP-PNA (Deca-cPNA1(9)-(D-Arg)8). The antisense activity of a CPP-PNA ((D-Arg)8-asPNA) (at 2 μM) was improved 6-fold and 8-fold by a heptamer carrier CPP-PNA (cPNA1(7)-(D-Arg)8) and hexamer carrier decanoyl-CPP-PNA (Deca-cPNA1(6)-(D-Arg)8), respectively, without showing significant additional cellular toxicity. Most interestingly, the activity reached the same level obtained by enhancement with endosomolytic chloroquine (CQ) treatment, suggesting that the carrier might facilitate endosomal escape. Furthermore, 50% downregulation of luciferase expression at 60 nM siRNA was obtained using this carrier CPP-PNA delivery strategy (with CQ co-treatment) for a single stranded antisense RNA targeting normal luciferase mRNA. These results indicated that CPP-PNA carriers may be used as effective cellular delivery vectors for different types of antisense oligomers and also allows use of combinations of (at least two) different CPP ligands.
PMCID: PMC3324339  PMID: 22567192
antisense; carrier; cell penetrating peptide (CPP); cellular delivery; peptide nucleic acid (PNA); siRNA
2.  Subnanomolar antisense activity of phosphonate-peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells 
Nucleic Acids Research  2008;36(13):4424-4432.
In the search of facile and efficient methods for cellular delivery of peptide nucleic acids (PNA), we have synthesized PNAs conjugated to oligophosphonates via phosphonate glutamine and bis-phosphonate lysine amino acid derivatives thereby introducing up to twelve phosphonate moieties into a PNA oligomer. This modification of the PNA does not interfere with the nucleic acid target binding affinity based on thermal stability of the PNA/RNA duplexes. When delivered to cultured HeLa pLuc705 cells by Lipofectamine, the PNAs showed dose-dependent nuclear antisense activity in the nanomolar range as inferred from induced luciferase activity as a consequence of pre-mRNA splicing correction by the antisense-PNA. Antisense activity depended on the number of phosphonate moieties and the most potent hexa-bis-phosphonate-PNA showed at least 20-fold higher activity than that of an optimized PNA/DNA hetero-duplex. These results indicate that conjugation of phosphonate moieties to the PNA can dramatically improve cellular delivery mediated by cationic lipids without affecting on the binding affinity and sequence discrimination ability, exhibiting EC50 values down to one nanomolar. Thus the intracellular efficacy of PNA oligomers rival that of siRNA and the results therefore emphasize that provided sufficient in vivo bioavailability of PNA can be achieved these molecules may be developed into potent gene therapeutic drugs.
doi:10.1093/nar/gkn401
PMCID: PMC2490735  PMID: 18596083
3.  Down-regulation of MDM2 and activation of p53 in human cancer cells by antisense 9-aminoacridine–PNA (peptide nucleic acid) conjugates 
Nucleic Acids Research  2004;32(16):4893-4902.
A series of peptide nucleic acid (PNA) oligomers targeting the mdm2 oncogene mRNA has been tested for the ability to inhibit the growth of JAR cells. The effect of these PNAs on the cells was also reflected in reduced levels of the MDM2 protein and increased levels of the p53 tumor suppressor protein, which is negatively regulated by MDM2. Initially, PNA oligomers were delivered as DNA complexes with lipofectamine, but it was discovered that PNA conjugated to the DNA intercalator 9-aminoacridine (Acr) (Acr–PNA) could be effectively delivered to JAR cells (as well as to HeLa pLuc705 cells) even in the absence of a DNA carrier. Using such lipofectamine-delivered Acr–PNA conjugates, one PNA targeting a cryptic AUG initiation site was identified that at a concentration of 2 μM caused a reduction of MDM2 levels to ∼20% (but no reduction in mdm2 mRNA levels) and a 3-fold increase in p53 levels, whereas a 2-base mismatch control had no such effects. Furthermore, transcriptional activation by p53 was also increased (6-fold), and cell viability was reduced to 80%. Finally, this PNA acted cooperatively with camptothecin treatment both with regard to p53 activity induction as well as cell viability. Using this novel cell delivery system, we have identified a target on the mdm2 mRNA that appears sensitive to antisense inhibition by PNA and therefore could be used as a lead for further development of mdm2-targeted antisense (PNA and other) gene therapeutic anticancer drugs.
doi:10.1093/nar/gkh820
PMCID: PMC519114  PMID: 15371552
4.  Improved cell-penetrating peptide–PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle 
Nucleic Acids Research  2008;36(20):6418-6428.
Steric blocking peptide nucleic acid (PNA) oligonucleotides have been used increasingly for redirecting RNA splicing particularly in therapeutic applications such as Duchenne muscular dystrophy (DMD). Covalent attachment of a cell-penetrating peptide helps to improve cell delivery of PNA. We have used a HeLa pLuc705 cell splicing redirection assay to develop a series of PNA internalization peptides (Pip) conjugated to an 18-mer PNA705 model oligonucleotide with higher activity compared to a PNA705 conjugate with a leading cell-penetrating peptide being developed for therapeutic use, (R-Ahx-R)4. We show that Pip–PNA705 conjugates are internalized in HeLa cells by an energy-dependent mechanism and that the predominant pathway of cell uptake of biologically active conjugate seems to be via clathrin-dependent endocytosis. In a mouse model of DMD, serum-stabilized Pip2a or Pip2b peptides conjugated to a 20-mer PNA (PNADMD) targeting the exon 23 mutation in the dystrophin gene showed strong exon-skipping activity in differentiated mdx mouse myotubes in culture in the absence of an added transfection agent at concentrations where naked PNADMD was inactive. Injection of Pip2a-PNADMD or Pip2b-PNADMD into the tibealis anterior muscles of mdx mice resulted in ∼3-fold higher numbers of dystrophin-positive fibres compared to naked PNADMD or (R-Ahx-R)4-PNADMD.
doi:10.1093/nar/gkn671
PMCID: PMC2582604  PMID: 18842625
5.  Delivery of Antisense Peptide Nucleic Acids to Cells by Conjugation with Small Arginine-Rich Cell-Penetrating Peptide (R/W)9 
PLoS ONE  2014;9(8):e104999.
Peptide nucleic acids (PNAs) are very attractive antisense and antigene agents, but these molecules are not passively taken into cells. Here, using a functional cell assay and fluorescent-based methods, we investigated cell uptake and antisense activity of a tridecamer PNA that targets the HIV-1 polypurine tract sequence delivered using the arginine-rich (R/W)9 peptide (RRWWRRWRR). At micromolar concentrations, without use of any transfection agents, almost 80% inhibition of the target gene expression was obtained with the conjugate in the presence of the endosomolytic agent chloroquine. We show that chloroquine not only induced escape from endosomes but also enhanced the cellular uptake of the conjugate. Mechanistic studies revealed that (R/W)9-PNA conjugates were internalized via pinocytosis. Replacement of arginines with lysines reduced the uptake of the conjugate by six-fold, resulting in the abolition of intracellular target inhibition. Our results show that the arginines play a crucial role in the conjugate uptake and antisense activity. To determine whether specificity of the interactions of arginines with cell surface proteoglycans result in the internalization, we used flow cytometry to examine uptake of arginine- and lysine-rich conjugates in wild-type CHO-K1 and proteoglycan-deficient A745 cells. The uptake of both conjugates was decreased by four fold in CHO-745 cells; therefore proteoglycans promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Our results show that arginine-rich cell-penetrating peptides, especially (R/W)9, are a promising tool for PNA internalization.
doi:10.1371/journal.pone.0104999
PMCID: PMC4134252  PMID: 25127364
6.  Comparison of Cationic and Amphipathic Cell Penetrating Peptides for siRNA Delivery and Efficacy 
Molecular Pharmaceutics  2011;9(2):299-309.
Cell penetrating peptides (CPPs) are short strands of arginine and/or lysine-rich peptides (<30 amino acids) that use their cationic nature for efficient intracellular accumulation. CPPs have been used for small interfering RNA (siRNA) delivery by direct complexation with the siRNA anionic phosphate backbone. During this process, however, part of the CPP cationic charges are neutralized, and the resultant loss of free positive charges may substantially compromise CPP’s internalization capabilities and eventually reduce siRNA delivery efficiency. The purpose of this study was to design a novel type of polyplex for siRNA delivery to overcome the CPP neutralization issue. This novel polyplex consists of three components: siRNA, 21mer oligolysine (K21) chemically modified to incorporate CPP conjugation sites (K21-PDP), and CPP delivery moiety. The siRNA was first neutralized by cationic charges of K21-PDP to form a polyplex. Then a cationic (hexa-arginine – R6) or an amphipathic (model amphipathic peptide – MAP) CPP was conjugated to the polyplex. Agarose gel shift assays indicated that the siRNA could be released from the polyplex after K21-PDP degradation or polyplex dilution. Furthermore, the total intracellular internalization of these two CPP-polyplexes was studied. Compared with R6-polyplex, MAP-polyplex exhibited 170 and 600-fold greater uptake of fluorescently-labeled siRNA at 1 and 6 h post-transfection, respectively. MAP-polyplex also exhibited comparable GFP silencing effects as Lipofectamine 2000 complex in Huh7.5 cells stably transfected to express GFP-LC3, whereas R6-polyplex did not demonstrate significant silencing activity. Further studies indicated that the K21-PDP/siRNA polyplex formation and conjugation of MAP to the polyplex were essential for siRNA polyplex uptake and gene silencing. MAP-polyplex was also shown to be unaffected by the presence of 10% FBS during transfection. In addition, MAP-polyplex uptake was dependent on vesicle formation and fusion due to 70 and 54% loss of uptake at 4 and 16°C, respectively, compared to incubation at 37°C. Therefore, the amphipathic CPP is a more suitable carrier moiety for delivery of siRNA polyplex.
doi:10.1021/mp200481g
PMCID: PMC3273621  PMID: 22171592
Cell penetrating peptides; siRNA; siRNA delivery; oligoarginine; model amphipathic peptide; polyplex; membrane transduction peptides
7.  Use of Peptide Nucleic Acids to Manipulate Gene Expression in the Malaria Parasite Plasmodium falciparum 
PLoS ONE  2014;9(1):e86802.
One of the major concerns in treating malaria by conventional small drug molecules is the rapid emergence of drug resistance. Specific silencing of essential genes by antisense oliogomers has been proposed as an alternative approach that may result in antimalarial activity which is not associated with drug resistance. In addition, such an approach could be an important biological tool for studying many genes' function by reverse genetics. Here we present a novel methodology of using peptide nucleic acids (PNAs) as a useful tool for gene silencing in Plasmodium falciparum. PNAs, designed as specific antisense molecules, were conjugated to a cell penetrating peptide (CPP); namely, octa-D-lysine via the C-terminus, to allow facile delivery through cell membranes. PNAs added to P. falciparum cultures were found exclusively in infected erythrocytes and were eventually localized in nuclei of the parasites at all stages of intra erythrocytic development. We show that these PNAs specifically down regulated both a stably expressed transgene as well as an endogenous essential gene, which significantly reduced parasites' viability. This study paves the way for a simple approach to silence a variety of P. falciparum genes as means of deciphering their function and potentially to develop highly specific and potent antimalarial agents.
doi:10.1371/journal.pone.0086802
PMCID: PMC3899306  PMID: 24466246
8.  Antisense peptide nucleic acid-functionalized cationic nanocomplex for in vivo mRNA detection 
Interface Focus  2013;3(3):20120059.
Acute lung injury (ALI) is a complex syndrome with many aetiologies, resulting in the upregulation of inflammatory mediators in the host, followed by dyspnoea, hypoxemia and pulmonary oedema. A central mediator is inducible nitric oxide synthase (iNOS) that drives the production of NO and continued inflammation. Thus, it is useful to have diagnostic and therapeutic agents for targeting iNOS expression. One general approach is to target the precursor iNOS mRNA with antisense nucleic acids. Peptide nucleic acids (PNAs) have many advantages that make them an ideal platform for development of antisense theranostic agents. Their membrane impermeability, however, limits biological applications. Here, we report the preparation of an iNOS imaging probe through electrostatic complexation between a radiolabelled antisense PNA-YR9 · oligodeoxynucleotide (ODN) hybrid and a cationic shell-cross-linked knedel-like nanoparticle (cSCK). The Y (tyrosine) residue was used for 123I radiolabelling, whereas the R9 (arginine9) peptide was included to facilitate cell exit of untargeted PNA. Complete binding of the antisense PNA-YR9 · ODN hybrid to the cSCK was achieved at an 8 : 1 cSCK amine to ODN phosphate (N/P) ratio by a gel retardation assay. The antisense PNA-YR9 · ODN · cSCK nanocomplexes efficiently entered RAW264.7 cells, whereas the PNA-YR9 · ODN alone was not taken up. Low concentrations of 123I-labelled antisense PNA-YR9 · ODN complexed with cSCK showed significantly higher retention of radioactivity when iNOS was induced in lipopolysaccharide+interferon-γ-activated RAW264.7 cells when compared with a mismatched PNA. Moreover, statistically, greater retention of radioactivity from the antisense complex was also observed in vivo in an iNOS-induced mouse lung after intratracheal administration of the nanocomplexes. This study demonstrates the specificity and sensitivity by which the radiolabelled nanocomplexes can detect iNOS mRNA in vitro and in vivo and their potential for early diagnosis of ALI.
doi:10.1098/rsfs.2012.0059
PMCID: PMC3638413  PMID: 24427537
cationic nanoparticles; acute lung injury; peptide nucleic acid; inducible nitric oxide synthase; radiolabelling; targeting
9.  An Efficient Biodelivery System for Antisense Polyamide Nucleic Acid (PNA) 
Oligonucleotides  2008;18(3):245-255.
With the aim of developing a general and straightforward procedure for the intracellular delivery of naked peptide nucleic acids (PNAs), we designed an intracellularly biodegradable triphenylphosphonium (TPP) cation based transporter system. In this system, TPP is linked, via a biolabile disulfide bridge, to an activated mercaptoethoxycarbonyl moiety, allowing its direct coupling to the N-terminal extremity of a free PNA through a carbamate bond. We found that such TPP-PNA-carbamate conjugates were highly stable in a cell culture medium containing fetal calf serum. In a glutathione-containing medium mimicking the cytosol, the conjugates were rapidly degraded into an unstable intermediate, which spontaneously decomposed, releasing the free PNA. Using a fluorescence-labeled PNA–TPP conjugate, we demonstrated that conjugates were taken up by cells. Efficient cellular uptake and release of the PNA into the cytosol was further confirmed by the anti-HIV activity measured for the TPP-conjugate of a 16-mer PNA targeting the TAR region of the HIV-1 genome. This conjugate exhibited an IC50 value of 1 μM, while the free 16-mer PNA did not inhibit replication of HIV in the same cellular test.
doi:10.1089/oli.2008.0126
PMCID: PMC2966830  PMID: 18707540
10.  Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5 
Artificial DNA, PNA & XNA  2013;4(2):49-57.
The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligomers designed to bind to the selective region of Chemokine Receptor 5 (CCR5) transcript, induce potent and sequence-specific antisense effects as compared with regular PNA oligomers. In addition, PLGA nanoparticle delivery of MPγPNAs is not toxic to the cells. The findings reported in this study provide a combination of γPNA technology and PLGA-based nanoparticle delivery method for regulating gene expression in live cells via the antisense mechanism.
doi:10.4161/adna.25628
PMCID: PMC3771998  PMID: 23954968
CCR5; PEG; PNA; antisense; nanoparticle; γPNA
11.  Inhibiting Gene Expression with Peptide Nucleic Acid (PNA)–Peptide Conjugates that Target Chromosomal DNA 
Biochemistry  2007;46(25):7581-7589.
Peptide nucleic acids (PNAs) are a nonionic DNA/RNA mimic that can recognize complementary sequences by Watson–Crick base–pairing. The neutral PNA backbone facilitates recognition of duplex DNA by strand invasion, suggesting that antigene PNAs (agPNAs) can be important tools for exploring the structure and function of chromosomal DNA inside cells. However, before agPNAs can enter wide use it will be necessary to develop straightforward strategies for introducing them into cells. Here we demonstrate that agPNA–peptide conjugates can target promoter DNA and block progesterone receptor (PR) gene expression inside cells. Thirty–six agPNA–peptide conjugates were synthesized and tested. We observed inhibition of gene expression using cationic peptides containing either arginine or lysine residues, with eight or more cationic amino acids being preferred. Both thirteen and nineteen base agPNA-peptide conjugates were inhibitory. Inhibition was observed in human cancer cell lines expressing either high or low levels of progesterone receptor. Modification of agPNA–peptide conjugates with hydrophobic amino acids or small molecule hydrophobic moities yielded improved potency. Inhibition by agPNAs did not require cationic lipid or any other additive, but adding agents to cell growth media that promote endosomal release caused modest increases in agPNA potency. These data demonstrate that chromosomal DNA is accessible to agPNA–peptide conjugates and that chemical modifications can improve potency.
doi:10.1021/bi700230a
PMCID: PMC2564818  PMID: 17536840
12.  Formulation of a Peptide Nucleic Acid Based Nucleic Acid Delivery Construct 
Bioconjugate chemistry  2010;21(3):445-455.
Gene delivery biomaterials need to be designed to efficiently achieve nuclear delivery of plasmid DNA. Polycations have been used to package DNA and other nucleic acids within sub-micron sized particles, offering protection from shear-induced or enzymatic degradation. However, cytotoxicity issues coupled with limited in vivo transfection efficiencies minimize the effectiveness of this approach. In an effort to improve upon existing technologies aimed at delivering nucleic acids, an alternative approach to DNA packaging was explored. Peptide nucleic acids (PNAs) were used to directly functionalize DNA with poly(ethylene glycol) (PEG) chains that provide a steric layer and inhibit multimolecular aggregation during complexation. DNA prePEGylation by this strategy was predicted to enable the formation of more homogeneous and efficiently packaged polyplexes.
In this work, DNA-PNA-peptide-PEG (DP3) conjugates were synthesized and self-assembled with 25 kDa poly(ethylenimine) (PEI). Complexes with small standard deviations and average diameters ranging from 30 – 50 nm were created, with minimal dependence of complex size on N:P ratio (PEI amines to DNA phosphates). Furthermore, PEI-DNA interactions were altered by the derivitization strategy, resulting in tighter compaction of the PEI-DP3 complexes in comparison with PEI-DNA complexes. Transfection experiments in Chinese Hamster Ovary (CHO) cells revealed comparable transfection efficiencies but reduced cytotoxicities of the PEI-DP3 complexes relative to PEI-DNA complexes. The enhanced cellular activities of the PEI-DP3 complexes were maintained following the removal of free PEI from the PEI-DP3 formulations, whereas the cellular activity of the conventional PEI-DNA formulations was reduced by free PEI removal. These findings suggest that DNA prePEGylation by the PNA-based strategy might provide a way to circumvent cytotoxicity and formulation issues related to the use of PEI for in vivo gene delivery.
doi:10.1021/bc900328j
PMCID: PMC2891923  PMID: 20131756
13.  Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells 
Nucleic Acids Research  2005;33(21):6837-6849.
The trans-activation response (TAR) RNA stem–loop that occurs at the 5′ end of HIV RNA transcripts is an important antiviral target and is the site of interaction of the HIV-1 Tat protein together with host cellular factors. Oligonucleotides and their analogues targeted to TAR are potential antiviral candidates. We have investigated a range of cell penetrating peptide (CPP) conjugates of a 16mer peptide nucleic acid (PNA) analogue targeted to the apical stem–loop of TAR and show that disulfide-linked PNA conjugates of two types of CPP (Transportan or a novel chimeric peptide R6-Penetratin) exhibit dose-dependent inhibition of Tat-dependent trans-activation in a HeLa cell assay when incubated for 24 h. Activity is reached within 6 h if the lysosomotropic reagent chloroquine is co-administered. Fluorescein-labelled stably-linked conjugates of Tat, Transportan or Transportan TP10 with PNA were inactive when delivered alone, but attained trans-activation inhibition in the presence of chloroquine. Confocal microscopy showed that such fluorescently labelled CPP–PNA conjugates were sequestered in endosomal or membrane-bound compartments of HeLa cells, which varied in appearance depending on the CPP type. Co-administration of chloroquine was seen in some cases to release fluorescence from such compartments into the nucleus, but with different patterns depending on the CPP. The results show that CPP–PNA conjugates of different types can inhibit Tat-dependent trans-activation in HeLa cells and have potential for development as antiviral agents. Endosomal or membrane release is a major factor limiting nuclear delivery and trans-activation inhibition.
doi:10.1093/nar/gki991
PMCID: PMC1301599  PMID: 16321967
14.  Synthesis and Splice-Redirecting Activity of Branched, Arginine-Rich Peptide Dendrimer Conjugates of Peptide Nucleic Acid Oligonucleotides 
Bioconjugate Chemistry  2010;21(10):1902-1911.
Arginine-rich cell-penetrating peptides have found excellent utility in cell and in vivo models for enhancement of delivery of attached charge-neutral PNA or PMO oligonucleotides. We report the synthesis of dendrimeric peptides containing 2- or 4-branched arms each having one or more R-Ahx-R motifs and their disulfide conjugation to a PNA705 splice-redirecting oligonucleotide. Conjugates were assayed in a HeLa pLuc705 cell assay for luciferase up-regulation and splicing redirection. Whereas 8-Arg branched peptide−PNA conjugates showed poor activity compared to a linear (R-Ahx-R)4−PNA conjugate, 2-branched and some 4-branched 12 and 16 Arg peptide−PNA conjugates showed activity similar to that of the corresponding linear peptide−PNA conjugates. Many of the 12- and 16-Arg conjugates retained significant activity in the presence of serum. Evidence showed that biological activity in HeLa pLuc705 cells of the PNA conjugates of branched and linear (R-Ahx-R) peptides is associated with an energy-dependent uptake pathway, predominantly clathrin-dependent, but also with some caveolae dependence.
doi:10.1021/bc100275r
PMCID: PMC2963316  PMID: 20879728
15.  Targeted gene correction using psoralen, chlorambucil and camptothecin conjugates of triplex forming peptide nucleic acid (PNA) 
Artificial DNA, PNA & XNA  2011;2(1):23-32.
Gene correction activation effects of a small series of triplex forming peptide nucleic acid (PNA) covalently conjugated to the DNA interacting ligands psoralen, chlorambucil and camptothecin targeted proximal to a stop codon mutation in an EGFP reporter gene were studied. A 15-mer homopyrimidine PNA conjugated to the topoisomerase I inhibitor camptothecin was found to increase the frequency of repair domain mediated gene correctional events of the EGFP reporter in an in vitro HeLa cell nuclear extract assay, whereas PNA psoralen or chlorambucil conjugates both of which form covalent and also interstrand crosslinked adducts with dsDNA dramatically decreased the frequency of targeted repair/correction. The PNA conjugates were also studied in mammalian cell lines upon transfection of PNA bound EGFP reporter vector and scoring repair of the EGFP gene by FACS analysis of functional EGFP expression. Consistent with the extract experiments, treatment with adduct forming PNA conjugates (psoralen and chlorambucil) resulted in a decrease in background correction frequencies in transiently transfected cells, whereas unmodified PNA or the PNA-camptothecin conjugate had little or no effect. These results suggest that simple triplex forming PNAs have little effect on proximal gene correctional events whereas PNA conjugates capable of forming DNA adducts and interstrand crosslinks are strong inhibitors. Most interestingly the PNA conjugated to the topoisomerase inhibitor, camptothecin enhanced repair in nuclear extract. Thus the effects and use of camptothecin conjugates in gene targeted repair merit further studies.
doi:10.4161/adna.2.1.15553
PMCID: PMC3116579  PMID: 21686249
PNA; triplex; gene correction; repair; DNA modification
16.  Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease 
Nucleic Acids Research  2001;29(9):1852-1863.
The selective manipulation of mitochondrial DNA (mtDNA) replication and expression within mammalian cells has proven difficult. One promising approach is to use peptide nucleic acid (PNA) oligomers, nucleic acid analogues that bind selectively to complementary DNA or RNA sequences inhibiting replication and translation. However, the potential of PNAs is restricted by the difficulties of delivering them to mitochondria within cells. To overcome this problem we conjugated a PNA 11mer to a lipophilic phosphonium cation. Such cations are taken up by mitochondria through the lipid bilayer driven by the membrane potential across the inner membrane. As anticipated, phosphonium–PNA (ph–PNA) conjugates of 3.4–4 kDa were imported into both isolated mitochondria and mitochondria within human cells in culture. This was confirmed by using an ion-selective electrode to measure uptake of the ph–PNA conjugates; by cell fractionation in conjunction with immunoblotting; by confocal microscopy; by immunogold-electron microscopy; and by crosslinking ph–PNA conjugates to mitochondrial matrix proteins. In all cases dissipating the mitochondrial membrane potential with an uncoupler prevented ph–PNA uptake. The ph–PNA conjugate selectively inhibited the in vitro replication of DNA containing the A8344G point mutation that causes the human mtDNA disease ‘myoclonic epilepsy and ragged red fibres’ (MERRF) but not the wild-type sequence that differs at a single nucleotide position. Therefore these modified PNA oligomers retain their selective binding to DNA and the lipophilic cation delivers them to mitochondria within cells. When MERRF cells were incubated with the ph–PNA conjugate the ratio of MERRF to wild-type mtDNA was unaffected, even though the ph–PNA content of the mitochondria was sufficient to inhibit MERRF mtDNA replication in a cell-free system. This unexpected finding suggests that nucleic acid derivatives cannot bind their complementary sequences during mtDNA replication. In summary, we have developed a new strategy for targeting PNA oligomers to mitochondria and used it to determine the effects of PNA on mutated mtDNA replication in cells. This work presents new approaches for the manipulation of mtDNA replication and expression, and will assist in the development of therapies for mtDNA diseases.
PMCID: PMC37250  PMID: 11328868
17.  Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions 
BMC Cancer  2010;10:342.
Background
Modulation of pre-mRNA splicing by antisense molecules is a promising mechanism of action for gene therapeutic drugs. In this study, we have examined the potential of peptide nucleic acid (PNA) 9-aminoacridine conjugates to modulate the pre-mRNA splicing of the mdm2 human cancer gene in JAR cells.
Methods
We screened 10 different 15 mer PNAs targeting intron2 at both the 5' - and the 3'-splice site for their effects on the splicing of mdm2 using RT-PCR analysis. We also tested a PNA (2512) targeting the 3'-splice site of intron3 with a complementarity of 4 bases to intron3 and 11 bases to exon4 for its splicing modulation effect. This PNA2512 was further tested for the effects on the mdm2 protein level as well as for inhibition of cell growth in combination with the DNA damaging agent camptothecin (CPT).
Results
We show that several of these PNAs effectively inhibit the splicing thereby producing a larger mRNA still containing intron2, while skipping of exon3 was not observed by any of these PNAs. The most effective PNA (PNA2406) targeting the 3'-splice site of intron2 had a complementarity of 4 bases to intron2 and 11 bases to exon3. PNA (2512) targeting the 3'-splice site of intron3 induced both splicing inhibition (intron3 skipping) and skipping of exon4. Furthermore, treatment of JAR cells with this PNA resulted in a reduction in the level of MDM2 protein and a concomitant increase in the level of tumor suppressor p53. In addition, a combination of this PNA with CPT inhibited cell growth more than CPT alone.
Conclusion
We have identified several PNAs targeting the 5'- or 3'-splice sites in intron2 or the 3'-splice site of intron3 of mdm2 pre-mRNA which can inhibit splicing. Antisense targeting of splice junctions of mdm2 pre-mRNA may be a powerful method to evaluate the cellular function of MDM2 splice variants as well as a promising approach for discovery of mdm2 targeted anticancer drugs.
doi:10.1186/1471-2407-10-342
PMCID: PMC2910690  PMID: 20591158
18.  Peptide nucleic acids inhibit growth of Brucella suis in pure culture and in infected murine macrophages 
International journal of antimicrobial agents  2013;41(4):10.1016/j.ijantimicag.2012.11.017.
Peptide nucleic acids (PNAs) are single-stranded, synthetic nucleic acid analogues containing a pseudopeptide backbone in place of the phosphodiester sugar–phosphate. When PNAs are covalently linked to cell-penetrating peptides (CPPs) they readily penetrate the bacterial cell envelope, inhibit expression of targeted genes and cause growth inhibition both of Gram-positive and Gram-negative bacteria. However, the effectiveness of PNAs against Brucella, a facultative intracellular bacterial pathogen, was unknown. The susceptibility of a virulent Brucella suis strain to a variety of PNAs was assessed in pure culture as well as in murine macrophages. The studies showed that some of the PNAs targeted to Brucella genes involved in DNA (polA, dnaG, gyrA), RNA (rpoB), cell envelope (asd), fatty acid (kdtA, acpP) and protein (tsf) synthesis inhibit the growth of B. suis in culture and in macrophages after 24 h of treatment. PNA treatment inhibited Brucella growth by interfering with gene expression in a sequence-specific and dose-dependent manner at micromolar concentrations. The most effective PNA in broth culture was that targeting polA at ca. 12 μM. In contrast, in B. suis-infected macrophages, the most effective PNAs were those targeting asd and dnaG at 30 μM; both of these PNAs had little inhibitory effect on Brucella in broth culture. The polA PNA that inhibits wild-type B. suis also inhibits the growth of wild-type Brucella melitensis 16M and Brucella abortus 2308 in culture. This study reveals the potential usefulness of antisense PNA constructs as novel therapeutic agents against intracellular Brucella.
doi:10.1016/j.ijantimicag.2012.11.017
PMCID: PMC3834731  PMID: 23305655
Peptide nucleic acid (PNA); Brucella; Antibiotic resistance; Antisense; Murine macrophage
19.  Targeting Listeria Monocytogenes rpoA and rpoD Genes Using Peptide Nucleic Acids 
Nucleic Acid Therapeutics  2013;23(5):363-367.
Treating intracellular pathogens remains a considerable medical challenge because of the inefficient intracellular delivery of antimicrobials and the frequent emergence of bacterial resistance to therapeutic agents deemed the drugs of last resort. We investigated the capability of antisense peptide nucleic acids (PNAs) conjugated to the (KFF)3K cell penetrating peptide to target RNA polymerase α subunit (rpoA) and RNA polymerase sigma 70 (rpoD) in the intracellular pathogen Listeria monocytogenes. The PNAs tested displayed a concentration dependent inhibition of L. monocytogenes growth in pure culture at the micromolar level and significantly reduced intracellular L. monocytogenes in infected cell culture and Caenorhabditis elegans whole animal model. In vitro, the combined PNAs treatment was synergistic resulting in a clearance of L. monocytogenes at 0.5× the individual PNA concentration. This study demonstrates the potential of anti-rpoA PNA as an antibacterial agent and will provide the basis for improving and developing these PNAs to better target intracellular pathogens like Listeria. This study also establishes C. elegans as a potential model for the screening of PNAs.
doi:10.1089/nat.2013.0426
PMCID: PMC3760085  PMID: 23859300
20.  An assessment of the antisense properties of RNase H-competent and steric-blocking oligomers. 
Nucleic Acids Research  1995;23(7):1197-1203.
The antisense activity and gene specificity of two classes of oligonucleotides (ONs) were directly compared in a highly controlled assay. One class of ONs has been proposed to act by targeting the degradation of specific RNAs through an RNase H-mediated mechanism and consists of C-5 propynyl pyrimidine phosphorothioate ONs (propyne-S-ON). The second class of antisense agents has been proposed to function by sterically blocking target RNA formation, transport or translation and includes sugar modified (2'-O-allyl) ONs and peptide nucleic acids (PNAs). Using a CV-1 cell based microinjection assay, we targeted antisense agents representing both classes to various cloned sequences localized within the SV40 large T antigen RNA. We determined the propyne-S-ON was the most potent and gene-specific agent of the two classes which likely reflected its ability to allow RNase H cleavage of its target. The PNA oligomer inhibited T Ag expression via an antisense mechanism, but was less effective than the propyne-S-ON; the lack of potency may have been due in part to the PNAs slow kinetics of RNA association. Interestingly, unlike the 2'-O-allyl ON, the antisense activity of the PNA was not restricted to the 5' untranslated region of the T Ag RNA. Based on these findings we conclude that PNAs could be effective antisense agents with additional chemical modification that will lead to more rapid association with their RNA target.
Images
PMCID: PMC306831  PMID: 7537874
21.  Effective delivery of antisense peptide nucleic acid oligomers into cells by anthrax protective antigen 
Peptide nucleic acid (PNA) is highly stable and binds to complementary RNA and DNA with high affinity, but it resists cellular uptake, thereby limiting its bioavailability. We investigated whether protective antigen (PA, a non-toxic component of anthrax toxin) could transport antisense PNA oligomers into reporter cells that contain luciferase transgenes with mutant β-globin IVS2 intronic inserts, which permit aberrant pre-mRNA splicing and impair luciferase expression. PNA oligomers antisense to mutant splice sites in these IVS2 inserts induced luciferase expression when effectively delivered into the cells. PNA 18-mers with C-terminal poly-lysine tails [PNA(Lys)8] demonstrated modest sequence-specific antisense activity by themselves at micromolar concentrations in luc-IVS2 reporter cell cultures. However, this activity was greatly amplified by PA. Antisense PNA(Lys)8 with but not without PA also corrected the IVS2-654 β-globin splice defect in cultured erythroid precursor cells from a patient with β-thalassemia [genotype, IVS2-654(β0/βE)], providing further evidence that anthrax PA can effectively transport antisense PNA oligomers into cells.
doi:10.1016/j.bbrc.2008.08.124
PMCID: PMC2581503  PMID: 18774771
peptide nucleic acid; antisense; anthrax protective antigen
22.  Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2'-O-methyl (OMe) mixmer anti-miRs in the absence of transfection agents 
Artificial DNA, PNA & XNA  2011;2(3):71-78.
Efficient cell delivery of antisense oligonucleotides (ONs) is a key issue for their potential therapeutic use. It has been shown recently that some ONs can be delivered into cells without the use of transfection agents (gymnosis), but this generally requires cell incubation over several days and high amounts of ONs (micromolar concentrations). Here we have targeted microRNA 122 (miR-122), a small non-coding RNA involved in regulation of lipid metabolism and in the replication of hepatitis C virus, with ONs of different chemistries (anti-miRs) by gymnotic delivery in cell culture. Using a sensitive dual-luciferase reporter assay, anti-miRs were screened for their ability to enter liver cells gymnotically and inhibit miR-122 activity. Efficient miR-122 inhibition was obtained with cationic PNAs and 2'-O-methyl (OMe) and Locked Nucleic Acids (LNA)/OMe mixmers containing either phosphodiester (PO) or phosphorothioate (PS) linkages at sub-micromolar concentrations when incubated with cells for just 4 hours. Furthermore, PNA and PS-containing anti-miRs were able to sustain miR-122 inhibitory effects for at least 4 days. LNA/OMe PS anti-miRs were the most potent anti-miR chemistry tested in this study, an ON chemistry that has been little exploited so far as anti-miR agents towards therapeutics.
PMCID: PMC3324337  PMID: 22567190
2’-O-Methyl; anti-miR; delivery; Gymnosis; Locked Nucleic Acids; miR-122; miRNA; Peptide Nucleic Acids; phosphorothioate; transfection
23.  Cellular Uptakes, Biostabilities and Anti-miR-210 Activities of Chiral Arginine-PNAs in Leukaemic K562 Cells 
Chembiochem  2012;13(9):1327-1337.
A series of 18-mer peptide nucleic acids (PNAs) targeted against micro-RNA miR-210 was synthesised and tested in a cellular system. Unmodified PNAs, R8-conjugated PNAs and modified PNAs containing eight arginine residues on the backbone, either as C2-modified (R) or C5-modified (S) monomers, all with the same sequence, were compared. Two different models were used for the modified PNAs: one with alternated chiral and achiral monomers and one with a stretch of chiral monomers at the N terminus. The melting temperatures of these derivatives were found to be extremely high and 5 m urea was used to assess differences between the different structures. FACS analysis and qRT-PCR on K562 chronic myelogenous leukaemic cells indicated that arginine-conjugated and backbone-modified PNAs display good cellular uptake, with best performances for the C2-modified series. Resistance to enzymatic degradation was found to be higher for the backbone-modified PNAs, thus enhancing the advantage of using these derivatives rather than conjugated PNAs in the cells in serum, and this effect is magnified in the presence of peptidases such as trypsin. Inhibition of miR-210 activity led to changes in the erythroid differentiation pathway, which were more evident in mithramycin-treated cells. Interestingly, the anti-miR activities differed with use of different PNAs, thus suggesting a role of the substituents not only in the cellular uptake, but also in the mechanism of miR recognition and inactivation. This is the first report relating to the use of backbone-modified PNAs as anti-miR agents. The results clearly indicate that backbone-modified PNAs are good candidates for the development of very efficient drugs based on anti-miR activity, due to their enhanced bioavailabilities, and that overall anti-miR performance is a combination of cellular uptake and RNA binding.
doi:10.1002/cbic.201100745
PMCID: PMC3401907  PMID: 22639449
cell permeation; cellular differentiation; chiral PNA; microRNA; peptide nucleic acids; RNA
24.  Unconventional Internalization Mechanisms Underlying Functional Delivery of Antisense Oligonucleotides via Cationic Lipoplexes and Polyplexes 
There is mounting interest in developing antisense and siRNA oligonucleotides into therapeutic entities; however, this potential has been limited by poor access of oligonucleotides to their pharmacological targets within cells. Transfection reagents, such as cationic lipids and polymers, are commonly utilized to improve functional delivery of nucleic acids including oligonucleotides. Cellular entry of large plasmid DNA molecules with the assistance of these polycationic carriers is mediated by some form of endocytosis; however, the mechanism for delivery of small oligonucleotide molecules has not been well established. In this study, splice-shifting oligonucleotides have been formulated into cationic lipoplexes and polyplexes, and their internalization mechanisms have been examined by using pharmacological and genetic inhibitors of endocytosis. The results showed that intercellular distribution of the oligonucleotides to the nucleus governs their pharmacological response. A mechanistic study revealed that oligonucleotides delivered by lipoplexes enter the cells partially by membrane fusion and this mechanism accounts for the functional induction of the target gene. In contrast, polyplexes are internalized by unconventional endocytosis pathways that do not require dynamin or caveolin. These studies may help rationally design novel delivery systems with superior transfection efficiency but lower toxicity.
doi:10.1016/j.jconrel.2011.04.029
PMCID: PMC3133857  PMID: 21571016
Cellular delivery; Endocytosis; Internalization; Antisense oligonucleotides; Splice-shifting oligonucleotides; Intracellular trafficking; Cationic lipoplexes; Cationic polyplexes
25.  Inhibition of Gene Expression and Growth by Antisense Peptide Nucleic Acids in a Multiresistant β-Lactamase-Producing Klebsiella pneumoniae Strain▿  
Klebsiella pneumoniae causes common and severe hospital- and community-acquired infections with a high incidence of multidrug resistance. The emergence and spread of β-lactamase-producing K. pneumoniae strains highlight the need to develop new therapeutic strategies. In this study, we developed antisense peptide nucleic acids (PNAs) conjugated to the (KFF)3K peptide and investigated whether they could mediate gene-specific antisense effects in K. pneumoniae. No outer membrane permeabilization was observed with antisense PNAs when used alone. Antisense peptide-PNAs targeted at two essential genes, gyrA and ompA, were found to be growth inhibitory at concentrations of 20 μM and 40 μM, respectively. Mismatched antisense peptide-PNAs with sequence variations of the gyrA and ompA genes when used as controls were not growth inhibitory. Bactericidal effects exerted by peptide-anti-gyrA PNA and peptide-anti-ompA PNA on cells were observed within 6 h of treatment. The antisense peptide-PNAs specifically inhibited expression of DNA gyrase subunit A and OmpA from the respective targeted genes in a dose-dependent manner. Both antisense peptide-PNAs cured IMR90 cell cultures that were infected with K. pneumoniae (104 CFU) in a dose-dependent manner without any noticeable toxicity to the human cells.
doi:10.1128/AAC.00709-06
PMCID: PMC1803136  PMID: 17158940

Results 1-25 (1028439)