Search tips
Search criteria

Results 1-25 (1198791)

Clipboard (0)

Related Articles

1.  The Influence of Catalysis on Mad2 Activation Dynamics 
PLoS Biology  2009;7(1):e1000010.
Mad2 is a key component of the spindle assembly checkpoint, a safety device ensuring faithful sister chromatid separation in mitosis. The target of Mad2 is Cdc20, an activator of the anaphase-promoting complex/cyclosome (APC/C). Mad2 binding to Cdc20 is a complex reaction that entails the conformational conversion of Mad2 from an open (O-Mad2) to a closed (C-Mad2) conformer. Previously, it has been hypothesized that the conversion of O-Mad2 is accelerated by its conformational dimerization with C-Mad2. This hypothesis, known as the Mad2-template hypothesis, is based on the unproven assumption that the natural conversion of O-Mad2 required to bind Cdc20 is slow. Here, we provide evidence for this fundamental assumption and demonstrate that conformational dimerization of Mad2 accelerates the rate of Mad2 binding to Cdc20. On the basis of our measurements, we developed a set of rate equations that deliver excellent predictions of experimental binding curves under a variety of different conditions. Our results strongly suggest that the interaction of Mad2 with Cdc20 is rate limiting for activation of the spindle checkpoint. Conformational dimerization of Mad2 is essential to accelerate Cdc20 binding, but it does not modify the equilibrium of the Mad2:Cdc20 interaction, i.e., it is purely catalytic. These results surpass previously formulated objections to the Mad2-template model and predict that the release of Mad2 from Cdc20 is an energy-driven process.
Author Summary
Mitosis, the partition of chromosomes from a mother cell to the two daughter cells, is based on the formation of attachments between chromosomes and the mitotic spindle. Cells enter mitosis with replicated chromosomes (sister chromatids) that are held together by a cohesive force. Upon attachment of the sister chromatids to the mitotic spindle, the cohesive force that holds them is removed, and the sisters are parted to opposite poles of the spindle. It is essential for the long-term viability of cells that chromosomes not be lost in the process. For this purpose, cells have evolved a molecular device (the spindle assembly checkpoint or SAC), which prevents loss of sister chromatid cohesion until all sister chromatids are properly attached to the mitotic spindle. An outstanding question concerns the way the SAC signal is amplified away from chromosomes that are not yet attached to the spindle. Such an amplification mechanism has been predicted on the fact that as few as a single unattached kinetochore is able to prevent sister chromatid cohesion. In this paper, we show that the properties of the SAC protein Mad2 are ideally suited to provide a mechanism of amplification to the SAC.
The reconstitution in vitro of key reactions of the spindle assembly checkpoint reveals the presence of catalysis and autocatalysis during checkpoint activation.
PMCID: PMC2621267  PMID: 19143472
2.  Visualization of Mad2 Dynamics at Kinetochores, along Spindle Fibers, and at Spindle Poles in Living Cells 
The Journal of Cell Biology  2000;150(6):1233-1250.
The spindle checkpoint prevents errors in chromosome segregation by inhibiting anaphase onset until all chromosomes have aligned at the spindle equator through attachment of their sister kinetochores to microtubules from opposite spindle poles. A key checkpoint component is the mitotic arrest–deficient protein 2 (Mad2), which localizes to unattached kinetochores and inhibits activation of the anaphase-promoting complex (APC) through an interaction with Cdc20. Recent studies have suggested a catalytic model for kinetochore function where unattached kinetochores provide sites for assembling and releasing Mad2–Cdc20 complexes, which sequester Cdc20 and prevent it from activating the APC. To test this model, we examined Mad2 dynamics in living PtK1 cells that were either injected with fluorescently labeled Alexa 488-XMad2 or transfected with GFP-hMAD2. Real-time, digital imaging revealed fluorescent Mad2 localized to unattached kinetochores, spindle poles, and spindle fibers depending on the stage of mitosis. FRAP measurements showed that Mad2 is a transient component of unattached kinetochores, as predicted by the catalytic model, with a t1/2 of ∼24–28 s. Cells entered anaphase ∼10 min after Mad2 was no longer detectable on the kinetochores of the last chromosome to congress to the metaphase plate. Several observations indicate that Mad2 binding sites are translocated from kinetochores to spindle poles along microtubules. First, Mad2 that bound to sites on a kinetochore was dynamically stretched in both directions upon microtubule interactions, and Mad2 particles moved from kinetochores toward the poles. Second, spindle fiber and pole fluorescence disappeared upon Mad2 disappearance at the kinetochores. Third, ATP depletion resulted in microtubule-dependent depletion of Mad2 fluorescence at kinetochores and increased fluorescence at spindle poles. Finally, in normal cells, the half-life of Mad2 turnover at poles, 23 s, was similar to kinetochores. Thus, kinetochore-derived sites along spindle fibers and at spindle poles may also catalyze Mad2 inhibitory complex formation.
PMCID: PMC2150717  PMID: 10995431
cell cycle; mitosis; spindle checkpoint; chromosome; microtubule
3.  Checkpoint Protein BubR1 Acts Synergistically with Mad2 to Inhibit Anaphase-promoting Complex 
Molecular Biology of the Cell  2002;13(3):755-766.
The spindle assembly checkpoint monitors the attachment of kinetochores to the mitotic spindle and the tension exerted on kinetochores by microtubules and delays the onset of anaphase until all the chromosomes are aligned at the metaphase plate. The target of the checkpoint control is the anaphase-promoting complex (APC)/cyclosome, a ubiquitin ligase whose activation by Cdc20 is required for separation of sister chromatids. In response to activation of the checkpoint, Mad2 binds to and inhibits Cdc20-APC. I show herein that in checkpoint-arrested cells, human Cdc20 forms two separate, inactive complexes, a lower affinity complex with Mad2 and a higher affinity complex with BubR1. Purified BubR1 binds to recombinant Cdc20 and this interaction is direct. Binding of BubR1 to Cdc20 inhibits activation of APC and this inhibition is independent of its kinase activity. Quantitative analysis indicates that BubR1 is 12-fold more potent than Mad2 as an inhibitor of Cdc20. Although at high protein concentrations BubR1 and Mad2 each is sufficient to inhibit Cdc20, BubR1 and Mad2 mutually promote each other's binding to Cdc20 and function synergistically at physiological concentrations to quantitatively inhibit Cdc20-APC. Thus, BubR1 and Mad2 act cooperatively to prevent premature separation of sister chromatids by directly inhibiting APC.
PMCID: PMC99596  PMID: 11907259
4.  A Cell Cycle Timer for Asymmetric Spindle Positioning 
PLoS Biology  2009;7(4):e1000088.
The displacement of the mitotic spindle to one side of a cell is important for many cells to divide unequally. While recent progress has begun to unveil some of the molecular mechanisms of mitotic spindle displacement, far less is known about how spindle displacement is precisely timed. A conserved mitotic progression mechanism is known to time events in dividing cells, although this has never been linked to spindle displacement. This mechanism involves the anaphase-promoting complex (APC), its activator Cdc20/Fizzy, its degradation target cyclin, and cyclin-dependent kinase (CDK). Here we show that these components comprise a previously unrecognized timer for spindle displacement. In the Caenorhabditis elegans zygote, mitotic spindle displacement begins at a precise time, soon after chromosomes congress to the metaphase plate. We found that reducing the function of the proteasome, the APC, or Cdc20/Fizzy delayed spindle displacement. Conversely, inactivating CDK in prometaphase caused the spindle to displace early. The consequence of experimentally unlinking spindle displacement from this timing mechanism was the premature displacement of incompletely assembled components of the mitotic spindle. We conclude that in this system, asymmetric positioning of the mitotic spindle is normally delayed for a short time until the APC inactivates CDK, and that this delay ensures that the spindle does not begin to move until it is fully assembled. To our knowledge, this is the first demonstration that mitotic progression times spindle displacement in the asymmetric division of an animal cell. We speculate that this link between the cell cycle and asymmetric cell division might be evolutionarily conserved, because the mitotic spindle is displaced at a similar stage of mitosis during asymmetric cell divisions in diverse systems.
Author Summary
Throughout animal development, and in stem cells, many cell divisions are asymmetric. The one-cell-stage C. elegans embryo divides asymmetrically, as a result of a displacement of the mitotic spindle to one side of the cell. As in other cell divisions, a mitotic progression machinery ensures that all chromosomes are associated with the metaphase plate before anaphase begins. This machinery involves the anaphase-promoting complex and its activator Cdc20/Fizzy, which target proteins for destruction by the proteasome; the cyclin that is targeted for degradation by the proteasome; and a cyclin-dependent kinase. We have asked whether the same machinery has a second function, delaying movement of the spindle to an asymmetric position until spindle assembly is complete. To address this question, we used genetic, reverse genetic, and pharmacological techniques to disrupt the function of elements of the mitotic progression machinery. We find that the mitotic progression machinery does indeed time spindle positioning, acting to delay spindle displacement until spindle assembly completes. This demonstrates a previously unrecognized link between the mitotic progression machinery and asymmetric spindle positioning in an animal cell.
The machinery that times entry into mitotic anaphase has the extra function during an asymmetric cell division of regulating when the mitotic spindle can shift to one side of a cell.
PMCID: PMC2671557  PMID: 19385718
5.  Tethering Sister Centromeres to Each Other Suggests the Spindle Checkpoint Detects Stretch within the Kinetochore 
PLoS Genetics  2014;10(8):e1004492.
The spindle checkpoint ensures that newly born cells receive one copy of each chromosome by preventing chromosomes from segregating until they are all correctly attached to the spindle. The checkpoint monitors tension to distinguish between correctly aligned chromosomes and those with both sisters attached to the same spindle pole. Tension arises when sister kinetochores attach to and are pulled toward opposite poles, stretching the chromatin around centromeres and elongating kinetochores. We distinguished between two hypotheses for where the checkpoint monitors tension: between the kinetochores, by detecting alterations in the distance between them, or by responding to changes in the structure of the kinetochore itself. To distinguish these models, we inhibited chromatin stretch by tethering sister chromatids together by binding a tetrameric form of the Lac repressor to arrays of the Lac operator located on either side of a centromere. Inhibiting chromatin stretch did not activate the spindle checkpoint; these cells entered anaphase at the same time as control cells that express a dimeric version of the Lac repressor, which cannot cross link chromatids, and cells whose checkpoint has been inactivated. There is no dominant checkpoint inhibition when sister kinetochores are held together: cells expressing the tetrameric Lac repressor still arrest in response to microtubule-depolymerizing drugs. Tethering chromatids together does not disrupt kinetochore function; chromosomes are successfully segregated to opposite poles of the spindle. Our results indicate that the spindle checkpoint does not monitor inter-kinetochore separation, thus supporting the hypothesis that tension is measured within the kinetochore.
Author Summary
The spindle checkpoint monitors tension on chromosomes to distinguish between chromosomes that are correctly and incorrectly attached to the spindle. Tension is generated across a correctly attached chromosome as microtubules from opposite poles attach to and pull kinetochores apart, but are resisted by the cohesin that holds sister chromatids together. This tension generates separation between kinetochores as pericentric chromatin stretches and it also elongates the kinetochores. To monitor tension, the checkpoint could measure the separation between kinetochores or the stretch within them. We inhibited the ability of pericentric chromatin to stretch by tethering sister centromeres to each other, and we asked whether the resulting reduction in inter-kinetochore separation artificially activated the spindle checkpoint. Inhibiting inter-kinetochore separation does not delay anaphase, and the timing of mitosis was the same in cells with or without the spindle checkpoint, showing that the checkpoint is not activated. Inhibiting chromatin stretch does not alter the function of kinetochores as chromosomes are still segregated correctly, nor does it hinder the checkpoint. Cells whose sister kinetochores are held together can still activate the checkpoint in response to microtubule depolymerization. Our results indicate the spindle checkpoint does not monitor inter-kinetochore separation and likely monitors tension within kinetochores.
PMCID: PMC4125069  PMID: 25101645
6.  Insights into Mad2 Regulation in the Spindle Checkpoint Revealed by the Crystal Structure of the Symmetric Mad2 Dimer  
PLoS Biology  2008;6(3):e50.
In response to misaligned sister chromatids during mitosis, the spindle checkpoint protein Mad2 inhibits the anaphase-promoting complex or cyclosome (APC/C) through binding to its mitotic activator Cdc20, thus delaying anaphase onset. Mad1, an upstream regulator of Mad2, forms a tight core complex with Mad2 and facilitates Mad2 binding to Cdc20. In the absence of its binding proteins, free Mad2 has two natively folded conformers, termed N1-Mad2/open-Mad2 (O-Mad2) and N2-Mad2/closed Mad2 (C-Mad2), with C-Mad2 being more active in APC/CCdc20 inhibition. Here, we show that whereas O-Mad2 is monomeric, C-Mad2 forms either symmetric C-Mad2–C-Mad2 (C–C) or asymmetric O-Mad2–C-Mad2 (O–C) dimers. We also report the crystal structure of the symmetric C–C Mad2 dimer, revealing the basis for the ability of unliganded C-Mad2, but not O-Mad2 or liganded C-Mad2, to form symmetric dimers. A Mad2 mutant that predominantly forms the C–C dimer is functional in vitro and in living cells. Finally, the Mad1–Mad2 core complex facilitates the conversion of O-Mad2 to C-Mad2 in vitro. Collectively, our results establish the existence of a symmetric Mad2 dimer and provide insights into Mad1-assisted conformational activation of Mad2 in the spindle checkpoint.
Author Summary
Chromosome missegregation during mitosis results in the gain or loss of chromosomes in the next generation of cells and can contribute to birth defects or cancer. A cellular surveillance system called the spindle checkpoint ensures that accurate chromosome segregation occurs by inhibiting the activity of the anaphase-promoting complex or cyclosome (APC/C) until all sister chromatids have achieved proper attachment to the mitotic spindle. The spindle checkpoint protein Mad2 binds to Cdc20, an activator of APC/C, and inhibits the complex. The Mad2 protein can adopt either an open or closed conformation. The conformational switch in Mad2 is critical for Cdc20 binding and APC/C inhibition, and is regulated by the protein Mad1. We report the crystal structure of the symmetric Mad2 dimer, which is made up of two closed monomers, and is active in APC/C-Cdc20 inhibition. Mad1 seems to facilitate the open–closed conformational switch of Mad2, and we present a unified model to explain Mad1-assisted Mad2 activation in the spindle checkpoint.
Analysis of the crystal structure and biochemical activity of the symmetric closed Mad2 dimer support a unified model for Mad1-assisted conformational activation of Mad2 in the spindle checkpoint.
PMCID: PMC2270309  PMID: 18318601
7.  Mad2 and the APC/C compete for the same site on Cdc20 to ensure proper chromosome segregation 
The Journal of Cell Biology  2012;199(1):27-37.
At the same time that BubR1 acts as a pseudosubstrate inhibitor in the spindle assembly checkpoint complex to inhibit Cdc20, Mad2 binds to Cdc20 to prevent activation of APC/C and subsequent mitotic exit when chromosome attachment is not complete.
The spindle assembly checkpoint (SAC) is essential to ensure proper chromosome segregation and thereby maintain genomic stability. The SAC monitors chromosome attachment, and any unattached chromosomes generate a “wait anaphase” signal that blocks chromosome segregation. The target of the SAC is Cdc20, which activates the anaphase-promoting complex/cyclosome (APC/C) that triggers anaphase and mitotic exit by ubiquitylating securin and cyclin B1. The inhibitory complex formed by the SAC has recently been shown to inhibit Cdc20 by acting as a pseudosubstrate inhibitor, but in this paper, we show that Mad2 also inhibits Cdc20 by binding directly to a site required to bind the APC/C. Mad2 and the APC/C competed for Cdc20 in vitro, and a Cdc20 mutant that does not bind stably to Mad2 abrogated the SAC in vivo. Thus, we provide insights into how Cdc20 binds the APC/C and uncover a second mechanism by which the SAC inhibits the APC/C.
PMCID: PMC3461516  PMID: 23007648
8.  A Novel Protein Phosphatase 1-Dependent Spindle Checkpoint Silencing Mechanism 
Current Biology  2009;19(14-3):1176-1181.
The spindle checkpoint is a surveillance system acting in mitosis to delay anaphase onset until all chromosomes are properly attached to the mitotic spindle [1, 2]. When the checkpoint is activated, the Mad2 and Mad3 proteins directly bind and inhibit Cdc20, which is an essential activator of an E3 ubiquitin ligase known as the anaphase-promoting complex (APC) [3]. When the checkpoint is satisfied, Cdc20-APC is activated and polyubiquitinates securin and cyclin, leading to the dissolution of sister chromatid cohesion and mitotic progression. Several protein kinases play critical roles in spindle checkpoint signaling, but the mechanism (or mechanisms) by which they inhibit mitotic progression remains unclear [4]. Furthermore, it is not known whether their activity needs to be reversed by protein phosphatases before anaphase onset can occur. Here we employ fission yeast to show that Aurora (Ark1) kinase activity is directly required to maintain spindle checkpoint arrest, even in the presence of many unattached kinetochores. Upon Ark1 inhibition, checkpoint complexes are disassembled and cyclin B is rapidly degraded. Importantly, checkpoint silencing and cyclin B degradation require the kinetochore-localized isoform of protein phosphatase 1 (PP1Dis2). We propose that PP1Dis2-mediated dephosphorylation of checkpoint components forms a novel spindle checkpoint silencing mechanism.
PMCID: PMC2791888  PMID: 19592249
9.  Mad3 KEN Boxes Mediate both Cdc20 and Mad3 Turnover, and Are Critical for the Spindle Checkpoint 
PLoS ONE  2007;2(4):e342.
Mitotic progression is controlled by proteolytic destruction of securin and cyclin. The mitotic E3 ubiquitin ligase, known as the anaphase promoting complex or cyclosome (APC/C), in partnership with its activators Cdc20p and Cdh1p, targets these proteins for degradation. In the presence of defective kinetochore-microtubule interactions, APC/CCdc20 is inhibited by the spindle checkpoint, thereby delaying anaphase onset and providing more time for spindle assembly. Cdc20p interacts directly with Mad2p, and its levels are subject to careful regulation, but the precise mode(s) of APC/C Cdc20 inhibition remain unclear. The mitotic checkpoint complex (MCC, consisting of Mad3p, Mad2p, Bub3p and Cdc20p in budding yeast) is a potent APC/C inhibitor. Here we focus on Mad3p and how it acts, in concert with Mad2p, to efficiently inhibit Cdc20p. We identify and analyse the function of two motifs in Mad3p, KEN30 and KEN296, which are conserved from yeast Mad3p to human BubR1. These KEN amino acid sequences resemble ‘degron’ signals that confer interaction with APC/C activators and target proteins for degradation. We show that both Mad3p KEN boxes are necessary for spindle checkpoint function. Mutation of KEN30 abolished MCC formation and stabilised Cdc20p in mitosis. In addition, mutation of Mad3-KEN30, APC/C subunits, or Cdh1p, stabilised Mad3p in G1, indicating that the N-terminal KEN box could be a Mad3p degron. To determine the significance of Mad3p turnover, we analysed the consequences of MAD3 overexpression and found that four-fold overproduction of Mad3p led to chromosome bi-orientation defects and significant chromosome loss during recovery from anti-microtubule drug induced checkpoint arrest. In conclusion, Mad3p KEN30 mediates interactions that regulate the proteolytic turnover of Cdc20p and Mad3p, and the levels of both of these proteins are critical for spindle checkpoint signaling and high fidelity chromosome segregation.
PMCID: PMC1829190  PMID: 17406666
10.  Substrate degradation by the anaphase promoting complex occurs during mitotic slippage 
Cell cycle (Georgetown, Tex.)  2010;9(9):1792-1801.
Microtubule targeting drugs are successful in chemotherapy because they indefinitely activate the spindle assembly checkpoint. The spindle assembly checkpoint monitors proper attachment of all kinetochores to microtubules and tension between the kinetochores of sister chromatids to prevent premature anaphase entry. To this end, the activated spindle assembly checkpoint suppresses the E3 ubiquitin ligase activity of the anaphase-promoting complex (APC). In the continued presence of conditions that activate the spindle assembly checkpoint, cells eventually escape from mitosis by “slippage”. It has not been directly tested whether APC activation accompanies slippage. Using cells blocked in mitosis with the microtubule assembly inhibitor nocodazole, we show that mitotic APC substrates are degraded upon mitotic slippage. To confirm that APC is normally activated upon mitotic slippage we have found that knockdown of Cdc20 and Cdh1, two mitotic activators of APC, prevents the degradation of APC substrates during mitotic slippage. We provide the first direct demonstration that despite conditions that activate the spindle checkpoint, APC is indeed activated upon mitotic slippage of cells to interphase cells. Activation of the spindle checkpoint by microtubule targeting drugs used in chemotherapy may not indefinitely prevent APC activation.
PMCID: PMC3163903  PMID: 20436289
anaphase promoting complex; Cdc20; Cdh1; mitotic slippage; spindle assembly checkpoint
11.  Mad2 and Mad3 Cooperate to Arrest Budding Yeast in Mitosis 
Current Biology  2011;22(3):180-190.
The spindle checkpoint ensures accurate chromosome transmission by delaying chromosome segregation until all chromosomes are correctly aligned on the mitotic spindle. The checkpoint is activated by kinetochores that are not attached to microtubules or are attached but not under tension and arrests cells at metaphase by inhibiting the anaphase-promoting complex (APC) and its co-activator Cdc20. Despite numerous studies, we still do not understand how the checkpoint proteins coordinate with each other to inhibit APCCdc20 activity.
To ask how the checkpoint components induce metaphase arrest, we constructed fusions of checkpoint proteins and expressed them in the budding yeast, Saccharomyces cerevisiae, to mimic possible protein interactions during checkpoint activation. We found that expression of a Mad2-Mad3 protein fusion or non-covalently linked Mad2 and Mad3, but not the overexpression of the two separate proteins, induces metaphase arrest that is independent of functional kinetochores or other checkpoint proteins. We further showed that artificially tethering Mad2 to Cdc20 also arrests cells in metaphase independently of other checkpoint components.
Our results suggest that Mad3 is required for the stable binding of Mad2 to Cdc20 in vivo, which is sufficient to inhibit APC activity and is the most downstream event in spindle checkpoint activation.
PMCID: PMC3277655  PMID: 22209528
12.  DNA Damage Activates the SAC in an ATM/ATR-Dependent Manner, Independently of the Kinetochore 
PLoS Genetics  2008;4(2):e1000015.
The DNA damage checkpoint and the spindle assembly checkpoint (SAC) are two important regulatory mechanisms that respond to different lesions. The DNA damage checkpoint detects DNA damage, initiates protein kinase cascades, and inhibits the cell cycle. The SAC relies on kinetochore-dependent assembly of protein complexes to inhibit mitosis when chromosomes are detached from the spindle. The two checkpoints are thought to function independently. Here we show that yeast cells lacking the DNA damage checkpoint arrest prior to anaphase in response to low doses of the DNA damaging agent methyl methane sulfonate (MMS). The arrest requires the SAC proteins Mad1, Mad2, Mad3, Bub1, and Bub3 and works through Cdc20 and Pds1 but unlike the normal SAC, does not require a functional kinetochore. Mec1 (ATR) and Tel1 (ATM) are also required, independently of Chk1 and Rad53, suggesting that Mec1 and Tel1 inhibit anaphase in response to DNA damage by utilizing SAC proteins. Our results demonstrate cross-talk between the two checkpoints and suggest that assembling inhibitory complexes of SAC proteins at unattached kinetochores is not obligatory for their inhibitory activity. Furthermore, our results suggest that there are novel, important targets of ATM and ATR for cell cycle regulation.
Author Summary
Genome integrity is assured, in part, by regulatory systems called “checkpoints” that assure that cells do not improperly progress through the cell cycle. The DNA damage checkpoint assesses the status of DNA replication and inhibits cell cycle progression when the cell makes mistakes in DNA replication or when the cell has been assaulted by a DNA damaging agent from the environment. The checkpoint allows the cell time to repair the DNA and then permits the cell cycle to resume. There is a separate “spindle checkpoint” that monitors whether chromosomes are properly attached to the spindle and if so, allows cells to proceed through mitosis. The DNA damage checkpoint and the spindle checkpoint assure that daughter cells receive the correct number of chromosomes that are identical in DNA sequence. Here we show that the two checkpoints are not independent but that they cooperate to restrict mitotic progression in the face of DNA damage. We show that the spindle checkpoint can be induced by DNA damage and that there is a novel kinetochore independent mechanism to activate the spindle checkpoint proteins. In addition, we implicate the ATM and ATR kinases as kinetochore-independent activators of the spindle checkpoint.
PMCID: PMC2265443  PMID: 18454191
13.  Adaptation to the spindle checkpoint is regulated by the interplay between Cdc28/Clbs and PP2ACdc55 
The Journal of Cell Biology  2013;202(5):765-778.
PP2ACdc55 dephosphorylates APC/CCdc20 to prevent anaphase, an effect that is counteracted by Cdc28/Clbs to allow for spindle checkpoint adaptation.
The spindle checkpoint arrests cells in metaphase until all chromosomes are properly attached to the chromosome segregation machinery. Thereafter, the anaphase promoting complex (APC/C) is activated and chromosome segregation can take place. Cells remain arrested in mitosis for hours in response to checkpoint activation, but not indefinitely. Eventually, they adapt to the checkpoint and proceed along the cell cycle. In yeast, adaptation requires the phosphorylation of APC/C. Here, we show that the protein phosphatase PP2ACdc55 dephosphorylates APC/C, thereby counteracting the activity of the mitotic kinase Cdc28. We also observe that the key regulator of Cdc28, the mitotic cyclin Clb2, increases before cells adapt and is then abruptly degraded at adaptation. Adaptation is highly asynchronous and takes place over a range of several hours. Our data suggest the presence of a double negative loop between PP2ACdc55 and APC/CCdc20 (i.e., a positive feedback loop) that controls APC/CCdc20 activity. The circuit could guarantee sustained APC/CCdc20 activity after Clb2 starts to be degraded.
PMCID: PMC3760609  PMID: 23999167
14.  Smurf2 as a novel mitotic regulator: From the spindle assembly checkpoint to tumorigenesis 
Cell Division  2009;4:14.
The execution of the mitotic program with high fidelity is dependent upon precise spatiotemporal regulation of posttranslational protein modifications. For example, the timely polyubiquitination of critical mitotic regulators by Anaphase Promoting Complex/Cyclosome (APC/C) is essential for the metaphase to anaphase transition and mitotic exit. The spindle assembly checkpoint prevents unscheduled activity of APC/C-Cdc20 in early mitosis, allowing bipolar attachment of kinetochores to mitotic spindle and facilitating equal segregation of sister chromatids. The critical effector of the spindle checkpoint, Mitotic arrest deficient 2 (Mad2), is recruited to unattached kinetochores forming a complex with other regulatory proteins to efficiently and cooperatively inhibit APC/C-Cdc20. A weakened and/or dysfunctional spindle checkpoint has been linked to the development of genomic instability in both cell culture and animal models, and evidence suggests that aberrant regulation of the spindle checkpoint plays a critical role in human carcinogenesis. Recent studies have illuminated a network of both degradative and non-degradative ubiquitination events that regulate the metaphase to anaphase transition and mitotic exit. Within this context, our recent work showed that the HECT (Homologous to E6-AP C-terminus)-family E3 ligase Smurf2 (Smad specific ubiquitin regulatory factor 2), known as a negative regulator of transforming growth factor-beta (TGF-β) signaling, is required for a functional spindle checkpoint by promoting the functional localization and stability of Mad2. Here we discuss putative models explaining the role of Smurf2 as a new regulator in the spindle checkpoint. The dynamic mitotic localization of Smurf2 to the centrosome and other critical mitotic structures provides implications about mitotic checkpoint control dependent on various ubiquitination events. Finally, deregulated Smurf2 activity may contribute to carcinogenesis by perturbed mitotic control.
PMCID: PMC2714307  PMID: 19583833
15.  The HECT E3 ligase Smurf2 is required for Mad2-dependent spindle assembly checkpoint 
The Journal of Cell Biology  2008;183(2):267-277.
Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 is critical for the metaphase–anaphase transition. APC/C-Cdc20 is required for polyubiquitination and degradation of securin and cyclin B at anaphase onset. The spindle assembly checkpoint delays APC/C-Cdc20 activation until all kinetochores attach to mitotic spindles. In this study, we demonstrate that a HECT (homologous to the E6-AP carboxyl terminus) ubiquitin ligase, Smurf2, is required for the spindle checkpoint. Smurf2 localizes to the centrosome, mitotic midbody, and centromeres. Smurf2 depletion or the expression of a catalytically inactive Smurf2 results in misaligned and lagging chromosomes, premature anaphase onset, and defective cytokinesis. Smurf2 inactivation prevents nocodazole-treated cells from accumulating cyclin B and securin and prometaphase arrest. The silencing of Cdc20 in Smurf2-depleted cells restores mitotic accumulation of cyclin B and securin. Smurf2 depletion results in enhanced polyubiquitination and degradation of Mad2, a critical checkpoint effector. Mad2 is mislocalized in Smurf2-depleted cells, suggesting that Smurf2 regulates the localization and stability of Mad2. These data indicate that Smurf2 is a novel mitotic regulator.
PMCID: PMC2568023  PMID: 18852296
16.  Kinase Activity of Fission Yeast Mph1 Is Required for Mad2 and Mad3 to Stably Bind the Anaphase Promoting Complex 
Current Biology  2012;22(4):296-301.
Defects in chromosome segregation result in aneuploidy, which can lead to disease or cell death [1, 2]. The spindle checkpoint delays anaphase onset until all chromosomes are attached to spindle microtubules in a bipolar fashion [3, 4]. Mad2 is a key checkpoint component that undergoes conformational activation, catalyzed by a Mad1-Mad2 template enriched at unattached kinetochores [5]. Mad2 and Mad3 (BubR1) then bind and inhibit Cdc20 to form the mitotic checkpoint complex (MCC), which binds and inhibits the anaphase promoting complex (APC/C). Checkpoint kinases (Aurora, Bub1, and Mps1) are critical for checkpoint signaling, yet they have poorly defined roles and few substrates have been identified [6–8]. Here we demonstrate that a kinase-dead allele of the fission yeast MPS1 homolog (Mph1) is checkpoint defective and that levels of APC/C-associated Mad2 and Mad3 are dramatically reduced in this mutant. Thus, MCC binding to fission yeast APC/C is dependent on Mph1 kinase activity. We map and mutate several phosphorylation sites in Mad2, producing mutants that display reduced Cdc20-APC/C binding and an inability to maintain checkpoint arrest. We conclude that Mph1 kinase regulates the association of Mad2 with its binding partners and thereby mitotic arrest.
Graphical Abstract
► Mph1 kinase activity is required for stable binding of Mad2/3 to Cdc20Slp1-APC/C ► Mph1 kinase phosphorylates Mad2 ► mad2-S92A has reduced APC/C binding and is unable to maintain checkpoint arrest ► mad2-S187D suggests a possible role for Mph1 kinase in checkpoint inhibition
PMCID: PMC3315010  PMID: 22281223
17.  The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction 
Nature cell biology  2008;10(12):1411-1420.
The Spindle Assembly Checkpoint (SAC) is required to block sister chromatid separation until all chromosomes are properly attached to the mitotic apparatus. The SAC prevents cells entering anaphase by inhibiting the ubiquitination of cyclin B1 and securin by the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase. The target of the SAC is the essential APC/C activator, Cdc20. It is unclear how the SAC inactivates Cdc20 but current models mostly involve Cdc20 forming a stable complex with the Mad2 checkpoint protein. Here we show that most Cdc20 is not in a complex with Mad2; instead Mad2 is required for Cdc20 to form a complex with another checkpoint protein, BubR1. We further show that during the SAC the APC/C ubiquitinates Cdc20 to target it for degradation. Thus, ubiquitination of human Cdc20 is not required to release it from the checkpoint complex, but to degrade it to maintain mitotic arrest.
PMCID: PMC2635557  PMID: 18997788
18.  The Spindle Checkpoint Functions of Mad3 and Mad2 Depend on a Mad3 KEN Box-mediated Interaction with Cdc20-Anaphase-promoting Complex (APC/C)*S⃞♦ 
The Journal of Biological Chemistry  2008;283(34):23039-23047.
Mitotic progression is driven by proteolytic destruction of securin and cyclins. These proteins are labeled for destruction by an ubiquitin-protein isopeptide ligase (E3) known as the anaphase-promoting complex or cyclosome (APC/C). The APC/C requires activators (Cdc20 or Cdh1) to efficiently recognize its substrates, which are specified by destruction (D box) and/or KEN box signals. The spindle assembly checkpoint responds to unattached kinetochores and to kinetochores lacking tension, both of which reflect incomplete biorientation of chromosomes, by delaying the onset of anaphase. It does this by inhibiting Cdc20-APC/C. Certain checkpoint proteins interact directly with Cdc20, but it remains unclear how the checkpoint acts to efficiently inhibit Cdc20-APC/C activity. In the fission yeast, Schizosaccharomyces pombe, we find that the Mad3 and Mad2 spindle checkpoint proteins interact stably with the APC/C in mitosis. Mad3 contains two KEN boxes, conserved from yeast Mad3 to human BubR1, and mutation of either of these abrogates the spindle checkpoint. Strikingly, mutation of the N-terminal KEN box abolishes incorporation of Mad3 into the mitotic checkpoint complex (Mad3-Mad2-Slp1 in S. pombe, where Slp1 is the Cdc20 homolog that we will refer to as Cdc20 hereafter) and stable association of both Mad3 and Mad2 with the APC/C. Our findings demonstrate that this Mad3 KEN box is a critical mediator of Cdc20-APC/C inhibition, without which neither Mad3 nor Mad2 can associate with the APC/C or inhibit anaphase onset.
PMCID: PMC2516979  PMID: 18556659
19.  Running on a treadmill: dynamic inhibition of APC/C by the spindle checkpoint 
Cell Division  2007;2:23.
During mitosis, the genome duplicated during S-phase is synchronously and accurately segregated to the two daughter cells. The spindle checkpoint prevents premature sister-chromatid separation and mitotic exit. The anaphase-promoting complex/cyclosome (APC/C) is a key target of the spindle checkpoint. Upon checkpoint activation, the mitotic checkpoint complex (MCC) containing Mad2, Bub3, Mad3/BubR1 and Cdc20 inhibits APC/C. Two independent studies in budding yeast have now shed light on the mechanism by which MCC inhibits APC/C. These studies indicate that Mad3 binds to the mitotic activator of APC/C Cdc20 using peptide motifs commonly found in APC/C substrates and thus competes with APC/C substrates for APC/CCdc20 binding. In addition, Mad3 binding to APC/CCdc20 induces Cdc20 ubiquitination by APC/C, leading to the dissociation of MCC. Meanwhile, two other studies have shown that a deubiquitinating enzyme is required for the spindle checkpoint whereas APC/C-dependent ubiquitination is needed for checkpoint inactivation. Collectively, these studies suggest a dynamic model for APC/CCdc20 regulation by MCC in which APC/C- and Mad3-dependent ubiquitination of Cdc20 constitutes a self-regulated switch that rapidly inactivates the spindle checkpoint upon correct chromosome attachment.
PMCID: PMC1947974  PMID: 17650307
20.  Bub1-Mediated Adaptation of the Spindle Checkpoint 
PLoS Genetics  2011;7(1):e1001282.
During cell division, the spindle checkpoint ensures accurate chromosome segregation by monitoring the kinetochore–microtubule interaction and delaying the onset of anaphase until each pair of sister chromosomes is properly attached to microtubules. The spindle checkpoint is deactivated as chromosomes start moving toward the spindles in anaphase, but the mechanisms by which this deactivation and adaptation to prolonged mitotic arrest occur remain obscure. Our results strongly suggest that Cdc28-mediated phosphorylation of Bub1 at T566 plays an important role for the degradation of Bub1 in anaphase, and the phosphorylation is required for adaptation of the spindle checkpoint to prolonged mitotic arrest.
Author Summary
The spindle checkpoint protects cells from aneuploidy by monitoring the status of the kinetochore-microtubule attachment. Defects in this checkpoint pathway and in kinetochore-microtubule attachment can cause substantial aneuploidy in cells. The duration of the mitotic arrest induced by the spindle checkpoint is not indefinite: cells eventually exit from mitosis and re-enter interphase. Because continued activation of the spindle checkpoint is lethal, adaptation to the spindle checkpoint arrest is essential so that cells have a chance for survival as opposed to certain death. However, adaptation of the spindle checkpoint has a flip side—adapted cells could have an increased chance of aneuploidy due to premature mitotic exit. Thus, it is essential that this mechanism be regulated appropriately. Despite the importance of understanding the adaptation of the spindle checkpoint, little is known to date about this mechanism. We found that Cdc28-mediated phosphorylation of Bub1 at T566 plays an important role for adaptation of the spindle checkpoint, a finding providing the molecular insight on how adaptation to prolonged mitotic arrest induced by the spindle checkpoint occurs.
PMCID: PMC3029250  PMID: 21298086
21.  Sli15INCENP Dephosphorylation Prevents Mitotic Checkpoint Reengagement Due to Loss of Tension at Anaphase Onset 
Current Biology  2010;20(15):1396-1401.
The mitotic checkpoint, also known as the spindle assembly checkpoint, delays anaphase onset until all chromosomes have reached bipolar tension on the mitotic spindle [1–3]. Once this is achieved, the protease separase is activated to cleave the chromosomal cohesin complex, thereby triggering anaphase. Cohesin cleavage releases tension between sister chromatids, but why the mitotic checkpoint now remains silent is poorly understood. Here, using budding yeast as a model, we show that loss of sister chromatid cohesion at anaphase onset would engage the mitotic checkpoint if this was not prevented by concomitant separase-dependent activation of the Cdc14 phosphatase. Cdc14, in turn, inactivates the mitotic checkpoint by dephosphorylating Sli15INCENP, a subunit of the conserved Aurora B kinase complex that forms part of the proposed chromosomal tension sensor. Dephosphorylation-dependent relocation of Sli15INCENP from centromeres to the central spindle during anaphase is seen in organisms from yeast to human [4–8]. Our results suggest that Sli15INCENP dephosphorylation is part of an evolutionarily conserved mechanism that prevents the mitotic checkpoint from reengaging when tension between sister chromatids is lost at anaphase onset.
► Loss of cohesion at anaphase onset can reengage the mitotic checkpoint ► This is prevented by activation of the Cdc14 phosphatase at the same time ► Cdc14 inactivates the mitotic checkpoint by dephosphorylating Sli15INCENP ► A conserved mechanism inactivates the mitotic checkpoint in anaphase
PMCID: PMC2964898  PMID: 20619650
22.  Dependency of the Spindle Assembly Checkpoint on Cdk1 Renders the Anaphase Transition Irreversible 
Current Biology  2014;24(6):630-637.
Activation of anaphase-promoting complex/cyclosome (APC/CCdc20) by Cdc20 is delayed by the spindle assembly checkpoint (SAC). When all kinetochores come under tension, the SAC is turned off and APC/CCdc20 degrades cyclin B and securin, which activates separase [1]. The latter then cleaves cohesin holding sister chromatids together [2]. Because cohesin cleavage also destroys the tension responsible for turning off the SAC, cells must possess a mechanism to prevent SAC reactivation during anaphase, which could be conferred by a dependence of the SAC on Cdk1 [3–5]. To test this, we analyzed mouse oocytes and embryos expressing nondegradable cyclin B together with a Cdk1-resistant form of separase. After biorientation and SAC inactivation, APC/CCdc20 activates separase but the resulting loss of (some) cohesion is accompanied by SAC reactivation and APC/CCdc20 inhibition, which aborts the process of further securin degradation. Cyclin B is therefore the only APC/CCdc20 substrate whose degradation at the onset of anaphase is necessary to prevent SAC reactivation. The mutual activation of tension sensitive SAC and Cdk1 creates a bistable system that ensures complete activation of separase and total downregulation of Cdk1 when all chromosomes have bioriented.
Graphical Abstract
•Cdk1 activity is necessary for maintaining the spindle assembly checkpoint (SAC)•SAC is reactivated during anaphase if Cdk1 activity is kept high•APC/C blocks SAC reactivation at anaphase solely by promoting cyclin B degradation•The SAC’s dependence on Cdk1 ensures that APC/C activation irreversible
Rattani et al. show that Cdk1 is required for spindle assembly checkpoint (SAC) activation by unattached/tensionless chromosomes. Cdk1 inactivation through degradation of its cyclin B subunit blocks SAC reactivation during anaphase. The SAC’s dependence on Cdk1 makes separase activation irreversible.
PMCID: PMC3969274  PMID: 24583015
23.  Kinetochore Localization of Spindle Checkpoint Proteins: Who Controls Whom?D⃞ 
Molecular Biology of the Cell  2004;15(10):4584-4596.
The spindle checkpoint prevents anaphase onset until all the chromosomes have successfully attached to the spindle microtubules. The mechanisms by which unattached kinetochores trigger and transmit a primary signal are poorly understood, although it seems to be dependent at least in part, on the kinetochore localization of the different checkpoint components. By using protein immunodepletion and mRNA translation in Xenopus egg extracts, we have studied the hierarchic sequence and the interdependent network that governs protein recruitment at the kinetochore in the spindle checkpoint pathway. Our results show that the first regulatory step of this cascade is defined by Aurora B/INCENP complex. Aurora B/INCENP controls the activation of a second regulatory level by inducing at the kinetochore the localization of Mps1, Bub1, Bub3, and CENP-E. This localization, in turn, promotes the recruitment to the kinetochore of Mad1/Mad2, Cdc20, and the anaphase promoting complex (APC). Unlike Aurora B/INCENP, Mps1, Bub1, and CENP-E, the downstream checkpoint protein Mad1 does not regulate the kinetochore localization of either Cdc20 or APC. Similarly, Cdc20 and APC do not require each other to be localized at these chromosome structures. Thus, at the last step of the spindle checkpoint cascade, Mad1/Mad2, Cdc20, and APC are recruited at the kinetochores independently from each other.
PMCID: PMC519151  PMID: 15269280
24.  Unrestrained Spindle Elongation during Recovery from Spindle Checkpoint Activation in cdc15-2 Cells Results in Mis-Segregation of Chromosomes 
Molecular Biology of the Cell  2010;21(14):2384-2398.
cdc15-2 cells failed to coordinate spindle elongation and kinetochore capture during recovery from Noc treatment. This was due to a failure in the cdc15-2 cells to accumulate Pds1p as well as in wild-type cells, indicating that timely progression through the cell cycle and proper expression of PDS1 is important in the presence of spindle damage.
During normal metaphase in Saccharomyces cerevisiae, chromosomes are captured at the kinetochores by microtubules emanating from the spindle pole bodies at opposite poles of the dividing cell. The balance of forces between the cohesins holding the replicated chromosomes together and the pulling force from the microtubules at the kinetochores result in the biorientation of the sister chromatids before chromosome segregation. The absence of kinetochore–microtubule interactions or loss of cohesion between the sister chromatids triggers the spindle checkpoint which arrests cells in metaphase. We report here that an MEN mutant, cdc15-2, though competent in activating the spindle assembly checkpoint when exposed to Noc, mis-segregated chromosomes during recovery from spindle checkpoint activation. cdc15-2 cells arrested in Noc, although their Pds1p levels did not accumulate as well as in wild-type cells. Genetic analysis indicated that Pds1p levels are lower in a mad2Δ cdc15-2 and bub2Δ cdc15-2 double mutants compared with the single mutants. Chromosome mis-segregation in the mutant was due to premature spindle elongation in the presence of unattached chromosomes, likely through loss of proper control on spindle midzone protein Slk19p and kinesin protein, Cin8p. Our data indicate that a slower rate of transition through the cell division cycle can result in an inadequate level of Pds1p accumulation that can compromise recovery from spindle assembly checkpoint activation.
PMCID: PMC2903668  PMID: 20505077
25.  APC15 drives the turnover of MCC-Cdc20 to make the Spindle Assembly Checkpoint responsive to kinetochore attachment 
Nature cell biology  2011;13(10):1234-1243.
Faithful chromosome segregation during mitosis depends on the Spindle Assembly Checkpoint (SAC) that monitors kinetochore attachment to the mitotic spindle. Unattached kinetochores generate mitotic checkpoint proteins complexes (MCCs) that bind and inhibit the Anaphase Promoting Complex/Cyclosome (APC/C). How the SAC proficiently inhibits the APC/C but still allows its rapid activation when the last kinetochore attaches to the spindle is important to understand how cells maintain genomic stability. We show that the APC/C subunit APC15 is required for the turnover of the APC/C co-activator Cdc20 and release of MCCs during SAC signalling but not for APC/C activity per se. In the absence of APC15, MCCs and ubiquitylated Cdc20 remain ‘locked’ onto the APC/C, which prevents the ubiquitylation and degradation of Cyclin B1 when the SAC is satisfied. We conclude that APC15 mediates the constant turnover of Cdc20 and MCCs on the APC/C to allow the SAC to respond to the attachment state of kinetochores.
PMCID: PMC3188299  PMID: 21926987

Results 1-25 (1198791)